
5600 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 10, OCTOBER 2015

Linear Models for Airborne-Laser-Scanning-Based
Operational Forest Inventory With Small Field

Sample Size and Highly Correlated LiDAR Data
Virpi Junttila, Tuomo Kauranne, Andrew O. Finley, and John B. Bradford

Abstract—Modern operational forest inventory often uses re-
motely sensed data that cover the whole inventory area to produce
spatially explicit estimates of forest properties through statistical
models. The data obtained by airborne light detection and ranging
(LiDAR) correlate well with many forest inventory variables, such
as the tree height, the timber volume, and the biomass. To con-
struct an accurate model over thousands of hectares, LiDAR data
must be supplemented with several hundred field sample measure-
ments of forest inventory variables. This can be costly and time
consuming. Different LiDAR-data-based and spatial-data-based
sampling designs can reduce the number of field sample plots
needed. However, problems arising from the features of the LiDAR
data, such as a large number of predictors compared with the
sample size (overfitting) or a strong correlation among predictors
(multicollinearity), may decrease the accuracy and precision of
the estimates and predictions. To overcome these problems, a
Bayesian linear model with the singular value decomposition of
predictors, combined with regularization, is proposed. The model
performance in predicting different forest inventory variables is
verified in ten inventory areas from two continents, where the
number of field sample plots is reduced using different sampling
designs. The results show that, with an appropriate field plot
selection strategy and the proposed linear model, the total relative
error of the predicted forest inventory variables is only 5%–15%
larger using 50 field sample plots than the error of a linear model
estimated with several hundred field sample plots when we sum
up the error due to both the model noise variance and the model’s
lack of fit.
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I. INTRODUCTION

THE prediction of forest inventory variables over large
domains is used in many applications, including forest

management and policy decisions, environmental research,
and environmental monitoring. Predictions with an associated
uncertainty can be estimated by the statistical extension of
field-measured inventory variables or by mathematical models
based on field measurements combined with remotely sensed
data. The most common sources of remotely sensed data are
aerial and satellite images, and most recently, light detection
and ranging (LiDAR) data. Many studies, some of which are
discussed in the following, have detailed models to improve the
prediction and mapping of important economic and ecological
forest inventory variables.

The methods based on the use of LiDAR data have recently
gained popularity, [1], [2], to the extent that some countries,
e.g., Finland [3], have chosen it as the only method to be
used in medium-scale operational forest inventory. Here, we
consider the medium scale as inventory initiatives at a stand
level over no more than a million hectares. In national-scale
inventory over several millions of hectares with a high spa-
tial resolution, satellite-image-based methods are still the best
choice because of the low cost and high temporal frequency
of satellite imagery. The main disadvantage of satellite images
is lower precision and the lack of fit of models to the data
because of issues such as saturation than what is possible using
LiDAR. Another disadvantage is that satellite images provide
little information about below-canopy attributes. In this paper,
our focus is on medium-scale forest inventory.

A variety of modeling approaches to forest inventory pre-
diction can be found in literature, including nonparametric
approaches such as the k-nearest neighbor (k-NN) and random
forest, linear regression, and geostatistical approaches (e.g., see
[4]–[9] and the references therein). Although these remote-
sensing-based methods are cost effective and accurate, they
require a representative field sample for estimating parameters.

A linear regression model using LiDAR predictors is known
to accurately predict forest inventory variables such as the
median tree height, the basal area, the volume, and the above-
ground biomass (AGB) (e.g., see [5], [6], [10], and [11]).
A linear regression model is an extrapolation method, which
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must be used with caution, i.e., there is a risk of negative
predictions or absurdly large positive predictions, particularly
when the predictor values in the population are beyond the
ranges observed in the sample (e.g., see [12]). The remotely
sensed measurements must be accompanied by field measure-
ments to estimate the model parameters. The number of field
sample plots needed for the accurate predictions of the forest
inventory variables is generally several hundreds for an area
between 10 000 and 100 000 ha (e.g., see [3]). When producing
estimates based on models for several thousand hectares, the
field work becomes expensive. In particular, on difficult terrain,
such as tropical forests, the cost of field measurements can
be prohibitively high. Thus, minimizing the number of field
sample plots needed to attain the desired prediction precision of
forest inventory variables is important to forest inventory tasks.

New inventory sites generally lack prior information of the
forest inventory variable values, and precise prior assumptions
about the model behavior cannot be expected before field
measurements are performed. In practice, prior to field sam-
pling, an investigator defines the criteria to select the sample
plots. Then, the field measurements of forest variable(s) of
interest, which are referred to as the responses, are carried out
in these plots. The parameters of a suitable prediction model
are then estimated using a combination of the responses and
features derived from LiDAR data, which is referred to as
the predictors of the model. These responses and predictors
from the same field sample plots are referred to as the training
set of the model. The resulting model with estimated param-
eters is used to predict the forest variables in the rest of the
inventory area.

The effect of a reduced number of field sample plots on the
forest variable prediction accuracy has been explored in several
recent model-based forest inventory studies. Junttila et al. [13]
considered the effect of LiDAR predictors and the varying
intensities of inventory plots for predicting a host of forest vari-
ables using ordinary least squares (OLS) and sparse Bayesian
regression models. Hawbaker et al. [14] assessed two sampling
designs for informing a regression model used for predicting
the biomass and other forest variables. Here, field data were
drawn from a simple random sample and a stratified sample
that was informed using the mean and standard deviation of
LiDAR canopy height estimates. In a similar study that used the
k-NN method to predict forest variables, Maltamo et al. [15]
considered several plot selection strategies, including random
selection, random selection within prestratification according
to the forest type, and the selection of plots based on the
properties of the LiDAR data given as prior information. In
recent studies, Junttila et al. [16] have verified the effect of
different classical designs based on LiDAR predictors and the
spatial information of candidate plots, and Gobakken et al. [17]
have tested the use of laser data as auxiliary information in the
selection of field plot locations. The conclusions were that the
use of laser-scanning-data-based information in the field plot
selection procedure helps improve the reliability of predictions.
In addition, in the survey sampling community, the idea of using
auxiliary variables, i.e., LiDAR data and the spatial location in
forest inventory, in sample selection has been widely discussed
(e.g., see [18] and the references therein).

The aim of our study is to maximize the accuracy and preci-
sion of forest inventory variable predictions when only a small
number of field plots are available for the model parameter
estimation procedure. Our study relies on the sampling designs
and results described previously [16], and our aim is to improve
these results independent of the sampling design. Our focus is
in the mathematical properties of the regression model and the
training set data, which may result in the erroneous estimates of
model parameters and may therefore induce a lack of fit to the
corresponding predictions. When reducing the number of plots
by algorithmic means, it is possible that the resulting set of field
plots does not constitute a valid probability sample of the forest.
By this we mean that it is generally not possible to determine
the selection probabilities of plots, and it may happen that some
parts of the population obtain probability zero. However, the
selection probabilities of plots are not used in model parameter
estimation, which is the only direct use of plots in model-based
inference (e.g., see [12]).

Further sources of estimation errors, which are defined here
as both the lack of fit and poor precision, include the possible
correlation of predictors (multicollinearity), the potential for a
training set that does not represent the characteristics of the
predicted forest inventory variable values, and a small number
of training set plots compared with the number of predictors.
For this reason, we have chosen to validate the estimates on
sites where a relatively large sample of plots is available.

The LiDAR measurement distributions within a plot area
are used to predict plot-level variables using multiple statis-
tical estimates, which serve as predictors in the regression
model. Predictors generally contain different combinations of
characteristics estimated from LiDAR pulse returns, such as
mean values, standard deviations, percentiles, the minimum
and maximum values of height measurements, the percentage
of vegetation returns of given heights, the percentiles of mea-
surement intensities, etc. (e.g., see [13] and [19]–[22]). These
predictors are usually highly correlated. In regression models,
such a situation is called multicollinearity. The severity of mul-
ticollinearity in regression analysis can be quantified, e.g., using
a variance inflation factor (VIF), which provides an indicator
that measures how much the variance of an estimated regression
parameter is increased because of collinearity. If a predictor
is a (nearly) linear combination of other predictors, the VIF
value is high, and severe multicollinearity occurs. Strong multi-
collinearity can cause numerical instability, i.e., singularities in
parameter estimation equations and less precise estimates. One
way to resolve this problem is to reduce the number of collinear
predictors until there is only one remaining out of the set.
Other methods are regularization, which is also known as ridge
regression [23], where the singular or close-to-singular param-
eter covariance matrix is modified with additive small diagonal
elements, and the reformulation of an independent data matrix
to a form only containing diagonal and orthogonal matrices
using principal component regression (see [24] and [25]).

In practice, the field sample plots selected to comprise the
training set only represent a fraction of the forest area. Thus,
the predictions of the forest inventory variables in the rest of
the area, which are based on a linear candidate model estimated
with the field sample plot measurements and the remotely



5602 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 10, OCTOBER 2015

sensed data, are likely to contain inaccuracy. Compared with the
optimal model-based solution, i.e., a model constructed with the
information of the whole forest, a possible source of inaccuracy
is an inefficiently chosen set of field sample plots. With a small
training set size, the variances of the estimated model parameter
distributions become larger (more uncertainty in the parameter
estimates), and using a random set of field sample plots, the
training set data may show completely spurious correlations
between some responses and predictors. This leads to highly
variable estimates of the model parameters, as shown in [16].

Moreover, the number of LiDAR predictors can be large
compared with the number of field sample plots, particularly in
cases where the number of field sample plots is minimized. This
can lead to overfitting, which produces exceedingly accurate
estimates for the training set data but poorly generalizes to the
prediction in the unobserved set. To overcome this problem,
different approaches to choose fewer predictors are stepwise
regression, [25]–[27], cross validation [28], or ridge regression
performed with a Bayesian regularization approach [13]. The
aim of these methods is to reduce the number of predictors
used by giving zero values to the model parameters related
to the redundant predictors, i.e., to give a sparse parameter
vector. In operational use, the predictor selection algorithm
needs to be adjustable, reliable with different sorts of data, and
computationally fast.

In this paper, a modified linear regression model is used to
enable the use of a minimal amount of input data (sample plots)
such that the model prediction accuracy will not suffer from
the truncation of an independent data set. A combination of
singular value decomposition (SVD), which is closely related to
the principal component analysis, with Bayesian regularization
is employed.

The proposed linear regression model used in the prediction
of forest inventory variables is based on a sparse Bayesian
model (see [13] and [29]) and a regularized linear model with
orthogonalized predictors (see [30] and [31]) with some modi-
fications. In these studies, the regularization of the linear model
is performed in a Bayesian formulation, where the model preci-
sion is automatically compared with the model complexity such
that the model parameters are estimated by simple optimization
based on ideas first introduced in [32]. In the latter studies,
the orthogonal decomposition of the predictors is used together
with regularization. In our study, the orthogonal decomposition
is substituted with the SVD. In the presence of highly correlated
predictors, the SVD condenses the most important signals
into a few orthogonal and normally distributed vectors and
corresponding singular values. The prediction accuracy of the
proposed model is verified using ten different forest inventory
areas, which are located in the USA and in Finland, and three
different sampling designs.

The remainder of this paper is organized as follows. Section II
describes the linear model modifications beginning from the
method to overcome problems arising from high correlation
among predictors (see Section II-A). To overcome problems
arising from a small amount of data compared with the number
of predictors, this method is combined with a regularized
Bayesian linear model in Section II-B. The model verification
procedure is described in Section III, where we first define

several approaches to the thinning of the field sample plot grid
over the inventory area in Section III-A; then, we introduce
the forest data in Section III-B, and we discuss the error
validation in Section III-C. The results are shown and analyzed
in Section IV, and finally, in Section V, we summarize the
advantages of the proposed method.

II. METHODS

The forest area of interest can be conceptually partitioned
into a grid of equally sized units. We shall use the terms “plot”
and “grid cell” to refer to the population unit of a forest. A
plot refers to a field sample plot, whereas a grid cell refers to
the spatial unit of the estimates calculated with a model. Plots
and grid cells are assumed to have a roughly similar size but
not shape because plots are often circular but circles do not
tesselate the plane. In practice, n field sample plot locations
are selected from a set of Ncand candidate locations distributed
over the whole area of interest, and the field plot measurements
are then used to estimate the model parameters. The resulting
model is used to predict the forest variables over the forested
area either in a set of Npred plots of interest or in Npred grid
cells covering the whole area [26]. In this paper, the model is
designed to be used with either of these population units, but we
use the term plot here because the validation data are measured
in circular plot units, and for consistency and legibility reasons,
this terminology is retained throughout this paper.

In this paper, a linear model is used to predict the forest
variables in each of the Npred plots of interest. The auxiliary
data are assumed to be known for all the plots of interest and
for all the n field sample plots, i.e., for N = Npred + n plots.
In each plot, i.e., i, i = 1, 2, . . . , N , remotely sensed LiDAR
data are measured, and M separate and plot-level predictors
zi are derived from these data. These predictors (also called
covariates), which serve as the predictors in the regression
model, are stored together with an intercept in an N × (M + 1)
matrix Z. In addition to the remotely sensed data, the central
coordinates of the plots are known, i.e., si = (sxi, syi). The
geographical coordinates and the predictors drawn from the
remotely sensed data form the auxiliary data of the study site.

The field measurements of the forest inventory variables of
interest are performed in the set of n selected field sample plots.
The indexes of these n plots are stored to an n× 1 index vector
t. After a set of K forest inventory variable values is measured
in these plots, it is stored in the columns of an n×K response
matrix Y t. These data combined with the corresponding aux-
iliary data are used as the training set of the forest inventory
variable prediction model, i.e., all the parameters of the model
are estimated using the training set data.

In this paper, each forest inventory variable, i.e., an n× 1
response vector, is predicted with a separate model. For reasons
of clarity, vector yt represents any individual forest inventory
variable field measurement vector (a column of matrix Y t).
Each forest inventory variable prediction model is assumed to
be a parametric and linear regression model as follows:

yt = Ztw + ε. (1)

Here, w is an (M + 1)× 1 vector of the parameters related to
the regression model predictors and the intercept (also known



JUNTTILA et al.: MODELS FOR FOREST INVENTORY WITH SMALL SAMPLE SIZE AND CORRELATED DATA 5603

as regression parameters). In this paper, the n× 1 error vector
ε is assumed to be normally distributed with zero mean and
variance σ2.

Prior to field sample measurements, there are no data to
estimate model parameters {w, σ2}. In a new inventory site, the
field sample plots are selected from the set of candidate plots
in the whole inventory area. With a suitable selection method,
this set is assumed to represent well the variability of the forest
characteristics of the whole inventory area. These methods are
discussed later in Section III-A.

A. SVD of Predictors

A classical approach to overcome the problem of multi-
collinearity is the SVD. Here, the centered and scaled LiDAR
predictor matrix of size N ×M is decomposed in the form
Z = USV T , where U is an N ×N matrix consisting of the
eigenvectors of matrix ZZT , and V is an M ×M matrix
consisting of the eigenvectors of matrix ZTZ. The columns of
U and V are called left and right singular vectors, respectively.
S is an N ×M diagonal matrix, where the upper M ×M
block is a diagonal matrix consisting of the singular values, i.e.,
λm, which are given in the order λ1 > λ2 > · · · > λM , and the
rest of the components are zeros. Singular values are square
roots of the eigenvalues of ZTZ and ZZT . The corresponding
singular vectors U and V are given in the same order. These
vectors are orthogonal, i.e., UUT = IN and V V T = IM .
Here, IN refers to an N ×N identity matrix.

A large singular value means that the corresponding singular
vector captures a large amount of the variation in the original
data Z. Thus, only using the q first columns of matrices U and
V and the corresponding q largest singular values, the original
data matrix can be approximated by Z � Zq = U qSqV

T
q . The

value of q can be estimated as the largest value for which

q−1∑
m=1

λm/

M∑
m=1

λm ≤ P (2)

holds with a given explanation ratio, e.g., 90% (P = 0.9). This
new data matrix, i.e., Zq , explains P × 100% of the variability
of the original matrix only using q orthogonal predictors. Thus,
the problem of multicollinearity can be overcome with the
SVD.

If the intercept, which is a column with constants, is added
to the decomposed predictor matrix Zq ⇐ (1,Zq), the decom-
position matrices become

U q ⇐ (1,U q) diag(Sq) ⇐ (1 λ1 λ2 · · · λq)
T

V q ⇐
(

1 01×q

0q×1 Ṽ q

)
. (3)

In real-world cases, the amount of available measurements of
the response, i.e., n, may be much smaller than the total number
of plots of interest, i.e., n � N , and only n sample observations
are used in the training set of the model. An important feature of
auxiliary data Z is that it is given for each plot of interest. Thus,
instead of only basing the SVD on the set of predictor values
given for field sample plots, the singular values and vectors are

based on the predictor values given for all the plots of interest.
With this approach, we can maintain more information and
avoid a situation where incorrect features of the auxiliary data
may become dominating, and the prediction model would lean
on misleading assumptions of the signal given in Z.

After the SVD, matrix Z is divided into two submatrices.
Thus, the original data included in the training set of the
model consist of the rows t of predictor matrix Z, i.e., Zt,
corresponding to the rows of response vector yt (observations).
The model is then used to predict the N − n unknown response
values in the rest of the plots, i.e., verification set v, using the
corresponding independent matrix values, i.e., Zv .

After the SVD is first performed for the full N ×M matrix,
the training set and verification set singular value matrices
become Zq,t = U q,tSqV q and Zq,v = U q,vSqV q , respec-
tively. Matrices U q,t and U q,v consist of the corresponding
rows of the original orthogonal matrix U q . Note that the
orthogonality rule no longer holds for distinct matrices U q,t

and U q,v.
In the regression model of the training set, yt = Zq,tw̃ + ε,

where Zq,t is an n× (q + 1) matrix, and w̃ is a (q + 1)× 1
regression parameter vector; the formulation becomes yt =
U q,tSqV

T
q w̃ + ε. Since the right-hand-side singular vector,

i.e., V q, is equal for every subset of data input and there is no
need to verify the exact regression parameter values, w̃, which
is the model based on the training set, can be stated as

yt = Xtw + ε (4)

where Xt = U q,tSq , and w = V T
q w̃.

Similar to the assumption in (1), we assume that deviation
yt−Xtw is normally distributed with varianceσ2, and we write

N(yt|Xtw, σ2In) = (2πσ2)
−n/2

e−
1

2σ2 (yt−Xtw)T (yt−Xtw).
(5)

The solution of this regression model is called the truncated
SVD (tSVD) method, where the truncation refers to the M − q
singular vectors dismissed in the model because of the cor-
responding small singular values. For the discussion of the
truncation and different approaches to choose the level of
truncation, see [33]. In this paper, we call this method OLSq .
This method is closely related to the principal components
analysis method, principal components regression (PCR), and
partial least squares regression (PLSR), which have been used
in forest inventory studies with a small amount of data (e.g., see
[20] and [34]). However, the PCR and the PLSR only utilize
the data of the training set to the eigenvalue-type analysis.
This may result in missing some important information about
the predictor characteristics, particularly in the case of a small
training set size. If we use all the q orthogonal predictors, i.e.,
predictor Xt, in the PCR or the PLSR, the model parameters
are equal to that of OLSq .

B. Effect of Small Training Set

A reduced number of field sample plots affect the reliability
of the resulting predictions by offering less data for the value
estimation of parameter vector w. With different field sample
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plot selection strategies, different subsets of sample plots are
selected, and the estimation reliability varies depending on
its quality. If the level of truncation defines the number of
predictors used, i.e., q, such that it is close to the number of
field sample plots n, the accuracy can become very poor due
to model overfitting, which is independent of the quality of the
selected subset.

A common method to solve this problem is the SVD, and we
only use those new predictors that have a singular value that
is large enough. However, in a complicated linear model with
unknown relationships between responses and predictors, it is
difficult to determine which predictors can be ignored such that
no important data are left out from the model. Thus, in this case,
the SVD alone is not a sufficient solution for the problem of
overfitting.

Instead, regularization can be used. Regularization gives
an additional penalty to the model complexity, forcing the
associated regression model parameter values toward zero
(shrinkage). In a Bayesian formulation, regularization can be
formulated by giving a normal prior distribution for regression
parameters w such that the prior mean is zero, and some
variance α−1 is allowed. With a small variance (α → ∞), the
corresponding regression parameter value becomes close to
zero, and with a large variance (α → 0), nonzero regression
parameter values are allowed.

In this paper, the prior distribution associated with the in-
tercept, i.e., w0, has variance α−1

0 , and the prior distributions
associated with the orthogonal predictors, i.e., wi, have a
common variance α−1

i = α−1, i = 1, . . . , q. This approach is
similar to the uniformly rectangular OLS (UROLS) algorithm
given in a Bayesian formulation, e.g., in [31]. Our method is
similar to it with small modifications, i.e., the SVD is performed
for all auxiliary data (the orthogonality no longer holds for the
training set), and the model formulation is written according to
the formulation given in [29].

The regression problem with regularization becomes

N(yt|Xtw, σ2In)N(w|0,A−1) (6)

where covariance matrix A is an (q + 1)× (q + 1) diagonal
matrix with diagonal elements αi, i = 0, 1, 2, . . . , q.

Following the formulation of Tipping [29], the unknown
parameters {w, σ2, α0, α} can be estimated by an iterative pro-
cedure. The mean μw and covariance Σw of parameter values
wm can be analytically estimated by the normal posterior as
follows:

N(yt|Xtw, σ2In)N(w|0,A) = N(w|μw,Σw)N(yt|0,C)
(7)

where

Σ−1
w = σ−2XT

t Xt +A

= Sq

(
σ−2UT

q,tU q,t + S−1
q AS−1

q

)︸ ︷︷ ︸
=Σ−1

U

Sq (8)

μw = σ−2ΣwXT
t yt = S−1

q σ−2ΣUU
T
q,tyt︸ ︷︷ ︸

=μU

(9)

C = σ−2
(
In +U q,tS

2
qA

−1UT
q,t

)
. (10)

In fact, model residual yt −Xtμw is equal to yt −U q,tμU ,
which corresponds to the use of predictors U q,t instead of
U q,tSq such that each of regularization matrix A’s components
αm is substituted with αmλ−2

m .
Using the same formulation as Tipping, parameters

{σ2, α0, α} can be estimated using a type-II maximum
likelihood approach, i.e., the maximization of the evidence
N(yt|0,C) (e.g., see [29] and [32] for more details). Predictors
Xt are replaced by decomposition U q,tSq , and the update
models for the parameters become

(α̂0)
new =

γ0

μ2
U,0

(11)

(α̂)new =

∑q
i=1 γi∑q

i=1 μ
2
U,iS

−2
q,ii

(12)

(σ̂−2)
new

=
N −

∑q
i=0 γi

(yt −U q,tμU )
T (y
t −U q,tμU )

(13)

with γi = 1− α̂iλ
−2
i ΣU,ii (λ0 = 1). Iterating (11)–(13) and

updating ΣU and μU until convergence is achieved, optimal
estimates σ2

∗ , α0∗, and α∗ can be found.
The prediction of the rest of the plots, i.e., vj , j =

1, . . . , N − n, is given as the following distribution:

p
(
yvj

|yt, α∗, σ
2
∗

)
=

∫
N

(
yvj

|Xvj
w, σ2

∗

)
N(w|μw,Σw)dw

(14)
where μw = S−1

q μU , and Σw = S−1
q ΣUS

−1
q . Since the right-

hand-side distributions are normal, the prediction of a new plot
also follows a normal distribution, i.e.,

p
(
yvj

|yt, α∗, σ
2
∗

)
= N

(
yvj

|ŷvj
, σ̂2

vj

)
(15)

with

ŷvj
= U q,vj

μU (16)

σ̂2
vj

= σ2
∗ +U q,vj

ΣUU
T
q,vj

. (17)

Thus, the proposed model is basically a linear ridge regres-
sion model, where the predictors of the training set consist of
the rows of left singular vector U q that represent the field sam-
ple plots and the diagonal regularization matrix, i.e., AS−2 that
defines which predictors are allowed to have nonzero parameter
values. Regularization value αλ−2

m is smallest for the orthogonal
predictors that explain well the original data variation (with a
large singular value λm), and it is largest for those that do not
explain much of the data variation (with a small singular value
λm). The common parameter α retains the given proportions
between different orthogonal predictors throughout the model.
With a small training data set, the new model, i.e., UROLSq ,
does not treat each candidate predictor uniformly. Instead, the
regression parameters associated with different predictors are
searched in a manner that favors the parameters associated with
the orthogonal predictors that explain well the original data.

III. VERIFICATION PROCEDURE

In this paper, the estimation algorithm discussed in Section II
is used to verify the effect of thinning the field sample plot
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grid in the inventory areas. The number of field sample plots
is reduced, and the training set is chosen from all the Ncand

candidate plots available in the area. To produce a realistic set
of field sample plots, three different approaches to field sample
plot selection are tested, i.e., a selection criterion based on the
systematic distribution of the plots in the geographic distance
space, a selection criterion based on the systematic distribution
of the plots in the orthogonal predictor space, and a selec-
tion criterion based on the minimization of the error variance
of linear model predictions, respectively. The measurements of
the forest inventory variables and the q SVD components of
LiDAR predictors in the selected field sample plots serve as
the training set of linear models. In this paper, we verify the
prediction accuracy of the linear model with tSVD predictors
(OLSq) and that of the linear model with tSVD predictors
and uniform regularization (UROLSq). The effect of truncation
according to a given explanation rate P of the original data in
the prediction accuracy (the root MSE (RMSE) and the bias)
is verified with all available data for both models. In addition,
the effect of thinning field measurements on the prediction
accuracy is described.

A. Field Sample Plot Selection

The selection criterion of the field sample plots is given
with a mathematical function called the utility function. It is
a function of the index vector t of the candidate subset of
n plots chosen from a total of Ncand plots, i.e., u = u(t). The
shape of the utility function depends on the goal of the selection
procedure, such that the goal is achieved by maximizing the
utility function.

In the field sample plot selection step of the inventory pro-
cedure, there is no prior knowledge of which predictors are
important in the model of the given forest inventory variable(s)
since no field measurements are available. Thus, all the predic-
tors are treated with equal weight, i.e., all orthogonal candidate
predictors are scaled identically.

1) Designs Based on Maximal Spread of Data: The maximal
spread of the field sample plots in the geographic distance
space or the predictor space is described in this paper using the
MaxiMin approach (e.g., see [35] and [36] for details). It is a
space-filling design covering the given feature space as widely
as possible.

In the MaxiMin spread design, the feature space can be the
geometrical space or the space defined by the predictors. The
aim of the design is to include sample plots from the full range
of values of the given space. To achieve this goal, the distance
between plots is maximized in the plot selection, i.e., selecting
plots that are as far as possible from all the other selected plots.
Thus, the MaxiMin design utility function is the minimum
distance (in the given coordinates) among the selected plots,
and the aim is to maximize this distance.

The distance between plots i and j can be defined as the
squared Euclidean distance as follows:

d(i, j)2 =

L∑
l=1

(Zi,k −Zj,k)
2 (18)

where L is the number of distinct predictors in the given feature
vector Z. Z can be either LiDAR predictors or spatial variables.
For the spatial case, L is the number of spatial coordinates
(generally two or three); for the predictor space case, it is the
number of predictors used. The design utility function for the
maximization problem becomes

uMaxiMin,z(t) = min d(i, j)2, i, j ∈ t (19)

where i and j are two distinct plots that are both included in
the index vector t of the given candidate selection consisting of
n plots.

Generally, if the design is only based on the geographic
distance information, the maximization of this utility function
results in an approximately regular grid over the study area.
Thus, the MaxiMin design with spatial coordinates Z = S,
i.e., uMaxiMin,s(t), can be used to set the plot selection that
covers the spatial area as widely as possible. Alternatively, one
could consider distributing sample plot locations to cover the
space defined by the q orthogonal predictors, i.e., U q , and use
the MaxiMin design based on predictor matrix Z = U q , i.e.,
uMaxiMin,u(t).

2) Design Based on Minimization of Prediction Uncertainty:
The minimization of the linear model prediction uncertainty is
based on the given variance estimator, i.e., (17). The estimator
contains two components, where the first, i.e., σ2

∗ , describes
the model residual variance, and the second describes the error
caused by the uncertainty in the parameter estimates. The first
component is unknown at the phase of the field sample plot
selection and is ignored at this step. In the second component,
there are parameters σ2

∗ and A included in ΣU . Since there is no
prior knowledge of the importance of the predictors in the linear
model, the prior distribution of the regression model parameters
is assumed to be noninformative. Thus, the initial assumption
of variance of the prior values α−1

i is set large, i.e., αi → 0,
and component AS−2

q is negligible. Now, residual variance σ2
∗

serves as a constant scaling factor, which can be set to 1 in this
formula. The utility function is thus

uLIN(t) = −
Ncand−n∑

j=1

(
U q,vj

(
UT

q,tU q,t

)−1
UT

q,vj

)
. (20)

The utility function is maximized; thus, we use the negative
values of the minimized variance model.

The linear-model-based utility function is a summation of
all the prediction error variance values in the given verification
plots. The maximization of the given utility function minimizes
the average error variance.

3) Utility Function Optimization: The maximization of util-
ity function u(t) as a function of n plot selection indexes t
is a computationally hard combinatorial problem. Depending
on the set of plots, utility function u(t) has different values.
With a large number of candidate plots, i.e., Ncand, finding the
optimal subset of n plots would take a long time. In this paper,
the maximization problem is solved with simulated annealing
(e.g., see [37] and [38] for more details). The method finds a
local optimum, but there is no guarantee that the solution is
the global optimum of the problem. However, the solutions are
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nearly optimal, and the repetition of the optimization procedure
can be used to check that the solution is appropriate.

The basic idea in simulated annealing is to start with an
initial design, i.e., tinit, of n randomly chosen plots and then
generate a new candidate design with an equal amount of plots,
i.e., tnew, and a rule to accept the new design. At each step, a
new candidate design tnew is formed by deleting one randomly
chosen plot from the initial design and replacing it by a plot
that is randomly chosen from the set on the Ncand − n plots
that are not included in the initial design. The acceptance rule
for the new candidate design depends on the utility function
values of the initial design and the new candidate design. In
the maximization problem, if utility function value u(tnew) is
larger than u(tinit), the new candidate design is accepted. A
new design with a smaller utility function value is only accepted
with probability exp(−(u(tinit)− u(tnew))/T ), where T is a
user-specified positive constant, which defines how much the
utility function is allowed to alter. This constant is made to
decrease in the course of maximization. More details of its
definition can be found in the given references. The value of
T is reduced by some factor, i.e., 0.9 in this paper for every
100 iterations. If the new design is accepted, it becomes the new
initial design, i.e., tinit = tnew, and the search continues from
it. If the new candidate design is not accepted, a new random
swap of plots from the original initial design is tested.

Simulated annealing requires a lot of plot swap attempts, and
in this paper, the upper limit is set to 30 000; to control that,
the true optimum is found, and it may take several independent
solutions to verify it.

B. Material

A range of ten different test cases is used to verify the
performance of the given method in remote-sensing-data-based
forest inventory. The test cases are located in the USA and
Finland, and the model performance is verified with distinct
approaches in the two continents due to differences in data
sizes.

1) USA: Field Measurements: The American data used in
this paper are located in three different areas in the USA. The
Fraser Experimental Forest (FEF) is located in central Colorado
near the town of Fraser. The Marcell Experimental Forest
(MEF) is located in northern Minnesota. The Niwot Long-Term
Ecological Research Site (NIWOT) is located near the town of
Nederland, Colorado.

The tree species at FEF primarily consist of Abies lasiocarpa
and Picea engelmannii at higher elevations and Pinus contorta
at lower elevations. The climate at FEF is characterized by
cold and relatively long winters, with mean annual temperature
and precipitation of 0 ◦C and 737 mm, respectively. The tree
species at MEF include mixed upland forests and peat lands.
Upland forests are generally dominated by Populus tremuloides
and grandidentata, but they contain substantial components
of Betula papyrifera, Pinus resinosa, Pinus strobus, and
Pinus banksiana. Lowland tree species include Larix laricina,
Picea mariana, Fraxinus nigra, and Thuja occidentalis. The
climate at MEF is subhumid continental, with a mean annual
precipitation of 785 mm, a mean annual temperature of 3 ◦C,

and air temperature extremes of −46 ◦C and 38 ◦C. The tree
species in inventory site NIWOT primarily include a mix of
Abies lasiocarpa, Picea engelmannii, and Pinus contorta, with
minor components of Pinus flexilis and Populus tremuloides.
The mean annual temperature and precipitation are 4 ◦C and
800 mm, respectively.

The field data at each site were collected using methods
similar to the forest inventory and analysis style plot design
[39]. Each plot location consists of four subplots with a radius
of 8–10 m (depending on the site), with one subplot located
in the center and the three others located 35 m away from
the plot center at 0◦, 120◦, and 240◦, respectively. Additional
plots only consisting of one subplot were also used in this
analysis. FEF, MEF, and NIWOT resulted in a total of 60, 99,
and 62 subplots, respectively. Within each subplot, individual
tree diameters at breast height and the height for both live and
dead trees were measured and used in species-specific allo-
metric models to estimate the AGB (stem, branch, and foliage
biomass). Additional details about the field measurements and
allometric equations used for biomass estimation are available
in [40]. The individual tree AGB estimates were totaled for each
subplot and converted to the AGB in megagrams per hectare.
The AGB measurements were then square root transformed to
better approximate a normal distribution before model fitting.

2) USA: LiDAR Data: The field measurement data for the
three test sites are accompanied with LiDAR measurements
covering the test areas. The pulse densities of the LiDAR
measurements are unknown. The height aboveground measure-
ments for the first-return pulses were calculated by subtracting
the point elevations from a digital terrain model constructed
from the LiDAR data. The coverage area of the LiDAR data
was then parsed into 20 m × 20 m grid cells (chosen to
approximate the area of a subplot), and return density profiles
were constructed for each cell by summing the number of
returns over the cell into 1-m height bins. The LiDAR echoes
that occurred in the 0–1-m height class were removed from the
data set to limit the influence of ground returns. To correct for
the variation in the number of returns over each grid cell due to
the flight path overlap and the laser scan angle, each profile was
normalized by dividing each bin count value by the maximum
bin count value. This process was repeated to obtain the LiDAR
density profiles for the first returns over the subplot locations
where the AGB was measured.

The original candidate LiDAR predictors zi used in the
regression model in this paper were the 10th, 20th, 25th, 30th,
40th, 50th, 60th, 70th, 75th, 80th, 90th, 95th, and 100th height
percentiles of the first-return LiDAR pulses of each plot i. Thus,
the predictors over the whole area are stored in an N × 13
matrix Z. The predictors are centered and normalized to a zero-
mean unit variance normal distribution. The spatial coordinates
of the center of each plot, i.e., sxi and syi, are also known.

3) Finland: Field Measurements: In this paper, seven sepa-
rate inventory sites in different parts of Finland were estimated.
They are located at Matalansalo, Juuka, Loppi-Janakkala, Pello,
Lieksa, Kuhmo, and Karttula. The tree species of the differ-
ent sites contain Scots pine (Pinus sylvestris), Norway spruce
(Picea Abies), and hardwoods, which mostly comprises birch
(Betula pendula or Betula pubescent). The percentile part of
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pine in the different inventory sites was 53.2%, 67.2%, 45.3%,
38.6%, 61.1%, 64.8%, and 29.1%, respectively. For spruce, the
percentage are 34.5%, 21.7%, 41.5%, 34.1%, 24.1%, 24.0%,
and 45.0%, respectively, and for hardwoods, they are 12.3%,
11.0%, 13.2%, 27.3%, 14.8%, 11.2%, and 25.9%, respectively.
The annual heat sums (degree days) are 1150, 1000, 1250, 850,
1050, 900, and 1100, respectively.

The field sample plots on the inventory sites were selected
with a number of different sampling strategies. Some sites were
equipped with a regular sample plot grid, and some others
were equipped with regularly sampled plot clusters; others were
equipped with randomly selected plots. These differences were
ignored in the estimation process as they are likely to vary in
operational use as well. In the given inventory sites, in the order
given previously, a total of 472, 511, 441, 553, 483, 470, and
538 field sample plots, respectively, are measured (the data set
size N of the different inventory sites). Field sample plots were
always circular plots with a 9-m radius. They were positioned
at first with a handheld Global Positioning System, and the
exact position of the plot center was later calculated during
measurement and differentially corrected offline. This method
generally ensured a position error of less than 1 m, which has
been deemed adequate to align the LiDAR data and the field
plots so that their areas overlap to a degree exceeding 90%.
In each inventory site, five different forest inventory variables
were measured, i.e., the median tree diameter, the median tree
height, the stem number, the basal area, and the volume.

4) Finland: LiDAR Data: The test data for the test sites also
consist of LiDAR measurements from the area. The LiDAR
scanning of the different areas was conducted from 2004 to
2008. Three different types of scanners were used, i.e., the
Optech ALTM 3600, the Leica ALS-50, and the Leica ALS-60.
The flying height varied between 700 and 2000 m, and the
scanner pulse frequency varied between 58 900 and 125 100 Hz.
The LiDAR data were clipped to the plot extent before extract-
ing the LiDAR predictors from it.

The set of candidate predictors derived from the LiDAR
measurements for each sample plot used in the estimation of
each forest inventory variable is similar to the set that we
used in [41]. It consists of the percentile points and cumulative
percentile parts of the first and last pulse heights of nonground
hits (a height above 2 m), the percentile intensities of the first
and last pulse intensities of nonground hits, the mean of the
first pulse heights over 5 m, the standard deviation of the first
pulse height, and the number of measurements less than 2 m of
the first and last pulse heights divided by the total number of the
same measurements of each plot. These 38 candidate predictors
for each plot of the site were stored in the N × 38 matrices.

In this paper, the sample plots of the test areas are used as
the candidate plots for the field plot selection and as the plots of
interest in the forest variable prediction. Thus, Ncand = N for
the test cases.

C. Error Validation

To achieve optimal prediction results, i.e., the baseline (BL),
of the given methods OLSq and UROLSq , we use all the avail-
able data, the leave-one-out (LOO) cross-validation procedure

for the Finnish data, and the leave-two-out (LTO) cross-
validation procedure for the smaller sized American data.

In LOO, each plot i, i = 1, . . . , N , at the time is left out
as the verification plot, and the other N − 1 plots are used as
the training set of the study site. The prediction for each plot
is performed separately, but the error is calculated using the
predictions ỹi of all the plots i = 1, 2, . . . , N as follows:

RMSE=

√∑N
i=1(ỹi−yi)

2

N
D=

∑N
i=1(ỹi−yi)

N
(21)

where RMSE is the RMSE of the predictions, and D is the
mean deviation. The total mean error, i.e., the MSE, is MSE =√

RMSE2 +D2. The relative errors are

RMSE% =
RMSE

y
· 100% D% =

D

y
· 100% (22)

where y = (
∑N

i=1 yi)/(N) is the mean of the true values of the
forest inventory variables.

The size of the American test data is relatively small, and
the LOO cross-validation procedure may give unstable results.
Thus, we use the LTO procedure to verify the prediction results.
It is similar to LOO, except that, instead of one, two plots at a
time are left as the validation plots, and the rest of the N − 2
plots serve as the training set of the study site. That is, we
go through all the possible pairs (in random order), leading
to N × (N − 1)/2 repetitions, e.g., 1770 in the case of FEF.
The errors are then calculated for the resulting N × (N − 1)/2
predictions ỹi comparing with the corresponding set of forest
inventory variable values.

When the number of sample plots is diminished, n < N
field sample plots are selected from the N candidates, and the
model parameters are estimated using the data of those plots as
the training set. Similar to the procedure discussed previously,
we use the LOO and LTO cross-validation procedures with a
small modification: after selecting the verification plot(s) of
each repetition, the training set of n plots is selected from the
rest, i.e., the N − 1 (LOO) and N − 2 (LTO) plots that serve as
the candidate plot set of the study site. After the repetitions, the
errors are calculated as given earlier.

In the case of LTO, the validation procedure is very time
consuming because it includes over a thousand repetitions.
However, after some hundreds of repetitions, the results gener-
ally converge to a fixed value. Thus, we can stop the verification
procedure when the estimates are such that the change in
relative errors (RMSE% and D%) has not changed more than
0.1 units for 50 repetitions and such that the corresponding
optimal estimation values verified earlier for a full data set
(the BL) have also converged such that the relative errors are
at most 0.1 units from the BL error values. The errors are then
calculated for the resulting Niter predictions ỹi comparing with
the corresponding set of forest inventory values.

In the Finnish data, there are multiple forest inventory vari-
ables that are predicted with the same set of field sample plots
and the same model formulation just by adjusting the model
parameters to fit the given data. In this case, K = 5 forest
inventory variables are predicted. In the Finnish operational
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forest inventory, all these variables are required. Thus, an
overall estimate of the accuracy of the model is given by
averaging over the MSEs that are normalized according to the
forest inventory variables’ optimal LOO solution MSE, i.e., BL
MSEBL, as follows:

MSErel,tot =
1

K

K∑
k=1

MSEk

MSEBL,k
(23)

and for one specific forest inventory variable, i.e., the volume,
the relative estimate is

MSErel,vol =
MSEvol

MSEBL,volume
. (24)

In this paper, all the forest inventory variables were considered
equally important. If MSErel (tot or vol) is larger than 1, the
average error is (MSErel − 1)× 100% larger than the error of
the optimal LOO solutions, i.e., the relative additive error due
to the diminished number of field sample plots.

Different designs are labeled as LIN, MMxx, and MMs,
corresponding to the approaches where the optimal design is
selected with the aim to minimize the prediction error variance,
i.e., utility function (20), and the aim to fill the predictor and
the spatial space with a nearly regular grid, i.e., utility function
(19), with Z = X and Z = S. The prediction accuracy of the
two modeling methods is verified using the field sample plots
selected with each of these designs.

IV. RESULTS AND DISCUSSION

The accuracy of model-based estimation in forest inventory
basically depends on two aspects, i.e., how well the predictors
explain the variability of the response (the level of the signal of
the response in the remote sensing data) and how well the model
parameters are estimated. With a small training set, i.e., a sparse
set of field sample plots (30–100) in the forest inventory, both
aspects affect the resulting predictions.

Before result evaluation, the convergence of the LTO and
LOO methods was checked. In each validation case, the results
converged within some hundreds of LOO/LTO repetitions.
Despite this, in case of the Finnish data, all the N repetitions
in the LOO method were performed. In the case of LTO, the
repetitions were only performed until the convergence was
achieved, as discussed previously. The reason for this can be
seen in Fig. 1, where an example of the relative error value
convergence in the LTO cross-validation procedure is shown.

A. Effect of Truncation Level

Using the orthogonal predictors derived from the original
predictors with the SVD, the number of predictors can be
reduced. However, how does one decide on the optimal number
of orthogonal predictors to retain? The explanation rate, i.e.,
P , in (2) only defines how well the variability of the given
set of original and correlated predictors is explained if the
number of orthogonal predictors is reduced. However, some of
the variability that explains the responses may be excluded if
too many orthogonal predictors are left out from the model. On

Fig. 1. Inventory area FEF: RMSE% and D% values of the UROLSq method
as functions of the LTO repetitions (design MMs, n = 18, and P = 0.95).

the other hand, if the number of predictors is large compared
with the number of field plots, the model parameter estimation
becomes uncertain, producing less reliable predictions.

This effect is verified using the LOO/LTO estimates with
full data and varying the rate of variability explanation P (see
Tables I and II). The RMSE% and D% results are given for
the two linear models, i.e., OLSq and UROLSq. None of the
results have large deviation (D%), but the RMSE% results vary
depending on the model and the number of used orthogonal pre-
dictors. With a small number of predictors (a low explanation
rate P ), the RMSE% of the predictions increases since the given
predictors do not explain the response variability as well as the
model with more orthogonal predictors. However, if the number
of predictors becomes too large (a high P ), the model parameter
estimation may suffer due to overfitting, and the RMSE% of the
predictions again increases. This can be seen particularly in the
results given in Table I since the number of input data, i.e., N ,
is small in the American data. In the Finnish data set, the effect
of overfitting is not as clear.

The problems concerning the large number of used predictors
(with a relatively small number of field plots) can be overcome
using the UROLSq model, which gives similar estimates inde-
pendent of the rate between the number of predictors and the
input data size.

Why does the UROLSq method give more precise results?
This effect is illustrated in Fig. 2, where the singular values of
the orthogonal predictors and the absolute values of the parame-
ters for an LTO solution of the FEF square-rooted AGB derived
with P = 0.95 and q = 9 predictors are shown. The orthogonal
predictors that explain the largest percentage of variability in
the original predictors also have the largest absolute model
parameter values in the model.

In UROLSq , the orthogonal predictors with large singular
values are favored, and the predictors with small singular
values are not allowed to become as important in the model.
Thus, in the case of potential overfitting, the effective number
of predictors is less than the real number of predictors, and
overfitting is avoided.
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TABLE I
LTO RESULTS FROM STUDY SITES FEF, MEF, AND NIWOT: RMSE% (D%) RESULTS WITH DIFFERENT PORTIONS OF USED PREDICTORS.

P IS THE EXPLANATION RATIO USED, AND q IS THE CORRESPONDING NUMBER OF ORTHOGONAL PREDICTORS USED

TABLE II
MATALANSALO (N = 472) LOO AND RMSE% (D%) RESULTS WITH DIFFERENT PORTIONS OF USED PREDICTORS.

P IS THE EXPLANATION RATIO USED, AND q IS THE CORRESPONDING NUMBER OF ORTHOGONAL PREDICTORS USED

Fig. 2. FEF case, with P = 0.95. (Top) Percentage of the variability expla-
nation of the orthogonal predictors. (Bottom) Absolute (left bar) OLSq and
(right bar) UROLSq parameters μU calculated with full data.

B. Effect of Reduced Number of Field Sample Plots

In this paper, the training set only consists of the selected
n field sample plots. The field sample plots are selected using
the LIN, MMx, and MMs designs. The effect of the different
designs with different values of n and the effect of regular-
ization for the prediction precision of different forest inventory
variables are shown in Figs. 3–5 (for inventory sites FEF, MEF
and NIWOT, and Matalansalo, respectively).

The effects of the given designs on the prediction reliability
are similar to those shown already in [16]. The difference
between the performance of models OLSq and UROLSq can be
seen in the RMSE% results, whereas the systematic deviation
trend remains the same using both models (see Fig. 3). Using
the OLSq model, the LIN design is very prone to systematic
deviation but gives the smallest RMSE%, whereas the results
of the MMs design are more accurate but have intolerably
high RMSE% with the small sample sizes. Using the proposed
model UROLSq , the accuracy is approximately the same as

Fig. 3. Inventory area FEF: RMSE% and D% of the LOO estimates as
functions of field sample plot number n and designs LIN, MMx, and MMs.
Explanation rate P = 95%, and q = 9 orthogonal predictors were used.
(a) RMSE%. (b) D%.

Fig. 4. RMSE% for inventory areas MEF and NIWOT. Explanation rate
P = 95% was used for the predictors. (a) MEF. (b) NIWOT.

using the OLSq model, but the RMSE% values become smaller.
In fact, the RMSE% values of designs MMx and MMs are very
close to that obtained with the LIN design. The same trend of
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Fig. 5. Prediction RMSE% of three forest inventory variables for inventory
area Matalansalo. Explanation rate P = 95% was used for the predictors.
(a) Median tree height. (b) Stem number. (c) Volume.

systematic deviation of different designs can be seen in the tests
of all the inventory variables in all the inventory sites. Both
models OLSq and UROLSq possess approximately the same
level of accuracy. Furthermore, we focus on the visualization
of the RMSE% in the results of other test cases.

Independent of the design used, the predictions made with a
small sample size and a relatively large number of predictors
are more precise when estimated with the UROLSq model than
with OLSq . The problem of overfitting is overcome with the
regularization that emphasizes the orthogonal predictors that
most explain the original data. Thus, even with a few dozen
field sample plots, the prediction precision is close to that esti-
mated with several hundred field sample plots. The differences
between the designs vanish using the proposed model. Using
the UROLSq model, clear differences can be only seen with the
smallest sample sizes, i.e., 14 in the American test cases and
30 in the Finnish test cases. Thus, we can also use designs that
are less efficient in terms of linear model fitting but not prone
to systematic deviation without losing substantial precision.

In Fig. 6, the total MSE% values compared with the BL LOO
solution (MSErel,tot) and similar relative measures for forest
inventory variable volume-specific MSE% values (MSErel,vol)
are provided for two Finnish inventory sites as functions of the
number of field sample plots n. The results of inventory site
Matalansalo are similar to the other Finnish inventory sites,
and inventory site Pello gives the worst relative MSE values.
Altogether, the UROLSq method gives precise predictions even
with small sample sizes. The total error among the seven
Finnish inventory sites is 10%–50% worse than the optimal
solution, even with only 30 field sample plots. With 50 sample
plots, the total error is only about 5%–15% more, which is
independent of the design used.

Fig. 6. MSErel results of the UROLSq method for inventory sites Mata-
lansalo and Pello in Finland. Predictor explanation rate P = 0.95 was used.
(a) Matalansalo. (b) Pello.

Fig. 7. RMSE% of Matalansalo forest inventory variables median tree height,
stem number, and volume for predictions estimated with the OLSq and
UROLSq methods using a different number of predictors. Note that, if q ≥ n,
only q = n− 5 most important orthogonal predictors are used in the field
sample plot selection and prediction model. (a) Median tree height. (b) Stem
number. (c) Volume.

However, how does the choice of the explanation rate, i.e., P ,
of the used orthogonal predictor set affect the solutions when
the number of field sample plots is diminished? The RMSE%
results of the forest inventory variables measured in inventory
area Matalansalo in Finland, resulting from sampling and mod-
eling the data with the LIN design using different number of
orthogonal predictors and being chosen with different values
of explanation rate P , are shown in Fig. 7. This figure shows
that, with a small number of predictors and a sampling design
based on the minimization of the linear model’s prediction error
variance, the OLSq and UROLSq errors are equally independent
of the number of field sample plots n. However, with a larger
number of orthogonalized predictors and a small number of
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field sample plots, the regularized regression model produces
substantially smaller RMSE% values. As long as n � q + 10
holds, the predictions are nearly optimal even with a predictor
explanation rate of 99%. With this high explanation rate, almost
all the forest inventory variable information included in the
predictors is utilized.

C. Model-Based or Design-Based Inference With Reduced
Number of Plots

The plot selection criteria presented in this paper do not guar-
antee that the plot sample constitutes a probability sample of the
forest nor do they automatically produce variance estimates.
Indeed, the purpose of this paper has been to demonstrate
that it is possible to obtain reasonably accurate and precise
estimates with LiDAR-model-based estimation methods with a
rather modest number of sample plots. Constructing appropriate
sampling designs is a topic for a separate study. This paper
should not be based on a preexisting comprehensive sample
but rather on a bootstrapping approach where the sample is
incrementally collected based on a chosen sampling criterion.

This paper uses model-based statistical inference as its basis,
as elaborated in [12] and [42]. If the model used possesses a
systematic error with respect to the total population statistics,
then the total population statistics summed up from such model-
based census estimates will also contain that same systematic
error, unlike the inference on design-based estimates (e.g., see
[12] and [43]). The regression methods employed in this paper
are so constructed that they will not have a systematic error
with respect to the sample plot data used for model parameter
estimation. Since we have validated these model-based forest
inventory variable predictions against a large sample available
on all test sites, the model lack of fit can be judged if that large
sample has been collected probabilistically. This is the case
with some of the test sites, such as Matalansalo and Juuka, but
not on most of the sites. Moreover, in any case, none of the
methods proposed here retain the probability sample property
when the number of plots is reduced.

The plot selection criteria discussed here could be used
to estimate weight parameter functions on which to base a
weighted one-level or two-level sample, starting from a design-
based virtual sample. Such a sample could possess the desirable
features of being a probabilistic sample of the forest and con-
tains a variance estimate (e.g., see [12], [43], and [44]), but this
will call for more investigation.

Notwithstanding such weighted sampling, it is advisable to
expend some of the savings in the field work cost obtained
by the criteria presented here into collecting an independent
validation sample that is not used in model parameter esti-
mation. Such a sample can be used to assess if the chosen
training set has resulted in a sufficiently accurate and precise
model since comparing estimates from the model with the
independent sample will create an error distribution that should
have zero mean and a sufficiently small standard deviation. If
the model fails this test, the independent sample can be added
to the training set and the model building and validation sample
plot collection processes iterated until a sufficiently precise and
accurate model has been obtained.

V. SUMMARY

A small training set size paired with an almost equal number
of predictors in linear models generally causes an additional
uncertainty in predictions. Problems arising from the use of
a large number of possibly correlated predictors with respect
to the number of data points may be overcome by only using
the most important orthogonal predictors derived from the
original data with the SVD. However, discarding part of the
data variability may cause loss of important information, and
the prediction accuracy may suffer. Using a regularized model
combined with orthogonal SVD predictors reduces this effect.
The regularized model proposed here prefers those orthogonal
predictors in the model that have large singular values, i.e., it
explains most of the variability in the original predictor set but
allows the use of less important predictors, depending on the
model precision and the data size.

Using regularized linear regression based on SVD predic-
tors improves the reliability of remote-sensed-data-based forest
inventory models and thus enables accurate assessments to be
generated from LiDAR data with only a few dozen field sample
plots. To further improve the model, it should be also extended
to cover the spatial correlation of the residuals.
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