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Many studies and production inventory systems have shown the utility of coupling covariates derived from Light
Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through
regressionmodels. The objective of this studywas to propose and assess the use of a Bayesian hierarchicalmodel-
ing framework that accommodates both residual spatial dependence and non-stationarity of model covariates
through the introduction of spatial random effects. We explored this objective using four forest inventory
datasets that are part of the North American Carbon Program, each comprising point-referenced measures of
above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression
model specifications of varying complexity.Modelswere assessed based on goodness offit criteria and predictive
performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random ef-
fects to the regressionmodel intercept improved fit and predictive performance in the presence of substantial re-
sidual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to
vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance.
In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting
and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling
framework provided access to pixel-level posterior predictive distributions thatwere useful for uncertaintymap-
ping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally signif-
icant parameters.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Estimating forest above-ground biomass (AGB), along with other
structure variables, using discrete Light Detection and Ranging
(LiDAR) data is an active subject in ecological and resource monitoring
research. Studies in this area show a strong potential for discrete return
LiDAR to be used as a tool for developing spatially explicit estimates of
many forest attributes, including AGB, either on its own or in conjunc-
tion with other remote sensing technologies (see, e.g., Gonzalez et al.
(2010); Lim and Treitz (2004); Lucas et al. (2006); Sherrill, Lefsky,
Bradford, and Ryan (2008)).

Regression models proposed for forest AGB mapping using
LiDAR data often do not explicitly accommodate residual spatial depen-
dence, see, e.g., Anderson et al. (2008), Gonzalez et al. (2010), Muss,
Mladenoff, and Townsend (2011), Tonolli et al. (2011), and Popescu,
Zhao, Neuenschwander, and Lin (2011). A non-spatial model can be ap-
propriate if all spatially structured variation in the outcome is accounted
for by the covariates used formodel fitting; however, this is often an un-
realistic assumptionwhen data are spatially indexed. Considering forest
attribute data, it is reasonable to expect similar outcomes for neighbor-
ing locations. For example, inventory plots close together could com-
prise like tree species and have comparable stem densities due to
similar disturbance histories and environmental conditions. In contrast,
inventory plots far apart are less likely to share common composition or
structure attributions. A key assumption of regression is that model re-
siduals are not correlated. Given the spatially dependent nature of forest
inventory data, the potential for spatially correlated residuals in AGB
models is high. Not accounting for residual spatial dependence can
result in falsely precise estimates of model parameters and erroneous
predictions (Hoeting, 2009). For these reasons, it is important to check
for spatially structured residuals when spatial data are used to fit AGB
models.
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To ensure a model's statistical validity, spatial dependence among
residuals can be accommodated by introducing a spatially varying inter-
cept (SVI) via the addition of an appropriately structured random effect.
Including spatial random effects that account for spatial association be-
tween observed locations can also improvemodel fit and prediction ac-
curacy, via partitioning error uncertainty into a spatial and non-spatial
component and borrowing information from observed locations to in-
form prediction at proximate locations.

In addition to a SVI, it may be appealing to allow the regression pa-
rameters associated with the covariates to vary across the study area.
For instance, given the heterogeneity of forest species composition,
age classes, and resources (e.g., light, water, soil characteristics), a single
set of regression parameters might not adequately capture the space
varying relationship between forest outcome variables and the covari-
ates, i.e., parameters may have a spatially non-stationary relationship
with the covariates. In such cases, one might attempt to capture these
localized effects by including forest characteristics and/or environmen-
tal conditions as covariates in the regression model; however, it is not
always clear which variables should be included and, in many applied
settings, the necessary variables are not available. Rather, localized
relationships between the outcome variable and covariates might be
more effectively captured by allowing the regression coefficients to
vary smoothly over the study area.

Such spatially varying coefficient (SVC) models have received some
attention in the statistical literature (see, e.g., Finley, Banerjee, and
McRoberts (2009); Finley, Banerjee, and MacFarlane (2011); Gelfand,
Schmidt, Banerjee, and Sirmans (2004)), and more recently in applied
disciplines (Finley, 2010; Wheeler & Calder, 2007; Wheeler & Waller,
2009). Flexible specification of these models follows the Bayesian para-
digm of statistical inference (see, e.g., Banerjee, Carlin, and Gelfand
(2004); Carlin and Louis (2000); Gelman, Carlin, Stern, and Rubin
(2013)), where analysis uses samples, obtained via Markov chain
Monte Carlo (MCMC) methods, from the posterior distributions of
model parameters.

SVI and SVC models accommodate residual spatial dependence and
parameter non-stationarity differently than more common geostatistical
approaches seen in the remote sensing literature. Chen, Zhao, McDermid,
and Hay (2012) examined geographically weighted regression (GWR,
Fotheringham, Brunsdon, & Charlton, 2003) alongside other geostatistical
approaches for predicting canopy height with remote sensing data
and saw improvements in model fit. In an attempt to accommodate
residual spatial dependence and parameter non-stationarity,
Hudak, Lefsky, Cohen, and Berterretche (2002) explored kriging and
co-kriging geostatistical methods to build prediction models for forest
canopy height. They saw improvements in fit using regression kriging
and regression co-kriging.

Recently, it has been shown that GWRmay not be robust to correla-
tion among covariates and produce erroneous results in the presence of
complex correlation structures (Finley et al., 2011; Wheeler & Waller,
2009). Also, from an inferential standpoint, GWR can be problematic
when attempting to draw inference about model parameters and pre-
diction uncertainty. Because GWR lacks a valid underlying probability
model, parameter standard error estimates and prediction variance es-
timates can potentially be unjustifiable. Error maps generated by
kriging and co-kriging methods do not account for the uncertainty in
the variogram-derived spatial covariance parameters, which is a well-
known shortcoming encountered with these geostatistical approaches
(Cressie, 1993). In a Bayesian hierarchical framework, it is possible to
estimate the spatial covariance parameters within SVI and SVC models
and, hence, propagate their uncertainties through to the prediction of
the outcome variable (Banerjee et al., 2004). Such approaches yield a
more statistically defensible map of uncertainty than would otherwise
be produced using traditional kriging or GWRmethods.

In an effort to more fully account for patterns of spatial depen-
dence between AGB and LiDAR covariates, the utility of a Bayesian
hierarchical modeling framework that accommodates both residual
spatial dependence and non-stationarity of model covariates through
the introduction of spatial random effects was assessed. This objective
was explored using four forest inventory datasets that are part of
the North American Carbon Program (NACP), each comprising point-
referenced measures of AGB and discrete LiDAR. For each dataset, a
set of regression model specifications of varying complexity was con-
sidered. Models were assessed based on fit criteria and predictive per-
formance using a 10-fold cross-validation approach. AGB maps with
associated pixel-level prediction uncertainty measures were generated
using the model selected as “best” for each site. In cases where the se-
lectedmodel included spatial randomeffects, additionalmapswere cre-
ated to illustrate features of the space-varying coefficients. Results
showed, in an exploratory fashion, how uncertainty and space-varying
coefficient maps can be used to identify: spatial extrapolation issues;
missing covariates, and; locally significant regression coefficients.

The remainder of the paper evolves as follows. The motivating data
and preprocessing steps are detailed in Section 2. The proposed model-
ing framework and model assessment are described in Section 3,
followed by analysis results presented in Section 4. Finally, somediscus-
sion along with an indication of future work is provided in Section 5.

2. Study sites

2.1. Fraser Experimental Forest

The Fraser Experimental Forest (FEF) is located in central Colorado
(39∘ 4′N, 105∘ 52′W)near the town of Fraser. Tree species at FEF consist
primarily of Abies lasiocarpa Hook. Nutt and Picea engelmannii Parry at
higher elevations and Pinus contorta Bol. at lower elevations. Climate
at FEF is characterized by cold and relatively long winters, with mean
annual temperature and precipitation of 0 °C and 737mm, respectively.
FEF experienced a widespread stand-replacing fire in approximately
1685. Selective clearcuts were conducted at FEF as watershed-scale
manipulations in the 1950s. Although FEF is currently experiencing
mortality due to mountain pine beetle, the field measurements
and LiDAR acquisition for this study were completed prior to beetle
infestation.

2.2. Marcell Experimental Forest

Located in northern Minnesota, the Marcell Experimental Forest
(MEF) consists of mixed forests that include both upland forests
and peatlands. Upland forests are generally dominated by Populus
tremuloides Michx. and grandidentata Michx., but also contain substan-
tial components of Betula papyrifera Marshall, Pinus resinosa Roezl,
Pinus strobus L., and Pinus banksiana Lamb.. Lowland tree species include
Larix laricina (Du Roi) K. Koch, Picea mariana Britton, Sterns & Poggenb.,
Fraxinus nigra Marshall, and Thuja occidentalis L. Climate at MEF is
subhumid continental, with mean annual precipitation of 785 mm,
mean annual temperature of 3 °C and air temperature extremes from
−46 °C to 38 °C. Forests of the Lake States region experienced wide-
spread logging around the turn of the 20th century, including much of
the MEF landscape. Natural disturbances at MEF include windstorms
of variable intensity and rare wildfires.

2.3. Glacier Lake Ecosystem Experimental Site

Glacier Lake Ecosystem Experimental Site (GLEES) is located ap-
proximately 55 km west of Laramie, Wyoming at 3190 m elevation
(41∘ 22′ N, 106∘ 14′ W). GLEES includes a mosaic of trees and alpine
meadows; the forest is dominated by P. engelmannii and A. lasiocarpa.
GLEES has a mean annual temperature of −2 °C and a mean annual
precipitation of 1000mm, primarily as snow. Tree ages at GLEES suggest
either a stand-replacing disturbancemore than 400 years agowith slow
recovery, or a series of smaller disturbances over the last 400 years
(Bradford, Birdsey, Joyce, & Ryan, 2008).
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2.4. Niwot Long Term Ecological Research Site

Niwot Long Term Ecological Research Site (NIWOT) is located at
3050 m elevation on the front range of the Rocky Mountains (40∘ 2′ N,
105∘ 33′W), near the town of Nederland, Colorado. Tree species include
primarily a mix of A. lasiocarpa, P. engelmannii and P. contorta with
minor components of Pinus flexilis A. Murr. and P. tremuloides. Mean an-
nual temperature and precipitation are 4 °C and 800 mm, respectively.
Disturbance history at NIWOT includes widespread clearcuts between
1900 and 1910.
2.5. Field data preparation

Field data at each site were collected using methods similar to the
Forest Inventory and Analysis style plot design (Bechtold & Patterson,
2005). Each plot location consisted of 4 sub-plots with a radius of
8–10 m (depending on site) with 1 being in the center and 3 others
35 m away from the plot center at 0°, 120°, and 240°. Each site was ini-
tially established with 9 (FEF, GLEES, and NIWOT) or 16 (MEF) plots in
2004 located on a regular grid with 250 m between plot centers in the
north-south and east-west directions. Additional plots and/or sub-
plots were subsequently added during 2005 and 2006 at each site in lo-
cations selected to capture canopy height conditions not adequately
represented in the initial gridded plots. FEF, MEF, GLEES and NIWOT
contained 61, 115, 46 and 62 sub-plots respectively. Fig. 1 shows the
spatial distribution of the sub-plots inside the LiDAR coverage area.
Within each sub-plot, individual tree diameter at breast height, and
height measurements for both live and dead trees were taken and
used in species-specific allometric equations to estimate AGB (stem,
branch and foliage biomass). Additional details about field measure-
ments and allometric equations used for biomass estimation are avail-
able in Bradford et al. (2010) and Cole et al. (2013). The individual
Fig. 1.Aerial photographs of FEF,MEF, GLEES, andNIWOTwith inventory sub-plot locations high
is referred to the web version of this article.)
tree AGB estimates were totaled for each sub-plot and converted to
AGBMg/ha. The AGBmeasurementswere then square root transformed
to better approximate a normal distribution before model fitting.
2.6. LiDAR data preparation

Height-above-groundmeasurements for the first return pulses were
calculated by subtracting the point elevations from a digital terrain
model constructed from the LiDAR data. LiDAR return height empirical
cumulative distribution curves were constructed over each sub-plot
and a percentile height dataset was compiled by extracting heights as-
sociated with 5% intervals (i.e., 5%–100%) for each curve. These percen-
tile heights served as an initial set of regression covariates. Using the
same intervals, a percentile height dataset was constructed for a
20 × 20 m grid over the LiDAR coverage area and subsequently used
to construct AGB prediction maps. The cell size was chosen because it
is approximately the same area as the observed sub-plots.

Variable selection via dimension reductionwas necessary because of
high collinearity among the percentile height covariates.We chose prin-
cipal components analysis (PCA) via eigen (spectral) decomposition of
the percentile height correlation matrix to reduce the covariate set.
Eigen decomposition is a matrix factorization technique that is useful
for characterizing patterns in high-dimensional data (Harville, 1997).
Eigen decomposition (or similar orthogonalization techniques) is used
widely for data reduction or compression in statistics, signal processing,
pattern recognition, remote sensing, and other fields where high-
dimensional and/or highly correlated data are encountered (Guanter
et al., 2012; Guanter et al., 2013; Huang, Song, Cui, Peng, & Xu, 2014;
Wang, Yu, Wang, Deng, & Zhao, 2014). It is common to see PCA per-
formed by decomposing the covariance matrix in the remote sensing
sciences (Richards, 2013).We elected to decompose the correlationma-
trix due to the natural tendency for upper percentile heights to bemore
lighted in red. (For interpretation of the references to color in this figure legend, the reader
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variable than lower percentile heights. Johnson and Wichern (2007)
offer a detailed discussion about how standardizing the variables,
i.e., using the correlation matrix, reduces the effect of individual covar-
iate variances on principal component loadings. In SectionA1, themath-
ematical procedure for conducting PCA on standardized variables and
transforming the gridded data set to the correct basis for prediction is
detailed. Criteria for selecting principal components are also presented
in Section A1. For the FEF, NIWOT, and GLEES sites, two principal com-
ponents were retained and three were selected for MEF.

Some grid cell locations contained covariate values that well
exceeded the range of values used for model fitting. This is a result of
a relatively small set of observed plots compared to the size and hetero-
geneity of the study area. To avoid potential issues arising from model
extrapolation (Perrin, 1904), grid cells with values outside the support
of the observed covariate values were removed from the analysis.
Water bodies at GLEES and MEF were also excluded from the analysis.
Excluded grid cells are colored black in the subsequent maps.

3. Methods

3.1. Modeling framework

Geostatistical settings typically assume at location s ∈ D ⊆ℝ2, where
s is a vector of geographic coordinates in domainD, a Gaussian outcome
variable y(s) is modeled using the regression model,

y sð Þ ¼ x sð Þ0βþ ~x sð Þ0w sð Þ þ ϵ sð Þ: ð1Þ

Here the linearmean structure that accounts for large scale variation
in the outcome is composed of a p × 1 vector x(s), comprising an inter-
cept and spatially referenced covariates, and an associated column vec-
tor of regression coefficients β= (β0, β1,…, βp − 1)′. The ~xðsÞ is a q × 1
vector that includes the intercept and those covariates from x(s) whose
impact on the outcome is posited to vary spatially. This space varying
impact is captured through the vector of spatial random effects
w(s) = (w1(s), w2(s), …, wq(s))′. Various sub-models are formed by
specifying different combinations of ~xðsÞ and associated w(s). Custom-
arily, ϵ(s) is modeled as an independent white-noise process that cap-
tures measurement error or micro-scale variation. With any collection
of n locations, sayS ¼ fs1; s2;…; sng, we assume that the ϵ(si)'s are iden-
tically and independently distributed as N(0, τ2), where τ2 is often
called the nugget.

For this model, spatial structure is typically introduced through a
multivariate Gaussian process (GP) (Banerjee et al., 2004; Cressie,
1993; Wackernagel, 2003), where a cross-covariance function explicitly
models the covariance of w(s) both within and among locations. This
additional flexibility is attractive in many settings (see, e.g., Banerjee,
Finley, Waldmann, and Ericsson (2011); Finley et al. (2011); Gelfand
et al. (2004)); however, for the objectives of this study it is not clear if
the extra effort will fetch substantial advantages. Rather, for simplicity
and substantially reduced computational demand, we assumed the ele-
ments ofw(s) arise from q independent univariate GPs. Specifically, the
process associated with the k-th covariate is wk(s) ~ GP(0, C(⋅, ⋅; θk))
where C(s, s*; θk) = Cov (wk(s), wk(s*)) is a valid covariance function
that models the covariance corresponding to a pair of locations s
and s*. The process realizations are collected into an n × 1 vector, say
wk = (wk(s1),…, wk(sn))′, that follows a multivariate normal distribu-
tion MVN(0, Σk), where Σk is the n × n covariance matrix of wk with
(i, j)-th element given by C(si, sj; θk). Clearly C(s, s*; θk) cannot be just
any function; it must ensure that the resulting Σk matrix is symmetric
and positive definite. Such functions are known as positive definite
functions and are characterized as the characteristic function of a sym-
metric random variable. Further technical details about positive definite
functions can be found in Cressie (1993), Chilès and Delfiner (1999),
and Banerjee et al. (2004).
We specify C(s, s*; θk) = σk
2ρ(s, s*; ϕk) with θk = {σk

2, ϕk}, ρ(⋅; ϕk)
is a valid spatial correlation function, where ϕk quantifies the rate
of correlation decay and Var(wk) = σk

2. For the subsequent analyses
we assumed an exponential correlation function, ρ(∥s − s* ∥; ϕk) =
exp(−ϕk ∥ s− s*∥), where ∥ s− s* ∥ is the Euclidean distance between
the locations s and s*.

To complete the Bayesianmodel specification,we assign prior distri-
butions to the model parameters and inference proceeds by sampling
from the posterior distribution of the parameters. As customary, we as-
sume β follows a MVN(μβ, Σβ) prior with μβ = 0 and Σβ = 10, 000Ip,
while the spatial variance components σk

2's and the measurement
error variance τ2 are assigned inverse-Gamma, IG(a, b), priors. The pro-
cess correlation decay parameters ϕk's follow a Uniform,Unif(a, b), with
support over the geographic range of the study area.

Using notations similar to Gelman et al. (2013), we can write
the posterior distribution of the model parameters as p(Ω | y), where
Ω = {β, w1, w2, …, wq, σ1

2, σ2
2, …, σq

2, ϕ1, ϕ2, …, ϕq, τ2} and y =
(y(s1), …, y(sn))′, which is proportional to

∏
q

k¼1
Unif ϕk aϕk

; bϕk

��� �� ∏
q

k¼1
IG σ2

k aσk ; bσk

��� �� N β μβ

��� ;Σβ

� �
� IG τ2 aτ ; bτj� ��

� ∏
q

k¼1
N wk 0;Σkjð Þ � ∏

n

i¼1
N y sið Þ x sið Þ0�� βþ ~x sð Þ0w sð Þ; τ2� �

:

ð2Þ

An efficient MCMC algorithm for estimation of Eq. (2) is obtained by
updating β from its full conditional then using Metropolis steps for the
remaining parameters. Alternatively, the model can be reparametrized
such that the spatial randomeffectsw donot need to be sampled direct-
ly (Banerjee, Gelfand, Finley, & Huiyan, 2008). In either case, theMCMC
algorithms yield posterior samples of Ω.

For predictions, if S0 = {s0,1, s0,2, …, s0,m} is a collection of m new
locations, the posterior predictive distribution of the spatial random
effects associated with the k-th regression coefficient is given by

p wk;0jy
� �

∝
Z

p wk;0jwk;Ω; y
� �

p wkjΩ; yð Þp Ωjyð ÞdΩwk; ð3Þ

where wk,0 = (wk(s0,1), wk(s0,2),…, wk(s0,m))′.
Because we are using MCMC sample-based inference, i.e., drawing

samples from the posterior of Ω, the integral in Eq. (3) does not have
to be evaluated explicitly. Rather, given L posterior samples for Ω,
i.e., {Ω(l)}l = 1

L , this distribution can be obtained via composition sam-
pling (see, e.g., Banerjee et al. (2008) pg. 132) by first draw wk

(l) and
then drawwk,0

(l) for each l from p(wk,0|wk
(l),Ω(l), y), where this last distri-

bution is derived as a conditional distribution from a multivariate nor-
mal and, hence, is multivariate normal. More precisely, the process
realizations over the new locations are conditionally independent of
the observed outcomes given the realizations over the observed loca-
tions and the process parameters. In other words, p(wk,0|wk, Ω, y) =
p(wk,0|wk, Ω), which is a multivariate normal distribution with mean
and variance given by

E wk;0jwk;Ω
� � ¼ Cov wk;0;wk

� �
Var−1 wkð Þwk ¼ R0 ϕkð Þ0R ϕkð Þ−1wk ð4Þ

and Var wk;0jwk;Ω
� � ¼ σ2

k R ϕkð Þ−R0 ϕkð Þ0R ϕkð Þ−1R0 ϕkð Þ
n o

; ð5Þ

where R0(ϕk) is the n × m matrix with (i, j)-th element given by
ρ(s0,i, sj; ϕk) and R(ϕk) is the n × n matrix with (i, j)-th element given
by ρ(si, sj; ϕk). This procedure is repeated to generate samples for all
wk,0's. Finally, given a set of covariates at a new location s0, samples
from the posterior predictive distribution of the outcome variable,

y(s0)(l), are drawn from Nðxðs0Þ0βðlÞ þ ~xðs0Þ0wðlÞ
0 ; τ2ðlÞÞ for l = 1, 2,…, L.

95% credible interval widths (CIW) can be calculated using pixel-
level posterior predictive distributions of AGB by measuring the dis-
tance between the 2.5% and 97.5% quantile breaks (Fig. 2). The 95%



Fig. 2. Posterior predicted distribution at an example grid cell location shown in gray. Blue
vertical dashed lines indicate the 2.5% and 97.5% quantiles of the posterior predicted
distribution. The length of the horizontal red line is the 95% credible interval width
(CIW). CIWs for each grid cell are mapped in Fig. 5. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Semivariogram models generated using the residuals from th
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CIWs serve as spatially explicit summaries of prediction uncertainty and
can be mapped in order to assess model prediction performance
spatially.
3.2. Candidate models

Five candidate models were derived from Eq. (1) and include: non-
spatial, wherewk's are set to zero; SVI, where only the spatial randomef-
fects associated with the model intercept are included; the full SVC,
where all regression coefficients have associated spatial random effects;
SVC-β1, where spatial randomeffects for the intercept andβ1 are includ-
ed, and; SVC-β2, where spatial random effects for the intercept and β2

are included. Due to MEF's additional covariate, four additional candi-
date models were tested. SVC-β3 has spatial random effects associated
with β0 and β3; SVC-β1β2 has spatial random effects associated with
β0, β1, and β2; SVC-β1β3 has spatial random effects associated with β0,
β1, and β3, and; SVC-β2β3 has spatial random effects associated with
β0, β2, and β3.

Empirical semivariograms fit to the residuals of the non-spatial
models (Fig. 3) were used to help guide hyperprior specification for
the candidate models' IG and Unif priors. Specifically, for the variance
parameters the IG hyperprior a was set equal to 2, which results in a
e non-spatialmodel estimates for FEF, MEF, GLEES, and NIWOT.



Table 1
Candidate model parameter estimates and 95% credible intervals for FEF.

Non-spatial SVI SVC-β1 SVC-β2 SVC

Parameter C.I.
50% (2.5%, 97.5%)

β0 11.16 (10.49, 11.80) 11.33 (10.44, 12.27) 11.58 (10.88, 12.30) 11.41 (10.69, 12.05) 11.28 (10.69, 11.90)
β1 −1.08 (−1.25, −0.92) −1.06 (−1.23, −0.88) −1.04 (−1.91, 0.17) −0.97 (−1.16, −0.78) −0.81 (−1.76, 0.12)
β2 1.10 (0.70, 1.51) 1.01 (0.57, 1.44) 0.77 (0.35, 1.22) 1.46 (0.63, 3.51) 0.91 (0.35, 1.41)
τ2 6.49 (4.62, 9.58) 0.89 (0.32, 3.70) 3.38 (1.61, 5.70) 2.36 (0.79, 4.83) 0.07 (0.02, 0.75)
3/ϕ0 – 121.45 (20.05, 284.91) 21.14 (10.29, 241.36) 31.29 (10.37, 1612.90) 20.62 (10.27, 156.90)
3/ϕ1 – – 2380.95 (160.09, 4838.71) – 2400.00 (302.72, 4918.03)
3/ϕ2 – – – 194.74 (10.82, 2542.37) 21.63 (10.25, 185.87)
σ0
2 – 5.18 (2.51, 8.71) 0.48 (0.21, 1.73) 0.53 (0.21, 2.19) 0.48 (0.20, 1.19)

σ1
2 – – 0.66 (0.29, 1.91) – 0.74 (0.33, 1.95)

σ2
2 – – – 2.28 (0.80, 7.99) 1.64 (0.89, 3.09)

Fit
statistics

D 293.21 93.13 248.42 224.71 22.43
pD 3.93 38.24 24.17 29.57 25.71
DIC 297.14 131.37 272.59 254.28 48.14
RMSPE 71.70 69.44 71.16 74.88 65.27
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prior distribution mean equal to b and infinite variance (see, e.g., IG
definition in Gelman et al. (2013)). Then the b hyperpriors for
the models' τ2 and σ2's were set according to the nugget and partial
sill of the semivariograms, respectively. The prior for the spatial decay
parameters, ϕ's, was set to Unif(0.0006, 3) which, assuming the expo-
nential spatial correlation function, corresponds to support for an effec-
tive spatial range between ~1 and 5000 m. The effective spatial range is
defined here as the distance at which the correlation equals 0.05.

The MCMC samplers were implemented in C++ and Fortran and
leveraged Intel's Math Kernel Library threaded BLAS and LAPACK rou-
tines for matrix computations. All analyses were conducted on a Linux
workstation using two Intel Nehalem quad-Xeon processors.

Three MCMC chains were run for 25,000 iterations each. The most
demandingmodel required ~1 h to complete a singleMCMC chain. Con-
vergence was diagnosed using the CODA package in R by monitoring
Table 2
Candidate model parameter estimates and 95% credible intervals for MEF.

Non-spatial Spatial SVC-β1 SVC-β2

Parameter
C.I.
50% (2.5%,
97.5%)

β0 9.10 (8.45,
9.73)

9.08 (8.43,
9.73)

9.00 (8.30,
9.69)

9.12 (8.44,
9.80)

β1 −1.29
(−1.49,
−1.09)

−1.29
(−1.48,
−1.09)

−1.23
(−1.50,
−0.93)

−1.28
(−1.51,
−1.06)

β2 0.89 (0.61,
1.15)

0.88 (0.61,
1.15)

0.90 (0.57,
1.23)

0.83 (0.35,
1.29)

β3 −1.20
(−1.67,
−0.74)

−1.18
(−1.64,
−0.71)

−1.26
(−1.84,
−0.70)

−1.25
(−1.83,
−0.68)

τ2 11.56 (8.99,
15.36)

4.98 (1.24,
11.25)

10.51 (7.75,
14.37)

10.15 (7.55,
13.75)

3/ϕ0 – 29.50 (12.04,
192.98)

20.33 (10.26,
284.90)

21.51 (10.28,
607.29)

3/ϕ1 – – 24.52 (10.32,
1612.90)

–

3/ϕ2 – – – 22.33 (10.31,
699.30)

3/ϕ3 – – – –

σ0
2 – 5.98 (1.31,

11.37)
0.36 (0.17,
1.02)

0.36 (0.17,
0.90)

σ1
2 – – 0.36 (0.19,

0.69)
–

σ2
2 – – – 0.65 (0.30,

1.52)
σ3
2 – – – –

Fit
statistics

D 608.41 501.53 600.15 595.76
pD 4.95 41.29 28.61 22.85
DIC 613.37 542.82 628.77 618.61
RMSPE 66.89 67.46 67.53 70.81
mixing of chains and the Gelman–Rubin statistic (Gelman & Rubin,
1992). Satisfactory convergencewas diagnosedwithin 10,000 iterations
for all models. Posterior inference was based on a post burn-in sub-
sample of 15,000 iterations—every third sample from the last 15,000
iterations of each chain.

3.3. Fit and prediction accuracy assessment

Model performance was assessed using the popular Deviance Infor-
mation Criterion (DIC) to rank models in terms of how well they fit the
data (Spiegelhalter, Best, Carlin, & van der Linde, 2002). This criteria
is the sum of the Bayesian deviance (a measure of model goodness
offit) and the effective number of parameters (a penalty formodel com-
plexity), D and pD, respectively. Lower values of DIC indicate better
model fit.
SVC-β3 SVC-β1β2 SVC-β1β3 SVC-β2β3 SVC

9.09 (8.45,
9.73)

9.01 (8.27,
9.75)

8.98 (8.27,
9.69)

9.09 (8.39,
9.79)

9.00 (8.22,
9.75)

−1.28
(−1.49,
−1.06)

−1.22
(−1.51,
−0.91)

−1.22
(−1.54,
−0.84)

−1.27
(−1.51,
−1.03)

−1.21
(−1.52,
−0.91)

0.86 (0.53,
1.18)

0.84 (0.30,
1.38)

0.88 (0.48,
1.25)

0.82 (0.33,
1.30)

0.83 (0.27,
1.38)

−1.21
(−1.85,
−0.59)

−1.34
(−2.03,
−0.64)

−1.29
(−2.00,
−0.60)

−1.29
(−2.00,
−0.57)

−1.38
(−2.18,
−0.60)

10.30 (7.67,
13.93)

9.52 (6.67,
13.44)

9.27 (6.92,
13.59)

9.85 (7.16,
13.58)

9.10 (6.19,
13.07)

22.44 (10.29,
928.79)

20.30 (10.29,
332.59)

21.23 (10.29,
417.25)

21.02 (10.29,
572.52)

20.96 (10.27,
466.56)

– 25.30 (10.32,
1363.64)

32.31 (10.36,
2439.02)

– 25.08 (10.31,
594.06)

– 21.35 (10.29,
518.13)

– 22.06 (10.32,
584.80)

22.29 (10.32,
390.12)

19.52 (10.25,
276.50)

– 20.07 (10.25,
323.62)

19.59 (10.26,
386.25)

19.76 (10.27,
250.63)

0.36 (0.17,
1.01)

0.36 (0.17,
1.01)

0.36 (0.17,
0.96)

0.37 (0.17,
1.05)

0.36 (0.17,
0.92)

– 0.39 (0.21,
0.80)

0.39 (0.20,
0.80)

– 0.40 (0.21,
0.79)

– 0.70 (0.32,
1.71)

– 0.64 (0.28,
1.52)

0.70 (0.31,
1.78)

0.99 (0.37,
2.75)

– 1.08 (0.41,
3.23)

0.94 (0.38,
2.77)

1.07 (0.41,
3.10)

597.53 588.21 590.97 592.34 583.05
19.05 41.54 37.34 29.88 47.55
616.59 629.74 628.31 622.22 630.60
68.23 72.41 68.44 73.59 75.28



Table 3
Candidate model parameter estimates and 95% credible intervals for GLEES.

Non-spatial SVI SVC-β1 SVC-β2 SVC

Parameter C.I.
50% (2.5%, 97.5%)

β0 8.27 (7.66, 8.86) 8.40 (7.76, 9.14) 8.31 (7.61, 9.03) 7.94 (7.43, 8.51) 8.06 (7.38, 8.74)
β1 −0.62 (−0.79, −0.44) −0.63 (−0.81, −0.45) −0.61 (−0.89, −0.31) −0.61 (−0.77, −0.46) −0.62 (−0.96, −0.34)
β2 0.66 (0.37, 0.96) 0.67 (0.37, 0.99) 0.86 (0.49, 1.23) 0.74 (0.14, 1.29) 0.87 (0.33, 1.45)
τ2 4.10 (2.75, 6.63) 0.53 (0.19, 2.01) 0.40 (0.10, 1.67) 0.32 (0.10, 1.22) 0.25 (0.08, 0.95)
3/ϕ0 – 44.11 (12.90, 173.16) 22.85 (10.31, 125.63) 20.96 (10.27, 151.98) 20.19 (10.27, 198.41)
3/ϕ1 – – 33.88 (10.46, 527.24) – 29.80 (10.37, 1020.50)
3/ϕ2 – – – 58.09 (10.56, 552.49) 28.21 (10.39, 643.78)
σ0
2 – 3.45 (1.95, 5.88) 0.98 (0.35, 2.66) 0.71 (0.29, 1.77) 0.53 (0.24, 1.33)

σ1
2 – – 0.44 (0.24, 0.88) – 0.39 (0.21, 0.85)

σ2
2 – – – 1.11 (0.54, 2.48) 0.78 (0.35, 1.90)

Fit
statistics

D 196.30 103.69 90.35 79.59 67.79
pD 3.90 29.79 27.58 30.25 33.74
DIC 200.20 133.48 117.93 109.85 101.53
RMSPE 35.79 34.21 35.63 35.02 35.20
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Predictive performance was assessed using a 10-fold cross-validation
approach. Here, the full datasetwas split into ten roughly equal sized sub-
sets. Then AGB was predicted for locations within each subset, given pa-
rameters estimated from the remaining subsets. Root mean squared
prediction error (RMSPE) was then calculated using the observed AGB
values and correspondingmedian of the posterior predictive distribution.
Lower RMSPE values signify more accurate predictions.

4. Results

The experimental design produced 24 combinations of candidate
models and sites. Summaries of the candidate models' parameter esti-
mates, fit, and predictive performance for FEF, MEF, GLEES and NIWOT
are provided in Tables 1, 2, 3, and 4. Concerning all sites' non-spatial
models, the exclusion of zero from the regression slope parameters'
95% credible interval suggested the derived LiDAR covariates explained
a substantial portion of variability in AGB, with the exception of
NIWOT's β2 parameter.

For the FEF, GLEES, and NIWOT sites, the SVI models produced
marginally to moderately lower D, DIC, and RMSPE as compared to
the non-spatial models (Tables 1, 3, and 4). These results were not
surprising given the clear spatial structure seen in the exploratory
semivariograms of the non-spatial models' residuals. In contrast, the
semivariogram of the non-spatial model residuals for MEF did not pro-
vide strong evidence of any residual spatial correlation (Fig. 3(b));
hence, the SVI model produced only slight gains in model fit, along
with a decrease in model prediction accuracy, when compared to the
non-spatial candidate (Table 2). This demonstrated that the addition of
a spatial random effect to the MEF model intercept was not only
Table 4
Candidate model parameter estimates and 95% credible intervals for NIWOT.

Non-spatial SVI

Parameter C.I.
50% (2.5%, 97.5%)

β0 12.34 (11.83, 12.85) 12.35 (11.38, 13.18)
β1 −0.82 (−0.95, −0.68) −0.77 (−0.93, −0.60)
β2 0.21 (−0.04, 0.49) 0.21 (−0.05, 0.48)
τ2 4.01 (2.82, 5.98) 1.29 (0.36, 3.74)
3/ϕ0 – 116.58 (13.64, 1444.64)
3/ϕ1 – –
3/ϕ2 – –
σ0
2 – 2.66 (0.78, 5.07)

σ1
2 – –

σ2
2 – –

Fit
statistics

D 262.40 189.65
pD 3.93 27.65
DIC 266.32 217.29
RMSPE 50.05 48.27
unnecessary, but allowing the intercept to vary spatially caused the
model to over-fit the data and reduced predictive performance.

The candidate models' parameter estimates further corroborated
the notion that spatial structure was being absorbed by the spatial
random effects in the presence of residual spatial autocorrelation
(Tables 1, 2, 3, and 4). The ratio τ2/(τ2 + σ0

2) calculated using esti-
mates from the SVI model proved useful for assessing the need for
spatial random effects. Lower ratios indicated greater spatial struc-
ture in the non-spatial models' residuals and, hence, need to include
the spatially-varying intercept. This ratio was 0.15, 0.13, and 0.29 for
FEF, GLEES, and NIWOT, respectively. Compared to MEF's 0.45 ratio,
the non-spatialmodel residuals for FEF, GLEES, and NIWOT contained
more spatial structure.

The effective spatial range is another parameter that describes the
strength of a spatial component. A long spatial range suggests stronger
and farther reaching spatial dependence. MEF's SVI spatial range of
29.5 m was much shorter than the SVI ranges for FEF, GLEES and
NIWOT (Tables 1, 2, 3, and 4). The long spatial ranges and low nugget
to total variance ratios suggested the spatial random effects were cap-
turing substantial residual spatial structure and the non-spatial models
were not appropriate for the FEF, GLEES, and NIWOT datasets. That is,
inference drawn from the non-spatial model at FEF, GLEES, and
NIWOT—particularly uncertainty for parameter point estimates and
predictions—should be interpreted with caution due to the correlated
residuals and hence violation of the independent and identically distrib-
uted residuals assumption. In contrast, the variance ratio and effective
spatial range values suggested that there was little spatial structure in
the MEF non-spatial model residuals—indicating that spatial random
effects were not warranted.
SVC-β1 SVC-β2 SVC

12.35 (11.42, 13.01) 12.19 (11.38, 12.85) 12.21 (11.47, 13.06)
−0.84 (−1.17, −0.17) −0.77 (−0.93, −0.59) −0.84 (−1.22, −0.29)
0.31 (−0.01, 0.62) 0.23 (−0.52, 0.78) 0.34 (−0.17, 0.82)
1.09 (0.25, 2.76) 0.99 (0.21, 3.14) 0.66 (0.20, 2.10)
60.19 (10.52, 1578.95) 137.24 (11.40, 1167.32) 42.98 (10.43, 1401.87)
50.58 (10.40, 2097.90) – 77.34 (10.46, 2419.35)
– 45.68 (10.45, 2343.75) 22.29 (10.30, 669.64)
1.19 (0.34, 3.21) 1.74 (0.41, 3.87) 0.87 (0.30, 2.51)
0.37 (0.20, 1.03) – 0.38 (0.20, 1.00)
– 0.74 (0.32, 2.03) 0.78 (0.33, 1.90)
177.34 172.77 150.60
34.78 28.97 41.52
212.12 201.74 192.12
49.31 46.31 49.40



Fig. 4. Maps showing predicted AGB means (Mg/ha) for the full LiDAR extent at FEF, MEF, GLEES, and NIWOT. Black squares indicate excluded prediction grid cells (see Section 2.6).
Supplementary data associated with this article can be found, in the online version, at doi:(Please insert doi here).
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The remainder of this section is divided into four subsections, one for
each site. In each subsection the “best” model is identified and some
site-specific results are explored.

4.1. FEF results

At FEF, the full SVCmodel produced the lowest D, DIC, and RMSPE.
The SVC model showed an 83% improvement in DIC compared to the
non-spatial model. There was high correspondence between the
observed and fitted values produced with the SVC model, whereas
the fitted values for the non-spatial model were scattered further
from the plot data (Fig. A2). The credible intervals for the SVC fitted
values were also much tighter than the non-spatial fitted values
(Fig. A2). There was a 9% improvement in RMSPE when moving
from the non-spatial to SVC model. Most of the predictions produced
with the SVC model fell within the range of observed AGB (0–430
Mg/ha, Fig. 4a). Those pixels that exceeded this observed range ex-
hibited high associated uncertainties (Fig. 5a). For example, SVC
model predictions in a small patch in the southeastern corner of
the FEF domain showed large uncertainty, perhaps indicating that
forest structure characteristics in the region are not adequately
represented in the plot data used to estimate model parameters.
Further, there is a pattern of large uncertainty across the northern re-
gion of the FEF, again suggesting a paucity of plot data to characterize
the relationship between AGB and the LiDAR covariates.

The mean, or median, posterior predictive surface of βk(s) =
βk +wk(s) can provide insights into the space-varying relationship be-
tween the k-th covariate and AGB. For example, the β1(s) coefficient
map showed clear spatial structure and suggested that the associated
LiDAR covariate explained more variability in AGB in the northern
region of the study area, i.e., β1(s) was farther from zero in the north
(Fig. 6b). After examining the LiDAR derived digital terrain model, it
could be seen that β1(s) was related to elevation (Fig. 7). This suggests
that the relationship between AGB and the LiDAR covariate associated
with β1(s) changes as a function of elevation—due perhaps to species
composition change or a fertility gradient that influences the relationship
between the covariate and stem biomass. Although not further explored
here, one could envision adapting this model to include elevation as a co-
variate to potentially eliminate the need for β1 to vary spatially.

Compared to β1(s), random effects associated with β0(s) and
β2(s) had much shorter effective ranges (Table 1), which made
their adjustments less noticeable at the scale shown in Fig. 6. By
zooming into a regionwith a high concentration of sub-plots, switching
from an equal to quantile interval color classification, and passing the
predictions of the β(s)′s through a smoothing filter, the more subtle
spatial adjustments to β0 and β2 could be seen. Fig. 8a and b depicts
β0(s) and β2(s) at the extents shown by the red outline in Fig. 6a and
c, respectively. The zoomed-in figures show that sub-plot clusters
received slightly higher or lower β0(s) and β2(s), confirming that the
random effects are capturing local or micro-scale variability. The global
estimates of β0 and β2 (~11.28 and ~0.91 respectively) are influenced
by their corresponding spatial random effects to better accommodate
the non-stationary relationship between the covariates and AGB.

4.2. MEF results

As notedpreviously, of the eight spatialmodels fit to theMEF dataset
none outperformed the non-spatial model with regard to prediction



Fig. 5.Maps showing predicted AGB 95% credible interval width (Mg/ha) at FEF, MEF, GLEES, and NIWOT. Black squares indicate excluded prediction grid cells (see Section 2.6). (For in-
terpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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accuracy. Regarding fit to the observed data, only the SVImodel showed
an improvement in DIC over the non-spatial model (Table 2).

Results from MEF provided an example of how uncertainty maps
can aid in identifying spatial extrapolation issues. Figs. 4b and 5b
show the non-spatial model AGB prediction and associated uncer-
tainty for the extent of the LiDAR data. A large number of grid cells
in the southwest corner of MEF were removed from the prediction
dataset because their covariate values far exceeded those seen in
the observed dataset (see Section 2.6). Also, grid cells in this area
that were included in the prediction set had high uncertainties. An
examination of MEF's aerial photo suggested that the forest in this
region has different characteristics than the areas where plot data
were collected (Fig. 1b). In this instance, having uncertainty maps
for MEF helped to diagnose a spatial extrapolation issue that may
have otherwise gone unnoticed.
4.3. GLEES results

The SVI model at GLEES had the lowest RMSPE value of the five
models (Table 3); however, all three SVC variant models had lower
D and DIC values. Here, the increased flexibility afforded by the addi-
tional spatial random effects in the SVC models improved the fit but
may have reduced prediction accuracy due to over-fitting. The SVI
model exhibited a 33% improvement in DIC and a 4.5% increase in
prediction accuracy over the non-spatial model. Because prediction
is our focus, the SVI model was preferred for the GLEES dataset
(Figs. 4c and 5c).
4.4. NIWOT results

The SVC-β2 model provided the most accurate prediction for the
NIWOT dataset. This model produced a 24% lower DIC and 7% lower
RMSPE value compared to the non-spatial model. As with GLEES, the
more complex SVC model provided better fit (5% lower than SVC-β2),
but this did not translate into improved prediction accuracy.

NIWOT's non-spatialmodel β2 parameter was statistically not signif-
icant, i.e., zero was contained in its 95% credible interval. In traditional
regression model selection procedures, parameters deemed not signifi-
cantwould typically be removed. Here, even though β2 was globally not
significant, allowing the parameter to vary across the spatial domain
improved model fit and predictive performance. It can be seen that
some clusters of sub-plots received higher estimated values of β2(s)
than others (Fig. 10b). This result provided evidence that in some loca-
tions, the LiDAR covariate associated with β2 was useful for explaining
variability in AGB.
5. Discussion

The usefulness of Bayesian space-varying coefficient models for
predicting AGB was assessed at four forested NACP sites. For three of
the four sites, the non-spatial model residuals exhibited enough spatial
correlation to warrant the use of a spatial random effect on the inter-
cept. For these sites, the presence of serial correlations among the resid-
uals suggested that the assumptions of the non-spatial model were
violated, making the validity of any subsequent inference based on



Fig. 6.Maps showing the spatially varying coefficients and associated 95% credible interval width (CIW) for the SVC model at FEF. Black squares indicate excluded prediction grid cells
(see Section 2.6). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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parameter estimates or prediction maps using the non-spatial model
questionable. Further, beyond meeting model assumptions, explicitly
accommodating the residual dependence via spatially structured
random effects fetched improved prediction by borrowing information
from proximate observed locations. This was illustrated in the analysis
of the FEF, GLEES, and NIWOT datasets, where the SVI models
marginally outperformed the non-spatial models (i.e., providing lower
RMSPE). A potential reason for seeing only slight prediction accuracy
improvements may have been due to the small number of inventory
plots.With such small sample sizes it is not possible to obtain precise es-
timates of spatial covariance parameters. Hence, wemight expect some
impact on prediction accuracywhen the covariance uncertainty is prop-
agated through to the posterior predictive distributions. Also, the
sparsity of inventory plots means that there is little information to
borrow from when making predictions—this is exacerbated by cross-
validation, which further reduces the sample size.
For the FEF and NIWOT datasets, allowing regression coefficients
associated with LiDAR covariates to vary spatially improved prediction
accuracy beyond that achieved by the SVI models (i.e., the SVCmodels
showed lower RMSPE). Although the improvements in RMSPE were
small, these results suggested the more complex SVC models were
able to estimate and leverage non-stationary spatial relationships
between AGB and the LiDAR covariates. There was no advantage, from
a prediction standpoint, for SVC models at MEF or GLEES. Given the
small number of inventory plots and relatively homogeneous forest
characteristics within the NACP sites, it is not too surprising that
the SVC models did not perform consistently better than the simpler
models.

In studies based on larger datasets distributed acrossmore heteroge-
neous domains, substantial improvements in prediction accuracy have
been obtained by adding spatial random effects to the model intercept,
see, e.g., Babcock, Matney, Finley, Weiskittel, and Cook (2013), and



Fig. 7. Digital terrain model for FEF.

Fig. 8.Maps showing the spatially varying coefficients zoomed into the extent outlined in red
highlight the more subtle spatial adjustments of these parameters. The sub-plot locations are i
(For interpretation of the references to color in this figure legend, the reader is referred to the

Fig. 9.Maps showing the spatially varying coefficients and associated 95% credible interval wid
cells (see Section 2.6). (For interpretation of the references to color in this figure legend, the re
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regression coefficients, see, e.g., Finley et al. (2009), Finley et al. (2011),
Jarzyna et al. (2014). In these studies, the SVC models were effective
because therewere strongnon-stationary relationships between the co-
variates and outcome variable—driven by unobserved environmental
factors that operated at broad spatial scales. Also, substantially larger
sample sizes (n N1000 in all cases) allowed more precise estimation of
the spatial covariance parameters that, in turn, improved the posterior
predictive distribution precision and perhaps accuracy.

Study results underscored the difference between goodness of fit
metrics, e.g., DIC, and out of set prediction performance, assessed here
via cross-validation. In three of the four datasets, the exception being
FEF, DIC favored amore complexmodel over the simplermodel selected
based on RMSPE. The flexibility added by allowing the intercept and
regression slope coefficients to vary spatially will generally allow
fitted values to more closely approximate the observed data. Unlike
an unstructured random effect model, see, e.g., Salas, Ene, Gregoire,
Næsset, and Gobakken (2010), the Gaussian Process imposes some
smoothing that should reduce over-fitting to the observed data. Howev-
er, the flexibility afforded by a univariate Gaussian Process on each
in Fig. 6a and 6c. A quantile interval color classification and smoothing filter are used to
dentified in green. Black squares indicate excluded prediction grid cells (see Section 2.6).
web version of this article.)

th (CIW) for the SVC-β2 model at NIWOT. Black squares indicate excluded prediction grid
ader is referred to the web version of this article.)



Fig. 10. Maps showing the spatially varying coefficients zoomed into the extent outlined in red in Fig. 9a and 9c. A quantile interval color classification and smoothing filter are used to
highlight the more subtle spatial adjustments of these parameters. The sub-plot locations are identified in green. Black squares indicate excluded prediction grid cells (see Section 2.6).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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regression coefficient appears to result in some over-fitting and hence
reduced prediction performance. Because prediction is the primary
goal of many AGB modeling studies it is important to base model selec-
tion on metrics that summarize out of sample predictions, e.g., RMSPE,
and not goodness of fit.

Uncertainty quantification is an important component of carbon
Measurement, Reporting, and Verification systems (MRVs) like
those called for by the United Nations Collaborative Programme on
Reducing Emissions from Deforestation and Forest Degradation in
Developing Countries and actively being developed by NASA's Car-
bon Monitoring System Science Team (CMS, 2010; UN-REDD,
2009). Maps like the ones developed in Fig. 5 can aid uncertainty
analysis by providing a tool to assess the reliability of AGB predic-
tions. As shown with the FEF and MEF results, spatially explicit rep-
resentations of uncertainty can be used to identify regions of
concern regarding spatial extrapolation and highlight areas where
more field data may be required.

Mapping space-varying coefficients can shed light onmissing covar-
iates. At FEF, examining how the β1(s) parameter varied spatially
revealed that elevation may be a missing covariate in the AGB models.
If further AGBmodel refinementwas pursued at FEF, the inclusion of el-
evation as a covariate, either in an additive or multiplicative fashion,
should be tested.

Bayesian space-varying coefficient models provide statically valid
inference about non-stationary relationships between the covariates
and the outcome variable. Results from the NIWOT analysis showed
this phenomenon when β2 was allowed to vary spatially. Examining
regression parameters' spatial impact via the proposed modeling
framework can expose locally important covariates, improve overall
prediction accuracy, and potentially provide insight into ecological
processes.

Given the small size of the datasets considered here, the proposed
modeling framework was computationally feasible. However, when
the datasets consist of several thousand observations, which is common
in forest inventory databases, cubic ordermatrix operations required for
evaluating the model likelihood make parameter estimation computa-
tionally onerous. Therefore, our future work will focus on exploring
strategies for dimension reduction when fitting SVC models. Further,
we will extend the SVC models to accommodate multiple forest vari-
ables of interest.
Acknowledgments

This work was partially supported by grants from the National Sci-
ence Foundation DMS-1106609, EF-1137309, EF-1241874, and EF-
1253225, National Aeronautical and Space Administration CarbonMon-
itoring System and NNH08AH971, and the USDA Forest Service. Special
thanks to the anonymous reviewers.
Appendix A

A1. Principal components analysis procedure

Let A be the sub-plot and B be the grid percentile height sets with
observations along the rows and percentile heights along the columns.
Their dimensions are n× p andm× p, respectively, where n is the num-
ber of observations (i.e., sub-plot count),m is the number of prediction
cells, and p is the number of percentile height covariates (p=20). Let Ã
be the standardized scores for A calculated as follows,

~Ai; j ¼
Ai; j−μ jσ j

; ðA1Þ

hereμj andσj are themean and standard deviation of the j-th columnof
A. A correlation matrix ρ is constructed for A by,

ρ ¼
~A
0~A

n−1
: ðA2Þ

Let ρ = PΛP′ be the eigen decomposition of ρ with the diagonal
elements of Λ (p × p) holding the eigenvalues of ρ in decreasing order
(off diagonal elements are zero) and P (p × p) holding the correspond-
ing eigenvectors along the columns. P is an orthogonal transformation
matrix that can be used to project Ã into a new vector space. Let A* =
ÃP be the transformed standardized scores of the sub-plot percentile
height matrix. The columns of A* are now uncorrelated.

To transform the gridded data B to the same vector space as A*, B
was first standardized via,

~Bi; j ¼
Bi; j−μ jσ j

: ðA3Þ

Note that μj and σj are the mean are standard deviation calculated
from A. Then B� ¼ ~BP is then the gridded percentile height data
projected into the same vector space as A*.

In practice, a subset of columns from A* (i.e., principal component
scores) can be used as covariates in regression analysis—referred to as
principal components regression (Chatterjee & Hadi, 2006). This is the
approach we pursued here. The columns of A* represent a new, orthog-
onal (i.e., uncorrelated), candidate covariate set. From this set we
retained the minimum number of covariates that explained at least
80% of the variance in the percentile height data. This was done by
selecting the leftmost columns of A* whose standardized eigenvalues
total was N0.8. To meet this criterion the two leftmost columns of A*
were retained for FEF, NIWOT and GLEES. It was necessary to keep
three columns for MEF. Fig. A1 shows a plot of the cumulative sum of
the eigenvalues for each site. We kept the corresponding columns of
B* for each site to use in subsequent grid prediction and mapping.



Fig. A1. The cumulative sums of the standardized eigenvalues (in decreasing order) for FEF, MEF, GLEES, and NIWOT.
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Fig. A2. Plots showing fitted versus field-observed AGB values for FEF's non-spatial and SVCmodels. Vertical Gray error bars depict 95% credible intervals for fitted values.



Fig. A3. Plots showing fitted versus field-observed AGB values for MEF's non-spatial and SVImodels. Vertical gray error bars depict 95% credible intervals for fitted values.

Fig. A4. Plots showing fitted versus field-observed AGB values for GLEES's non-spatial and SVI models. Vertical gray error bars depict 95% credible intervals for fitted values.

Fig. A5. Plots showing fitted versus field-observed AGB values for NIWOT's non-spatial and SVC-β2 models. Vertical gray error bars depict 95% credible intervals for fitted values.
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