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Abstract Western juniper (Juniperus occidentalis subsp.

occidentalis) range expansion into sagebrush steppe

ecosystems has affected both native wildlife and economic

livelihoods across western North America. The potential

listing of the greater sage-grouse (Centrocercus uropha-

sianus) under the U.S. Endangered Species Act has spurred

a decade of juniper removal efforts, yet limited research

has evaluated program effectiveness. We used a multi-

objective spatially explicit model to identify optimal ju-

niper removal sites in Northeastern California across

weighted goals for ecological (sage-grouse habitat) and

economic (cattle forage production) benefits. We also ex-

tended the analysis through alternative case scenarios that

tested the effects of coordination among federal agencies,

budgetary constraints, and the use of fire as a juniper

treatment method. We found that sage-grouse conservation

and forage production goals are somewhat complementary,

but the extent of complementary benefits strongly depends

on spatial factors and management approaches. Certain

management actions substantially increase achievable

benefits, including agency coordination and the use of

prescribed burns to remove juniper. Critically, our results

indicate that juniper management strategies designed to

increase cattle forage do not necessarily achieve measur-

able sage-grouse benefits, underscoring the need for pro-

gram evaluation and monitoring.
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Introduction

Over the last 130 years, western juniper (Juniperus occi-

dentalis subsp. occidentalis) populations have expanded

into large areas of sagebrush steppe habitat across western

North America (Miller et al. 2000; Davies et al. 2011). A

mix of environmental and managerial factors in the land-

scape have facilitated this range expansion, including fire

suppression (Miller et al. 2000), fuel reductions from

grazing (Burkhardt and Tisdale 1976; Miller and Rose

1995), and increased atmospheric carbon dioxide (Soulé

et al. 2004).

In sagebrush ecosystems, juniper range expansion

(Fig. 1a) threatens both native wildlife and agricultural

productivity (Miller et al. 2000; Bates 2005; Noson et al.

2006). For example, the conversion of sagebrush steppe to

juniper woodland negatively affects greater sage-grouse

(Centrocercus urophasianus, Fig. 1b) by reducing sage-

brush cover and the associated plants and insects that

comprise the birds’ diet (Crawford et al. 2004; Doherty

et al. 2008; Baruch-Mordo et al. 2013). In addition, chan-

ges in the geographic range and density of juniper can

affect forage for cattle. In the Great Plains region, livestock

production has dropped by 75 % in areas where the closely

related eastern red-cedar (Juniperus virginiana) has en-

croached into grasslands (Twidwell et al. 2013).

To address the impact of western juniper expansion on

greater sage-grouse and sustainable grazing, the Natural

Resources Conservation Service (NRCS) launched the

Sage-Grouse Initiative (SGI) in 2010 (NRCS 2012a). SGI

funds juniper removal and sagebrush steppe habitat

restoration projects on public and private lands with the goal

of simultaneously improving environmental and economic

objectives (NRCS 2012b). Despite a decade of initiatives

and funding, as well as the pending listing decision for the

greater sage-grouse (hereafter sage-grouse) under the U.S.

Endangered Species Act (USFWS 2010), few studies have

assessed the implementation of juniper removal strategies

(Baruch-Mordo et al. 2013). Sage-grouse habitat restoration

is often promoted as complementary with cattle grazing

(NRCS 2012a), but the degree of complementarity has not

been evaluated in the scientific literature.

Multi-objective management of natural resources seeks

to balance human demands, environmental preservation,

and future resource availability (Schmoldt 2001). Decision-

makers must often prioritize among different goals by

evaluating the economic and environmental benefits of

various actions. Software tools such as Zonation (Williams

et al. 2005) and Marxan (Possingham et al. 2000) can sup-

port decision-making for landscape-level conservation

planning, but limited resources and learning curves often

restrict extensive use of such tools by land managers. Ad-

ditionally, these off-the-shelf programs may not be appli-

cable to certain management tasks due to issues of model

formulation (cost minimization or data structure) or focus

(marine reserves, land parcels, etc.). Simpler, more adapt-

able tools can allow decision-makers to more rapidly assess

strategies for conservation and resource management.

We developed a spatially explicit decision model using

multi-objective optimization to assess juniper management

strategies for (1) sage-grouse habitat restoration and (2)

forage production for cattle. Our primary goal was to assess

whether juniper management programs designed to im-

prove sage-grouse habitat can yield forage production

benefits and vice versa. Although land availability and

owner willingness currently drive site selection for SGI

projects, we explored how land managers could prioritize

locations based on their suitability for one or both objec-

tives. Our research provides a timely evaluation of SGI

management strategies and contributes to the growing

collection of integrated modeling tools for conservation of

threatened species and resource management.

Fig. 1 a Western juniper (Juniperus occidentalis subsp. occidentalis) in Modoc County, CA. Photo credit: Allison G. Dedrick. b A pair of male

greater sage-grouse (Centrocercus urophasianus). Photo credit: Gail Patricelli
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Methods

We analyzed optimal budget allocations for juniper re-

moval across a region of the Modoc Plateau (Fig. 2) using

a simple and novel algorithm that adapted several opti-

mization approaches. We used a ranking procedure to se-

quentially select the best available sites for treatment

(DeVore and Temlyakov 1996) and developed a procedure

for incorporating multiple goals with different units

derived from the ‘‘constraint method’’ in linear program-

ming (Haimes 1970). The analysis optimized juniper re-

moval decisions across a landscape, assessing costs and

benefits to identify the best areas for treatment. We then

extended the analysis to include several alternative cases.

The section below describes: (1) methods for determining

benefits and costs, (2) model formulation and implemen-

tation, and (3) alternative analysis cases.

Benefits of Treatment: Forage Production

We obtained herbaceous vegetation and juniper canopy

cover data from Coultrap et al. (2008) for 97 circular plots

(45 m diameter) in Modoc, Lassen, and Siskiyou counties.

Based on a comparison of sites with intact western juniper

communities and those where juniper was removed,

Coultrap et al. (2008) reported that juniper removal led to

increased grass cover, higher herbaceous productivity, and

less bare ground. The authors chose study plots that: (1)

were representative of soil and vegetation types in the area,

(2) exhibited variable juniper canopy cover, (3) had not

been grazed, and (4) allowed for comparison of treated

sites (juniper removed) and adjacent untreated sites. Mean

juniper canopy cover across the 97 sites was 12 % (range

0–74 %).

For each plot location, we assessed a range of envi-

ronmental and geophysical variables as potential predictors

of forage production, including date of onset of the frost-

free period, temperature difference between the average

warmest and coldest month, soil properties, slope, and

elevation (Appendix A1). We obtained juniper canopy

cover data from an NRCS analysis of aerial photography

(Falkowski and Evans 2012). We derived downscaled cli-

mate data from the PRISM dataset (PRISM Climate Group

2012) using the ClimateWNA tool (Wang et al. 2011). We

obtained soil and topographic information from the NRCS

STATSGO2 database (NRCS 2012c) and ASTER DEM

Fig. 2 Distribution of western juniper (Juniperus occidentalis subsp.

occidentalis, shown in green) modified from Miller et al. 2005. Inset

map indicates study region, with blue 2000 9 2000 m grid cells

representing ‘‘decision units’’ considered in the model and the

location of the Greenleaf Power Plant in Wendel, CA (red star)
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data (EOSDIS 2009), respectively. Adopting the common

log-linear regression specification (Johnson et al. 1999), we

used these environmental and geophysical variables to es-

timate the relationship between forage production and ju-

niper canopy cover in the original plots from the Coultrap

et al. (2008) dataset. We then applied this function to es-

timate potential increases in forage production following

complete juniper removal for sites across the entire study

region (Appendix A1). While we use the term ‘‘forage’’ to

refer to all herbaceous plant material, we recognize that not

all herbaceous plants provide equal nutritional benefit for

cattle.

Benefits of Treatment: Sage-grouse

We assessed benefits of juniper treatment to sage-grouse

populations using a spatially explicit model to predict the

relative probability of sage-grouse occurrence based on

density of breeding birds observed near leks. Leks are ideal

locations for space use analyses because they are hubs for

nesting (Autenrieth 1985; Connelly et al. 2004) and are

generally centered among seasonal use areas (Coates et al.

2013).

To calculate a ‘‘breeding density index’’, we obtained

lek coordinates and count data (number of males attending

leks) from the California Department of Fish and Wildlife

and the Oregon Department of Fish and Wildlife. We used

a kernel density estimator (Silverman 1986) with smooth-

ing parameters estimated using likelihood based cross-

validation to create a utilization distribution (‘‘UD’’, Ap-

pendix A2). Given the distribution and density of

documented animal occurrences, UDs provide an ap-

proximation of sage-grouse space use (Coates et al. 2013).

We then used the UD to calculate a ‘‘dispersal index’’

representing the probability of sage-grouse occurrence in

each landscape cell given complete juniper removal within

that cell. For additional detail on methodologies used to

assess sage-grouse benefits, see Appendix A2.

Costs of Treatment

To collect data on treatment costs as well as decision-

making heuristics for treatment method selection, we in-

terviewed stakeholders with firsthand experience imple-

menting juniper treatment projects on the Modoc Plateau

(UC Davis IRB #420715-1). Respondents included repre-

sentatives from private consulting firms, federal agencies,

and cooperative extension. The aggregated data from these

interviews provided us with a range of thresholds to inform

treatment method selection, including the maximum ju-

niper canopy cover and slope for various treatment meth-

ods, as well as the per hectare cost of using various

methods (Tables A2 and A3).

We considered the two most commonly used methods of

juniper removal: hand treatment, which involves felling

trees with chainsaws in regions of low juniper density, and

mechanical treatment, which uses heavy machinery to fell

and pile trees and is most effective at high juniper density

(Table A3). We did not allow treatment in: (1) areas with

[30 % slope (averaged at the one hectare scale) due to

reported concerns about accessibility and post-treatment

erosion or (2) areas with[30 % juniper cover due to sparse

understory cover and a depauperate seed bank (Miller et al.

2005). Based on interview responses, we assigned hand

treatment a fixed cost of $100/ha and mechanical treatment

a cost of $300/ha (Table A2).

To compare different treatment regimes, we conducted

analyses assuming a budget of $5 million for the study

region. This value roughly corresponds to SGI funding

allocated to projects on the Modoc Plateau ($5.9 million)

during the 2011 fiscal year (NRCS 2012b). Because our

study region does not include the entire Modoc Plateau, we

rounded down the SGI budget to obtain a more realistic

funding value for the area.

Model Implementation

The model is a simplified Greedy Algorithm (DeVore and

Temlyakov 1996) implemented in the R Statistical Envi-

ronment (R Development Core Team 2014). Each cell in

the grid has attributes for treatment cost, treatment benefit

for sage-grouse habitat, and treatment benefit for forage

production. The model assumes that when any given cell is

treated, all trees are removed within the cell. The algorithm

calculates the weighted cost-effectiveness (Zi) for a cell i as

the total weighted benefits of treating a cell divided by the

cost (Ci) of treating that cell:

Zi ¼
Wforage � Biforage

� �
þ Whabitat � Bihabitatð Þ � f

� �

Ci

ð1Þ

Each cell has an associated benefit from treatment for

forage production (Biforage ) and sage-grouse habitat (Bihabitat ).

The forage-to-habitat conversion factor (f ) creates com-

parable values between the two goals:

f ¼
Bmaxforage

Bmaxhabitat

ð2Þ

In Eq. 2, the maximum forage benefit (Bmaxforage ), which

is measured in kilograms, is the benefit achievable within a

given budget when only maximizing forage production.

Similarly, the maximum habitat benefit (Bmaxhabitat ) is the

benefit achievable within the same budget when only

maximizing habitat. Sage-grouse habitat benefits are mea-

sured as a percentage of the total benefits possible if all

sage-grouse habitat improvements in the study region were

made. Finally, the two weights are applied as percentages:
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Whabitat ¼ 1�Wforage ð3Þ

For each case, we ran the algorithm multiple times, each

with different values of Wforage and Whabitat ranging from 0

to 1 and 1 to 0, respectively. The algorithm calculates the

weighted cost-effectiveness of each cell based on the given

weighting factors, ranks the cells from high to low based on

weighted cost-effectiveness, and iteratively selects to treat

the most cost-effective untreated cell until the budget limit

is reached. The result is a spatially explicit map of treated

cells and total estimated benefits for both sage-grouse and

livestock that corresponds to a given budget (Fig. 3). Our

study region consisted of 877,200 ha, divided into 2193

treatment sites of 4 km2 each.

Alternative Cases

We carried out several alternative cases that either intro-

duced other factors or relaxed assumptions in our baseline

model about a key ecological, economic, or administrative

condition (Table A3). Our alternative cases, detailed in

Appendix section A.4, were: (1) degree of coordination

among land management groups, (2) sale of chipped ju-

niper biomass as an offset to treatment cost, (3) variable

budget constraints, and (4) fire as a juniper treatment

method.

Results

Our results suggest that sage-grouse habitat and forage

production benefits: (1) are sometimes complementary, (2)

exhibit decreasing-returns-to-scale, and (3) depend on

landscape characteristics. There are several potential rela-

tionships between the two goals, illustrated in Fig. 4. These

include a hypothetical 1:1 tradeoff in sage-grouse habitat

and forage production (straight line) and the model results

(labeled curve) (Fig. 4). We refer to these curves as effi-

ciency frontiers (Polasky et al. 2008). Each curve shows

the maximum production for a given budget, while the

concavity of the model results curve indicates tradeoffs in

the two goals with decreasing-returns-to-scale (Fig. 4). In

this case, decreasing-returns-to-scale refers to the scenario

in which juniper treatment increases by a factor m, but

outputs (either sage-grouse or forage production benefits)

increase by less than m. Alternatively, moving away from

the intersection between the labeled curve and the y-axis,

an initial m reduction in forage production results in greater

than m gains in sage-grouse habitat restoration (Fig. 4). For

each successive m reduction in forage production, the

corresponding increase in sage-grouse benefits gets

smaller.

Juniper removal can benefit both sage-grouse habitat

and cattle forage production, but outcomes depend on

prioritization of goals. Juniper removal policies that pri-

oritize forage production (i.e., selecting sites with the

highest potential forage yield) result in little to no benefit

for sage-grouse. Conversely, when juniper removal deci-

sions are directed to improve sage-grouse habitat, sub-

stantial forage production benefits can accrue. In this case,

tradeoffs between the two goals vary depending on the

degree to which management objectives prioritize sage-

grouse versus forage production. For instance, as the per-

centage of sage-grouse habitat restored increases, the

Fig. 3 Heat map of treatment costs, forage production benefits, and

sage-grouse habitat benefits in the study area (Modoc County, CA).

Green indicates high values, while pink and white designate low

values
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Fig. 4 Tradeoffs between prioritizing forage production and sage-

grouse habitat restoration, as illustrated by the efficiency frontier for

the baseline scenario. The straight line indicates the frontier that

would exist if forage production and sage-grouse habitat had a perfect

tradeoff (i.e., if choosing one goal achieved none of the other). The

baseline efficiency frontier lies above the perfect tradeoff line,

suggesting some synergy between forage production and sage-grouse

habitat goals. The dashed line connecting the baseline efficiency

frontier to the x-axis shows the amount of forage production gained

when sage-grouse goals are prioritized 100 %. Completely prioritiz-

ing forage production achieves about 1 % of sage-grouse habitat

restoration, but is not visible on the graph
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relative gain in forage production declines (Fig. 5). These

tradeoffs are linked directly to the spatial distribution of

benefits on the landscape. Because each treatment site

differs in terms of its potential benefit to sage-grouse and

forage production goals, shifting prioritization of the two

goals changes the network of sites selected for treatment on

the landscape. In our study region, the two extremes of goal

prioritization (100 % emphasis on sage-grouse goals versus

100 % emphasis on forage production goals) have entirely

different selections of treatment sites (Fig. 5).

Alternative Model Cases

Our results suggest that agency coordination, budgetary

constraints, and fire affect the amount of achievable ben-

efits for ranching and sage-grouse conservation goals.

However, the shape of the curves, which indicates the re-

lationship between the two objectives, was constant

(Fig. 6). We present the results for each case below.

Alternative Case 1: Lack of Agency Coordination

The degree of coordination among managing agencies

substantially affected achievable benefits. Notably, when

efforts to remove juniper are uncoordinated, the efficiency

frontier decreases substantially in comparison with the

baseline model (Fig. 6a) and reduces the potential benefits

of juniper removal for the two goals.

Alternative Case 2: Biomass as an Additional Resource

We found that in 321 sites (out of 2193) the sale of wood

chips to a local biomass plant (Fig. 2) could subsidize the

cost of treatment by amounts ranging from $427 to

$108,953. Although the biomass market can reduce treat-

ment costs for some potential sites, this cost reduction

(mean = $35,891) is not large enough compared to the

cost of treatment (mean = $139,945) to allow for the

treatment of additional sites. For this reason, the efficiency

frontier does not expand in comparison with the baseline

(Fig. 6b).

Alternative Case 3: Variable Budgets

Potential benefits of juniper removal changed in proportion

to the available budget (Fig. 6c). A larger budget expanded

the frontier of possible benefits, allowing for more sage-

grouse habitat conservation as well as greater forage pro-

duction. In comparison, smaller budgets reduced the po-

tential benefits for both goals.

A B C

Fig. 5 Baseline efficiency

frontier showing spatial

configuration of treated juniper

at various weightings of sage-

grouse habitat and forage

production. Changing the

prioritization of sage-grouse

habitat restoration and forage

production goals substantially

affects the sites selected for

juniper removal, shown in the

three inset graphs. Complete

sage-grouse habitat

prioritization and complete

forage production prioritization

have entirely different

selections of treatment sites
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Alternative Case 4: Fire as a Treatment Method

When we included prescribed burns as a possible treatment

option, the efficiency frontier expanded substantially

compared to the baseline model (Fig. 6d). Because fire is a

less costly juniper removal method, a much larger area

could be treated for a given budget, which in our model

yielded significantly greater forage production and sage-

grouse habitat restoration.

Discussion

For land managers in Northeastern California, multi-ob-

jective management of western juniper requires thoughtful

prioritization of goals. Our results indicate that sage-grouse

conservation and forage production goals may be com-

plementary in some scenarios, but not without tradeoffs.

Critically, prioritizing juniper removal decisions to im-

prove forage production only produces a small increase in

sage-grouse benefits. This tradeoff is directly related to the

spatial distribution of benefits across the study region.

Potential sage-grouse benefits are highest on land parcels

with relatively dense juniper cover that are located in close

proximity to lek locations. These benefits decay rapidly

with increasing distance from a lek. Thus, treating a land

parcel that is geographically isolated from lek locations

would confer some amount of forage production benefits

but no sage-grouse benefits. Overall, the model results

indicate that juniper removal projects selected solely for

rangeland benefits will not always benefit sage-grouse.

Our model also suggests that institutional constraints

substantially alter potential benefits of juniper removal.

While prescribed burns may be the most cost-effective

method of juniper removal in California and many parts of

the western U.S., bureaucratic and legal restrictions that

seek to ensure safety may limit the use of this treatment

option (Brunson and Evans 2005). Even in the absence of

institutional constraints, it is unclear whether the use of

prescribed fire would benefit sage-grouse. At least two

long-term studies have reported negative effects of fire on

sage-grouse nesting habitat (Nelle et al. 2000) and male lek

attendance (Connelly et al. 2000), suggesting that land

managers should exercise caution when using prescribed

burns as a habitat restoration strategy.

Coordination among federal agencies working to control

juniper can also increase achievable benefits for sage-grouse

habitat improvement and forage production. However, the

budgetary allocations that flow through different federal and

state agencies can reduce incentives to cooperate in land-

scape-level approaches to juniper removal. While the SGI is

novel in its broad coalition of public and private partners,

project funding is often still allocated separately.

At present, budgets for juniper removal through the SGI are

relatively large (NRCS 2012a). Although our model results

indicate that sage-grouse and forage benefits scale with bud-

get, selected targets for sage-grouse or forage might not be

achievable at all budgets. For instance, a total program budget

of $2.5 million is insufficient to achieve a goal of 25 % of the

total benefits for sage-grousepopulations (Fig. 6c). This could

have considerable implications if biologically relevant sage-

grouse benefits do not accrue without a minimum level of

spending. Below this budget amount, only sub-optimal sites

with limited potential benefit for sage-grouse would be re-

stored. Such outcomes could result either from implementa-

tion issues or from overall budgetary reductions.

At a regional scale, our analysis shows that large scale

initiatives can effectively manage juniper for both sage-

grouse and cattle ranching goals. However, because the

balance of prioritization between the two goals determines

the range of potential shared benefits and overall comple-

mentarity, management may not meet multiple goals unless

it is explicitly designed to do so. To avoid funding projects

that have little or no benefit for sage-grouse, careful

oversight and post-treatment evaluation are necessary.

A B

C D

Fig. 6 Tradeoff curves for alternative analysis cases of a varying the

level of federal agency coordination in treatment; b including chipped

juniper biomass as a resource to offset management costs; c adjusting
budgetary constraints; and d including fire as a treatment method. In

each graph, the baseline case is shown in black. An outward shift in

the curve away from the origin indicates that more benefits can be

achieved. In the ‘‘Budget Constraints’’ panel, the vertical line shows a

target of 25 % sage-grouse habitat restoration, which is only

achievable at two of the budgets shown
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