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Abstract Earth-surface mass flows such as debris flows, rock avalanches, and dam-break floods can
grow greatly in size and destructive potential by entraining bed material they encounter. Increasing use of
depth-integrated mass and momentum conservation equations to model these erosive flows motivates a
review of the underlying theory. Our review indicates that many existing models apply depth-integrated
conservation principles incorrectly, leading to spurious inferences about the role of mass and momentum
exchanges at flow-bed boundaries. Model discrepancies can be rectified by analyzing conservation ofmass and
momentum in a two-layer system consisting of a moving upper layer and static lower layer. Our analysis shows
that erosion or deposition rates at the interface between layers must, in general, satisfy three jump conditions.
These conditions impose constraints on valid erosion formulas, and they help determine the correct forms
of depth-integrated conservation equations. Two of the three jump conditions are closely analogous to
Rankine-Hugoniot conditions that describe the behavior of shocks in compressible gasses, and the third jump
condition describes shear traction discontinuities that necessarily exist across eroding boundaries. Grain-fluid
mixtures commonly behave as compressible materials as they undergo entrainment, because changes in
bulk density occur as the mixtures mobilize and merge with an overriding flow. If no bulk density change
occurs, then only the shear traction jump condition applies. Even for this special case, however, accurate
formulation of depth-integrated momentum equations requires a clear distinction between boundary shear
tractions that exist in the presence or absence of bed erosion.

1. Introduction

Dense, gravity-driven flows of solid-fluid mixtures that entrain bed material while descending steep slopes
and channels have broad importance in geomorphology, volcanology, hydrology, and civil engineering.
Examples include dam-break floods, debris flows, rock avalanches, lahars, ground-hugging pyroclastic flows,
and wet snow avalanches (Figure 1) [e.g., Plafker and Ericksen, 1978; Sparks et al., 1997; Scott et al., 2005;
Sovilla et al., 2006; Rogers et al., 2010; McCoy et al., 2012]. Although these subaerial mass flows may be
regarded as gravity currents [Simpson, 1987], their bulk densities typically exceed that of the surrounding air
by a factor of 500 or more, fundamentally distinguishing them frommore dilute gravity currents in which the
surrounding fluid exerts a significant buoyancy force [cf. Bonnecaze et al., 1993; García and Parker, 1993;
Ancey, 2004]. Many subaerial mass flows occur abruptly and attain peak speeds that range from 10 to 100m/s,
and the largest have volumes >1 km3 [e.g., Voight, 1978; Vallance and Scott, 1997; Jakob and Hungr, 2005;
Griswold and Iverson, 2008]. In addition to being powerful agents of landscape change, they can pose grave
hazards to people and property. The severity of these hazards was evidenced by debris flow disasters in
Armero, Colombia, in 1985 and Vargas state, Venezuela, in 1999, which each involved more than 20,000
fatalities (Figure 2).

The size, speed, and destructive potential of geophysical mass flows can be strongly influenced by
entrainment of bed material, and accounting for the causes and effects of entrainment is one of the greatest
challenges in modeling flow dynamics [Hungr et al., 2005; Crosta et al., 2009]. Field evidence shows that
a flow’s volume (V) can increase many fold as a consequence of entrainment [e.g., Pierson et al., 1990;
Wang et al., 2003; Hungr and Evans, 2004], and data compilations show that areas inundated downslope or
downstream from mass flow source areas tend to increase in proportion to V2/3 [Vallance and Scott, 1997;
Legros, 2002; Griswold and Iverson, 2008]. Experimental evidence indicates that entrainment can also be

IVERSON AND OUYANG ©2014. American Geophysical Union. All Rights Reserved. 1

PUBLICATIONS
Reviews of Geophysics

REVIEW ARTICLE
10.1002/2013RG000447

Key Points:
• Entrainment of bed material can
strongly influence geophysical
mass flows

• Many depth-integrated models
incorporate entrainment
effects incorrectly

• A two-layer theory yields three jump
equations that rectify these models

Supporting Information:
• Readme
• Movie S1

Correspondence to:
R. M. Iverson,
riverson@usgs.gov

Citation:
Iverson, R. M., and C. Ouyang (2015),
Entrainment of bed material by
Earth-surface mass flows: Review and
reformulation of depth-integrated
theory, Rev. Geophys., 53, doi:10.1002/
2013RG000447.

Received 2 DEC 2013
Accepted 10 DEC 2014
Accepted article online 13 DEC 2014

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-9208
http://dx.doi.org/10.1002/2013RG000447
http://dx.doi.org/10.1002/2013RG000447


accompanied by feedbacks that may decrease friction and increase flowmomentum dramatically (Figure 3 and
Movie S1 in the supporting information). However, progress in understanding the detailed mechanics of
entrainment has been hindered by the violent nature of full-scale geophysical mass flows and by the difficulty
ofmakingmeasurements at their evolving basal boundaries. Theory shows that potential exists for constraining
entrainment mechanics by comparing measurements of evolving flow velocities and depths to model
predictions, but only if the models themselves are soundly grounded [Iverson et al., 2011]. Thus, it is crucial for
models of erosive mass flows to be founded on physical conservation laws that are properly formulated.

Our review focuses on mass flow models that employ depth-integrated conservation equations that are
generalized from those of classical shallow-water theory [cf. Stoker, 1958; Savage and Hutter, 1989;
Vreugdenhil, 1994; Iverson and Denlinger, 2001]. In recent decades depth-integrated mass flow models have
become widely used tools in hazard evaluation [e.g., Pudasaini and Hutter, 2007; Medina et al., 2008; Pastor
et al., 2014], and they offer three advantages over more detailed, three-dimensional models. First, they
generate model output with a level of detail comparable to that of field measurements and large-scale
experiments, enhancing the prospects for conclusive model testing [e.g., Iverson et al., 2010, 2011; McCoy
et al., 2012; George and Iverson, 2014]. Second, they embed the effects of the evolving positions of the upper
and basal flow boundaries directly into the governing conservation equations, eliminating the need to
separately resolve domain boundaries [cf. Biscarini et al., 2010; Iverson and George, 2014]. Third, they reduce
the degrees of freedom in the conservation equations themselves (commonly by neglecting bed-normal
momentum components) and thereby reduce computation time. As a result, use of depth-integrated

Figure 1. Paths of some Earth-surface mass flows that entrained large volumes of bed material. (a) Rock/ice avalanche,
Mount Adams, Washington, USA, 1997 (U.S. Geological Survey (USGS) photo by R. M. Iverson); (b) debris avalanche/flow,
Minamata, Kyushu, Japan, 2003 [after Sidle and Chigira, 2004] (photo courtesy of R. C. Sidle); (c) dam-break water flood,
Taum Sauk Reservoir, Missouri, USA, 2005 [Rogers et al., 2010], (USGS photo by J. D. Spooner); (d) debris flow that incised
preexisting landslide deposit, with red arrows identifying remnants of a severed, 5 m high sediment retention dam, Wenjia
Gully, Sichuan, China, 2010 [Xu, 2010; Yu et al., 2013], (photo by Xu Qiang, used by permission of the Chinese Journal of
Engineering Geology).
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equations in combination with shock-capturing numerical methods and adaptive mesh refinement enables
high-resolution simulations of large-scale geophysical flows to execute quickly on ordinary desktop
computers [Berger et al., 2011; George, 2011; LeVeque et al., 2011]. Fast simulations can be crucial if hazard
assessments are performed with short lead times or if probabilistic modeling strategies are used to examine
the effects of poorly constrained initial conditions or parameter values [e.g., Ancey, 2005; Dalbey et al., 2008].

Although depth-integrated models of erosive mass flows have been widely used, inclusion of boundary flux
terms in their mass and momentum conservation equations has been a source of controversy [Iverson, 2012].
Disagreement exists, for example, on whether boundary flux terms related to mass evolution should appear in

Figure 3. (a) Gains in debris flow momentum due to entrainment of wet bed sediment in eight large-scale experiments
at the USGS debris flow flume. (b) Photograph of one of the entrainment experiments, with flow front approaching
measurement cross section located at x = 66m downslope from flume headgate. The momentum gain factor Γ is the
measured postentrainment flowmomentum at x = 66m normalized by the baseline flowmomentum at x = 66mmeasured
in control experiments that lacked entrainment (see Movie S1 in the supporting information). Error bars for Γ express
cumulative measurement uncertainties. Error bars for the bed sediment volumetric water content θ express standard
deviations of 15 to 20 spatially distributed measurements [after Iverson et al., 2011].

Figure 2. Oblique aerial view of the town of Armero, Colombia, which was largely destroyed by a lahar that originated on
Nevado del Ruiz volcano on 13 November 1985. Pierson et al. [1990] reported that the lahar roughly quadrupled in volume
between the source area and depositional area shown here. (USGS photo by R. J. Janda.)
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momentum conservation equations. Fundamental disparities in models’ governing equations can lead to large
differences in numerical predictions that may involve millions of calculations of mass and momentum fluxes.
Therefore, systematic comparison of existing equations and establishment of the correct forms of applicable
equations are priorities.

1.1. Historical Perspective

The qualitative importance of bed material entrainment by evolving mass flows has been recognized for
more than a century. For example, Rickmers [1913] provided a lyrical description of entrainment by debris
flows, for which he coined the term “mudspates”:

When a… slope of grit and shingle has been soaked like a sponge by rain or melting snows there may
come a time when it… slides off…Slipping into channels and gullies this mass…attains a higher speed
and carries away soft material as well as rocks which it finds on its way. It is during this descent that the
mudspate generally acquires its characteristic composition, for only bymovement can an evenmixture
of liquid and solids be maintained.

And two early books in German, Die Muren (“Debris Flows”) [Stiny, 1910] and Bergsturz und Menschenleben
(“Landslides and Human Lives”) [Heim, 1932], included thorough accounts of the scouring action of debris
flows and rock avalanches, respectively.

Development of quantitative mass flowmodels that consider coevolution of flowmass andmomentum during
entrainment of bed material did not begin until the 1960’s. Much of the earliest work focused on snow
avalanches and appeared in the Russian literature, as summarized by Eglit and Demidov [2005]. In the English
language literature, Briukhanov et al. [1967] presented a one-dimensional (1-D) depth-integrated continuum
model that addressed entrainment at avalanche fronts by using a Lagrangian reference frame that translated
with the front speed. Brugnot and Pochat [1981] analyzed a similar problem by using a fixed (i.e., Eulerian)
reference frame and 1-D mass and momentum conservation equations resembling those of classical
shallow-water theory. Neither of these pioneering snow avalanche models was accompanied by mathematical
derivations that revealed the physical basis of relationships between boundary mass fluxes and evolution
of conserved variables, however. A similar lack of detailed derivations has continued to hamper interpretation
of many recent models.

Takahashi et al. [1987] were perhaps the first to use 1-D Eulerian conservation equations similar to those of
shallow-water theory to model landslides and debris flows that entrain mass from erodible basal boundaries.
Takahashi et al. [1987] included a flow momentum loss term proportional to the rate of mass entrainment
but did not explain the term’s physical basis [see also Takahashi, 1991, p. 76]. Over the next several years,
Lagrangian point-mass models were introduced with the goal of clarifying the behavior of landslides and
debris flows that exchange mass with their beds [Cannon and Savage, 1988; Van Gassen and Cruden, 1989].
The equations used in these models implied that evolution of flowmass could influence flowmomentum in a
manner analogous to mass ejection by a rocket—an implication that spawned ensuing criticism [e.g., Hungr,
1990a, 1990b]. Importantly, Erlichson [1991] noted that a fundamental shortcoming of these models was
a failure to distinguish clearly between the action of internal and external forces that enable mass change
[cf. Iverson, 2012].

Multidimensional, depth-integrated continuum models have now almost entirely supplanted 1-D and
point-mass models as the standard tools for analyzing the behavior of geophysical mass flows, but the crux
issue identified by Erlichson [1991] remains a source of discrepancies and misunderstandings. In many
depth-integrated models, distinctions between internal and external forces are ambiguous, because they are
linked to nuanced (and commonly unstated) variations in authors’ definitions of boundary tractions, boundary
fluxes, and conserved variables. Our assessment of depth-integrated models shows that the forms of
momentum change terms associated with entrainment are contingent on these definitions as well as on the
frame of reference.

1.2. Current Objective

We critically evaluate depth-integrated models of erosive mass flows by identifying constraints derived from
a more comprehensive, two-layer, depth-integrated theory. The theory considers the interaction of a static
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layer of bed material with an overriding, mobile layer that
may undergo changes in bulk density as it exchanges
mass and momentum with the lower layer. In debris flows
and rock avalanches the upper layer may span the entire
flow thickness. In other cases the upper layer may
represent a zone in which bed load motion is driven by
both gravitational forces and boundary tractions exerted
from above (Figure 4). In either case the two-layer theory
addresses two key questions: how do the dynamics of the
moving upper layer respond to entrainment or deposition?
And how does conservation of mass and momentum
constrain the downward propagation of an erosion front
(or upward propagation of a deposition front) where
moving material contacts static bed material? We show
that precise definitions of boundary tractions and
boundary fluxes of conserved variables, as well as precise
evaluations of mass and momentum jump conditions at
eroding boundaries, play essential roles in answering these
questions. These definitions and evaluations also enable
reconciliation of some seemingly disparate models, as we
describe in section 5 of this paper.

2. Qualitative Summary of Existing Models

A rapidly expanding body of geoscience, engineering, and
applied mathematics literature presents depth-integrated
mathematical models of evolving Earth-surface flows
that entrain bed material. Table 1 summarizes some key
qualitative features of the 31 published models we have
examined. Eachmodel considers simultaneous evolution of
flow mass and momentum as well as flow-bed momentum
exchange. The momentum balances and frames of
reference used in the models have important differences,
however. For example, some momentum equations are
referenced to Lagrangian frames that translate downslope
with the local, depth-averaged flow velocity. If entrained

mass has a velocity that differs from that of the depth-averaged velocity as it enters this reference frame,
then the left-hand sides of these equations are not fully conservative. As a result, the right-hand sides of
Lagrangian equations must subtract fluxes of relative momentum at flow-bed boundaries in order to express
momentum conservation during entrainment of static bed material [e.g., McDougall and Hungr, 2005]. We
quantify this effect in sections 4 and 5 of this paper.

A wider range of possibilities exists in momentum equations formulated in Eulerian reference frames
(Table 1). The left-hand sides of these equations can express momentum conservation precisely, eliminating
one complication in Lagrangian models. Eulerian formulations can also distinguish clearly between
depth-integrated flow velocities and velocities of material crossing flow-bed boundaries. Nevertheless,
existing Eulerian models differ widely. Some models assume that material entrained into the base of a
flow automatically attains the depth-averaged downstream velocity of the flow, and an entrainment term
derived by using this assumption implies that bed material entering a flow adds momentum to the flow
[e.g., Gray, 2001]. A larger number of Eulerian models include an entrainment term that appears to subtract
momentum from the flow. Modelers generally justify use of such a term by reasoning that flow momentum
must be transferred to the bed to accelerate static bed material during entrainment, thereby diminishing
the momentum of the flow itself [Cao et al., 2004; Benkhaldoun et al., 2011; Pirulli and Pastor, 2012]. Other
Eulerian models of erosive flows use depth-integrated momentum balance equations that contain no explicit
term related to entrainment [e.g., Capart and Young, 1998; Sovilla et al., 2006]. Few models formulated in

Figure 4. (a and b) Schematic depictions of amoving
sediment-water layer of thickness h1 and bulk den-
sity ρ1 that can exchange mass and momentum with
a static bed layer of thickness h2 and bulk density ρ2.
The total thickness of the two-layer system is H= h1
+ h2. The position of the evolving boundary where
the moving layer contacts static bed material is
shown in red and is located at z= zb(x, y, t), where y is
normal to the x-z plane. As shown in Figure 4b, an
externally imposed shear traction τ may act at z=H.
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either Eulerian or Lagrangian frames make clear—and requisite—distinctions between boundary shear
tractions that act during entrainment and flow over a fixed bed. In Table 1 we denote the interrelated issues
concerning boundary momentum fluxes and boundary tractions as “Ia” and “Ib,” and we quantify these issues
in sections 3 and 4 of this paper.

Other issues we identify in Table 1 and later quantify are (II) neglect of the effect of differences between
depth-averaged and boundary values of velocities on interlayer momentum exchange, (III) neglect of the
effect of bed-normal velocities that are necessarily associated with changes in bulk density that may
accompany entrainment, and (IV) neglect of vertical accelerations when motion on steep slopes is modeled
using an Earth-centered coordinate system in which z is vertical. We quantify this last issue in Appendix A. We
reserve for Appendix B a detailed mathematical summary of some key models listed in Table 1, because
interpretation of the mathematics is facilitated by first establishing a common set of physical principles,
definitions, and notation.

3. Quantitative Model Evaluation

We establish pertinent principles, definitions, and notation by deriving a two-layer model that demonstrates
how fluxes of mass and momentum across layer boundaries are constrained by three types of jump
conditions. Two of the three conditions are closely analogous to Rankine-Hugoniot conditions for the one-
dimensional Euler equations that are used to model the dynamics of ideal gases [e.g., Godlewski and Raviart,
1996]. The third jump condition lacks a gas-dynamics analog because grain-fluid mixtures exhibit no clear
relationship between pressure and bulk density (i.e., there is no equation of state). Instead, the third jump
condition results from the existence of finite shear tractions that transfer tangential momentum between
layers. All applicable jump conditions are derived from physical conservation laws, and all must be satisfied
by entrainment rate formulas that are used in conjunction with depth-integrated conservation equations.

Our strategy is first to derive depth-integrated mass and momentum conservation equations for an
individual layer that can exchange mass and momentum with adjacent layers. The derivation assumes that
the evolving bulk density of the layer is not a function of z (Figure 4), although density stratification can
be addressed by splitting any single layer into multiple layers with differing bulk densities. The next step in
the derivation entails adding conservation equations for adjacent layers to obtain conservation equations
that apply to a two-layer system as a whole. To ensure conservation of mass and momentum within the
two-layer system, specific terms must cancel from the two-layer equations, and the sum of these canceled
terms yields jump equations that must be satisfied at the interface between the layers. From a mathematical
perspective, this method of obtaining jump equations is analogous to a more general, vector-calculus
procedure used to obtain jump conditions by integrating around a perimeter that encloses a singular surface
where two continua contact one another [e.g., Chadwick, 1999]. From a geophysical perspective, our
depth-integrated method of obtaining jump conditions has the advantage of linking the conditions directly
to the conservation equations commonly used to model Earth-surface flows.

3.1. Boundary Definition

All depth-integratedmodels of erosive flows are based on the premise that the evolving boundary between a
moving flow and static bed material can be idealized as a sharp interface. It is worthwhile to examine the
conceptual basis of this idealization, because the position of an evolving boundary where a flowing
grain-fluid mixture interacts with a static grain-fluid mixture can appear indistinct [Capart and Fraccarollo,
2011]. Definition of the boundary position can also be complicated by shifting and jostling of grains in the
bed before they are fully entrained [e.g., Armanini et al., 2005]. Nevertheless, the evolving boundary position
must be defined precisely in depth-integrated mathematical models, including those that explicitly consider
materials with two-phase compositions [e.g., Spinewine, 2005; Perng and Capart, 2008]. In subsequent
sections of this paper, we analyze a scenario in which an arbitrarily shaped boundary forms the interface
between flow and bed layers with arbitrary compositions. Here as a prelude to detailed analysis, we illustrate
some underlying concepts by considering an example that involves a relatively simple material passing
through a planar boundary.

Our example shows how an eroding boundary in a two-phase solid-fluid mixture viewed at the grain scale
can be idealized by a sharp interface viewed at the continuum scale. Moreover, it shows that a two-phase
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material passing through the interface can be idealized as a single-phase material in which the bulk density
evolves as entrainment proceeds. The example considers finite rectangular segments of a flow layer (denoted
by subscript 1) and underlying bed layer (denoted by subscript 2) that each have a length 3δ, height 2δ,
width δ, and volume 6δ3 before any bed erosion occurs (Figure 5). The bed layer initially contains six identical
spherical grains, each with constant density ρs, diameter δ, volume (π/6)δ3, and mass ρs(π/6)δ

3. The space
between the grains is filled with fluid of constant density ρf. Therefore, the bulk density of the bed layer is
given by ρ2 = ρf+ (π/6)[ρs� ρf], where π/6 is the solid volume fraction of the bed. Before erosion occurs,
the flow layer contains fluid alone, such that its initial bulk density is given by ρ1 = ρf. As erosion occurs and
grains are entrained, the value of ρ1 evolves.

Our example assumes that erosion occurs steadily and entails migration of one grain from the bed layer to
the flow layer during each of a series of discrete, equal time steps. In some instances, such as at t= 1 and t=2
in Figure 5, this migration may involve parts of multiple grains that together represent one grain volume,
(π/6)δ3. A volume of fluid [1� (π/6)]δ3 accompanies each grain as it migrates from the bed layer to the flow
layer so that the flow layer volume increases by δ3 and the bed layer volume decreases by δ3 during each
time step. (This proportionate flux of fluid and solid from the bed layer into the flow layer is necessary for the
static bed to maintain a fixed bulk density ρ2 = ρf+ (π/6)(ρs� ρf ) as it loses mass during erosion.) The total
volume flux across the flow-bed boundary indicates that the boundary position changes by (1/3)δ during
each time step, irrespective of whether the boundary passes through individual grains (Figure 5).

The volume flux described above indicates that migration of material from the bed to the flow causes the
flow layer mass m1 to increase by ρ2δ

3 during each time step. More generally, m1 can be expressed as a
continuous function of time as

m1 tð Þ ¼ 6δ3ρf þ 3δ2ρ2 h1 tð Þ � 2δ½ �; (1)

where 6δ3ρf is the initial flow layer mass, h1(t) is the flow layer thickness at time t, 3δ2h1(t) is the flow layer
volume at time t, and 3δ2ρ2[h1(t)� 2δ] is the cumulative mass of material entrained into the flow layer up to
time t. Some simple algebra shows that these relationships imply that the evolving bulk density of the flow
layer ρ1(t) =m1(t)/[3δ

2h1(t)] is given by

ρ1 tð Þ ¼ ρ2 þ
2δ

h1 tð Þ ρf � ρ2ð Þ: (2)

Differentiation of (2) then yields an equation showing how mass conservation links the rate of boundary
evolution, which is described by dh1/dt, to the rate of flow layer bulk density evolution, dρ1/dt:

dh1
dt

¼ h1
2

2δ ρ2 � ρfð Þ
dρ1
dt

: (3)

Coevolution of the flow bulk density and eroding boundary position accounts for the evolving two-phase
composition of material that enters the flow layer from the bed layer.

Figure 5. Grain-scale depiction of a simple example in which an evolving planar boundary separates a flow layer (layer 1) and
eroding static bed layer (layer 2). During each of a series of equal time increments, material consisting of one spherical solid
grain (with mass ρs(π/6)δ

3) and adjacent fluid (with mass ρf [1� (π/6)]δ3) migrates from the bed layer to the flow layer. Mass
balance requires that the boundary between layers shifts accordingly, and as it does, the boundary may cut across individual
grains. The boundary mass flux and boundary migration rate dictate the rate at which the flow layer’s bulk density ρ1 evolves.
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We now consider the same mass
conservation and boundary evolution
example analyzed above, but we
adopt a continuum-scale perspective
analogous to that employed in
subsequent sections of this paper. During
each time increment shown in Figure 5,
the change in mass of the flow layer is
given by (ρ1 +Δρ1)(h1 +Δh1)� ρ1h1,
and the change in mass of the bed
layer is given by � ρ2Δh1, where Δ
denotes an incremental change in a
variable during the time increment Δt.
The mass changes that occur in the
flow and bed layers during Δt must
total zero, indicating that the
difference equation ρ1Δh1 +Δρ1h1
+Δρ1Δh1� ρ2Δh1 = 0 applies. The
difference equation can be converted
to a differential equation by dividing
each term by Δt, making the

substitutions Δρ1 = ρ1(t+Δt)� ρ1(t) and Δh1 = h1(t+Δt)� h1(t), and then taking the limit as Δt→ 0. The
result can be written as

dh1
dt

¼ h1
ρ2 � ρ1

dρ1
dt

: (4)

This equation can be reduced to (3) by using the substitution ρ2� ρ1 = [2δ(ρ2� ρf )]/h1, which is obtained from
(2). The equivalence of (4) and (3) demonstrates that a continuum-scale perspective that omits consideration
of separate solid and fluid phases produces no error in reckoning the effects of mass conservation on the
boundary migration rate.

Despite their mathematical equivalence, equations (3) and (4) reflect some important conceptual differences.
Unlike (3), (4) results from an assessment of mass conservation alone, without any reference to volume
conservation. Indeed, (4) applies to mass conservation across an evolving planar boundary separating
continuous materials with arbitrary compositions. Moreover, because it arises from a mathematical limit
in which Δt→ 0, (4) applies irrespective of whether boundary erosion is steady or unsteady. Equation (4)
can also be viewed as a simple jump condition, because it shows how mass conservation relates
motion of the boundary separating the flow and bed layers to the evolving contrast (or jump) in the
layers’ bulk densities, ρ2� ρ1. More general jump conditions, which we derive below, apply in most
geophysical contexts.

3.2. Boundary Kinematics

In order to derive jump conditions and general, depth-integrated conservation equations, it is necessary to
specify the kinematics of an evolving boundary that has an arbitrary shape. As part of this specification, it is
critical to distinguish between the basal erosion rate and the bed material entrainment rate (Figure 6). The
basal erosion rate is simply the negative of the local rate of bottom boundary elevation change,� ∂zbot/∂t. By
contrast, the bedmaterial entrainment rate E is the volumetric flux of material per unit area that enters a layer
at its boundary. By definition, E is positive upward, normal to the local boundary, such that E> 0 indicates
volume gain by a layer that entrains material at its bottom boundary, and also represents volume loss by a
layer that erodes at its top boundary. Volume is not necessarily conserved as material passes through a
boundary, however, and, in general, E≠� ∂zbot/∂t applies.

Kinematic boundary conditions that are somewhat more general than those commonly used in fluid
mechanics express relationships between rates of boundary elevation change, rates of material flux through
each boundary, and the velocity components of material adjacent to each boundary. If the material consists

Figure 6. Schematic depiction of an eroding boundary (red) located at
z = zb = z2top = z1bot, where subscripts 1 and 2 denote layers 1 and 2.
The boundary elevation changes at rate ∂zb/∂t, and the x and z velocity
components of material entrained into layer 1 at the boundary are
u1(z1bot) and w1(z1bot), respectively. The mass entrainment rate per unit
area, ρ1E1bot ¼ ρ2E2top, is the bed-normal mass flux of material that leaves
the top of layer 2 and enters the bottom of layer 1.
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of a two-phase solid-fluid mixture, then its velocity →u is defined by a mass-weighted average of the solid

phase velocity →us and fluid-phase velocity →uf [Iverson, 1997]:

→u ¼
→usρs 1� nð Þ þ→ufρf n

ρ
; (5)

where n is the fluid volume fraction, and ρ is the mixture bulk density. Henceforth, we employ the Cartesian
components of →u, which are u, v, and w in the x, y, and z directions, respectively.

Appendix C shows how universal forms of the kinematic boundary conditions can be derived from a
three-dimensional analysis of boundary evolution. It also shows that specialized forms of the conditions,
appropriate for application in depth-averaged models that use Cartesian velocity components, can be
expressed as

∂ztop
∂t

¼ w ztop
� �� u ztop

� � ∂ztop
∂x

� v ztop
� � ∂ztop

∂y
� ξ topEtop; (6)

∂zbot
∂t

¼ w zbotð Þ � u zbotð Þ ∂zbot
∂x

� v zbotð Þ ∂zbot
∂y

� ξbotEbot; (7)

where ztop and zbot denote the positions of the top and bottom boundaries of a layer, and ξtop = [1 +
(∂ztop/∂x)2 + (∂ztop/∂y)2]1/2 and ξbot = [1 + (∂zbot/∂x)2 + (∂zbot/∂y)2]1/2 are coefficients that account for the fact
that Etop and Ebot describe volumetric fluxes per unit boundary area normal to the local boundary (Appendix
C). In simplest terms, ξtop and ξbot can be interpreted as geometric correction factors, and if (∂zbot/∂x)2,
(∂zbot/∂y)2, (∂ztop/∂x)2 and (∂ztop/∂y)2 are much smaller than 1, then ξtop≈ ξbot≈ 1.

The velocity components w(ztop), u(ztop), v(ztop), w(zbot), u(zbot), and v(zbot) in (6) and (7) are evaluated at the
boundaries ztop and zbot, but physically, the velocities apply to material immediately adjacent to boundaries,
because no material can occupy a vanishingly thin boundary surface. Mathematically, a discontinuity in at
least one of these velocity components must exist if a boundary between static and moving material is
present. As shown in section 3.1, a mathematical idealization that uses a sharp boundary to represent the
transition from a static bed layer to a moving flow layer is valid at a continuum scale, irrespective of whether
the boundary appears somewhat ambiguous when viewed at the grain scale.

3.3. Conservation of Mass and Accompanying Jump Condition

We use overstrikes to denote depth-averaged values of the dependent variables u, v, w, and ρ. Although ρ is
not a function of z within any individual layer, our conservation equations account for evolution of ρ as a
function of x, y, and t. Moreover, ρ can change abruptly as a function of z when mass passes between layers.
Under these conditions, mass conservation within an individual layer of thickness h(x, y, t) bounded by
moving surfaces at ztop and zbot can be expressed by

∫
ztop

zbot

∂ρ
∂t

þ ∂ ρuð Þ
∂x

þ ∂ ρvð Þ
∂y

þ ∂ ρwð Þ
∂z

� �
dz

¼ h
∂ρ
∂t

þ hu
∂ρ
∂x

þ hv
∂ρ
∂y

þ ρ w ztop
� �� w zbotð Þ� �

þ ρ
∂
∂x ∫

ztop

zbot

udz � u ztop
� �∂ztop

∂x
þ u zbotð Þ∂zbot

∂x
þ ∂
∂y ∫

ztop

zbot

vdz � v ztop
� �∂ztop

∂y
þ v zbotð Þ∂zbot

∂y

2
4

3
5

¼ h
∂ρ
∂t

þ ∂ ρhuð Þ
∂x

þ ∂ ρhvð Þ
∂y

� ρ u ztop
� �∂ztop

∂x
þ v ztop

� �∂ztop
∂y

� w ztop
� �� �

þ ρ u zbotð Þ∂zbot
∂x

þ v zbotð Þ∂zbot
∂y

� w zbotð Þ
� �

¼ ∂ ρhð Þ
∂t

þ ∂ ρhuð Þ
∂x

þ ∂ ρhvð Þ
∂y

þ ρξ topEtop � ρξbotEbot ¼ 0 :

(8)
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The last line of (8) is obtained from the preceding lines by using the kinematic boundary conditions (6) and (7)
as well as the substitution ∂h/∂t= ∂(ztop� zbot)/∂t. The terms ρξ topEtop and �ρξbotEbot in the last line of (8)

describe fluxes of mass into or out of the layer.

Next we consider forms of (8) that apply when mass exchange occurs across a single boundary where an
upper layer (designated by subscript 1) contacts an adjacent underlying layer (designated by subscript 2). For
the upper layer the last line of (8) reduces to

∂ ρ1h1ð Þ
∂t

þ ∂ ρ1h1u1ð Þ
∂x

þ ∂ ρ1h1v1ð Þ
∂y

¼ ρ1ξ1botE1 bot; (9)

and for the lower layer it reduces to

∂ ρ2h2ð Þ
∂t

þ ∂ ρ2h2u2ð Þ
∂x

þ ∂ ρ2h2v2ð Þ
∂y

¼ � ρ2ξ2topE2 top: (10)

Because mass is conserved in the two-layer system as a whole, the source terms on the right-hand sides of (9)
and (10) must sum to zero. This summation yields an interface jump equation,

ρ1ξ1botE1 bot � ρ2ξ2topE2 top ¼ 0; (11)

which must be satisfied in addition to (9) and (10). Because the bottom boundary of layer 1 is coincident with
the top boundary of layer 2, ξ1bot = ξ2top applies. Thus, (11) shows that E1 bot = E2 top is not satisfied unless ρ1
¼ ρ2.

Equation (11) can be expanded to obtain an explicit relationship between velocity jumps, bulk density jumps,
and evolution of the interface between layers 1 and 2. By substituting (6) and (7) into (11) and setting
z1 bot = z2 top = zb, the mass jump condition can be expressed as

ρ2w2 zbð Þ � ρ1w1 zbð Þ � ρ2 � ρ1ð Þ∂zb
∂t

� ρ2u2 zbð Þ � ρ1u1 zbð Þ½ �∂zb
∂x

� ρ2v2 zbð Þ � ρ1v1 zbð Þ½ �∂zb
∂y

¼ 0 :
(12)

A simpler form of (12) results from assuming that a planar interface with ∂zb/∂x= ∂zb/∂y= 0 exists:

� ∂zb
∂t

¼ ρ1w1 zbð Þ � ρ2w2 zbð Þ
ρ2 � ρ1

: (13)

A still-simpler form of this jump condition applies if layer 2 consists of static bedmaterial, such thatw2(zb) = 0:

� ∂zb
∂t

¼ ρ1w1 zbð Þ
ρ2 � ρ1

: (14)

If layer 2 is static but the condition ∂zb/∂x= ∂zb/∂y=0 is not satisfied, then w1(zb) is replaced by
w1(zb)� u1(zb)[∂zb/∂x]� v1(zb)[∂zb/∂y] on the right-hand side of (14).

Equations (13) and (14) show how the bed erosion rate� ∂zb/∂t is related to differences in mass density ρ and
the normal component of material velocityw(zb) across the boundary. They are exactly analogous to one of the
Rankine-Hugoniot conditions for the one-dimensional Euler equations [e.g., Godlewski and Raviart, 1996].
Therefore, in (13) and (14) ∂zb/∂t is analogous to the propagation speed of a one-dimensional shock wave in an
ideal gas. Like a shock wave, an erosion front represents a mathematical discontinuity, which must move at
the speed given by (12)–(14) in order satisfy conservation of mass. However, in the presence of a density
contrast ρ1 < ρ2 and boundary material velocity w1(zbot)> 0, an erosion front described by (14) moves
downward into a static bed layer—opposite to the propagation direction of a shock wave in a gas.
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3.4. Conservation of x Momentum and Accompanying Jump Condition

Evolution of the downstream component of momentum in a layer with depth-invariant bulk density ρ is
described by

∫
ztop

zbot

∂ ρuð Þ
∂t

þ ∂ ρu2ð Þ
∂x

þ ∂ ρuvð Þ
∂y

þ ∂ ρuwð Þ
∂z

� 	
dz

¼ ∂
∂t

ρ ∫
ztop

zbot

udz � ρu ztop
� �∂ztop

∂t
þ ρu zbotð Þ∂zbot

∂t
þ ∂
∂x

ρ ∫
ztop

zbot

u2dz � ρu2 ztop
� �∂ztop

∂x
þ ρu2 zbotð Þ∂zbot

∂x

þ ∂
∂y

ρ ∫
ztop

zbot

uvdz � ρu ztop
� �

v ztop
� �∂ztop

∂y
þ ρu zbotð Þv zbotð Þ∂zbot

∂y
þ ρu ztop

� �
w ztop
� �� ρu zbotð Þw zbotð Þ

¼ ∂ ρhuð Þ
∂t

þ ∂ ρhu2
� �
∂x

þ ∂ ρhuvð Þ
∂y

þ ∂
∂x

ρ ∫
ztop

zbot

u� uð Þ2dz þ ∂
∂y

ρ ∫
ztop

zbot

u� uð Þ v � vð Þdz

þ ρu ztop
� �

ξ topEtop � ρu zbotð ÞξbotEbot ¼ ∫
ztop

zbot

ΣFxdz ;

(15)

where ∫
ztop

zbot
ΣFxdz represents the sum of x direction forces acting on the layer. The boundary momentum

exchange terms ρu ztop
� �

ξ topEtop and � ρu zbotð ÞξbotEbot arise in the last line of (15) as a result of using the
kinematic boundary conditions (6) and (7) to combine several terms in the second and third lines of (15).
Importantly, these momentum exchange terms involve the boundary velocities u(ztop) and u(zbot) of material
that enters the layer at ztop and zbot, not the depth-averaged velocity of the layer,u. Thus, if material with no x
direction velocity enters the layer during entrainment, it imparts no x direction momentum to the layer.

The integrals in the fourth line of (15) result from use of the identities

∫
ztop

zbot

u2dz ¼ hu2 þ ∫
ztop

zbot

u� uð Þ2dz ∫
ztop

zbot

uvdz ¼ huv þ ∫
ztop

zbot

u� uð Þ v � vð Þdz; (16)

which show how the depth integrals of products are related to the products of depth integrals. Physically, the
integrands (u� u)2 and u� uð Þ v � vð Þ describe the effects of differential advection of momentum due to
variations of u and v with z [cf. Vreugdenhil, 1994]. Many depth-averaged flow theories neglect these
variations, but this neglect can lead to oversights when evaluating the effects of momentum exchange
between adjacent layers during entrainment. Therefore, we adopt another approach commonly used in
depth-integrated flow theories, which accounts for variations of u and v with z by using Boussinesq
momentum distribution coefficients defined as βuu ¼ 1=hu2

� �
∫
ztop

zbot
u2dz and βuv ¼ 1=huvð Þ∫

ztop

zbot
uvdz. With

these substitutions (15) can be rewritten as

∂ ρhuð Þ
∂t

þ ∂ βuuρhu
2

� �
∂x

þ ∂ βuvρhuvð Þ
∂y

¼ ∫
ztop

zbot

ΣFxdz � ρu ztop
� �

ξ topEtop þ ρu zbotð ÞξbotEbot; (17)

which is the form we employ below.

The forcing term ∫
ztop

zbot
ΣFxdz in (17) represents the sum of the downslope gravitational driving force per unit

volumeρgxhand the resisting stress gradients that develop in reaction to this forcing. By using Leibniz’ rule to
evaluate depth integrals, this sum can be expressed as

∫
ztop

zbot

ΣFxdz ¼ ρgxhþ ∫
ztop

zbot

�∂σxx
∂x

þ ∂τyx
∂y

þ ∂τzx
∂z

� �
dz

¼ ρgxh�
∂ σxxhð Þ

∂x
þ σxx top

∂z top
∂x

� σxx bot
∂z bot
∂x

þ ∂ τyxh
� �
∂y

� τyx top
∂z top
∂y

þ τyx bot
∂z bot
∂y

þ τzx top� τzx bot;

where the normal-stress component σxx is defined as positive in compression, as is customary in

geophysics, but the shear stress components τyx and τzx are defined using a continuum mechanics sign

(18)
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convention [cf. Malvern, 1969; Iverson, 2012]. Hence, terms involving normal-stress and shear stress
components have opposite signs in the first line of (18).

Detailed evaluation of the stress components in (18) requires the use of a constitutivemodel, and in Appendix D
we describe one suchmodel. Here, however, tominimize complications, we avoid constitutive assumptions and
instead invoke a standard thin-layer scaling argument to infer that a valid approximation of (18) is

∫
ztop

zbot

ΣFxdz ≈ ρgxhþ τzx top � τzx bot: (19)

In this approximation, neglected terms are smaller than retained terms by a factor ε, where ε is the ratio of the
characteristic thickness to the characteristic length or breadth of a layer [cf. Savage and Hutter, 1989; Iverson,
2013a]. Values ε≪ 1 commonly apply in many types of Earth-surface flows [Pudasaini and Hutter, 2007]. Our
use of the thin-layer approximation helps highlight the essential features of the results that follow, but in
Appendix D we describe effects of terms neglected in (19).

Leading-order (in ε) x momentum equations for adjacent layers that interact at a mutual boundary (where
z1 bot= z2 top) are obtained by combining (19) with (17) and using subscripts 1 and 2 to denote the upper and
lower layers, respectively:

∂ ρ1h1u1ð Þ
∂t

þ ∂ β1uuρ1h1u1
2

� �
∂x

þ ∂ β1uvρ1h1u1 v1ð Þ
∂y

¼ ρ1gxh1 þ τ1zx top � τ1zx bot þ ρ1u1 z1botð Þξ1botE1 bot; (20)

∂ ρ2h2u2ð Þ
∂t

þ ∂ β2uuρ2h2u2
2

� �
∂x

þ ∂ β2uvρ2h2u2 v2ð Þ
∂y

¼ ρ2gxh2 þ τ2zx top � τ2zx bot � ρ2u2 z2top
� �

ξ2topE2 top: (21)

The right-hand side of (20) shows that layer 1 gains momentum at the rate ρ1u1 z1botð Þξ1botE1 bot as a result of
bed material entrainment [cf. Gray, 2001], while (21) shows that layer 2 loses momentum at the rate

� ρ2u2 z2top
� �

ξ2topE2 top. These gains and losses are somewhat illusory, however; the physical implications

of the entrainment process become clearer when (20) and (21) are added to obtain an x momentum
equation for the two-layer system as a whole:

∂ ρ1h1u1 þ ρ2h2u2ð Þ
∂t

þ ∂ β1uuρ1h1u1
2 þ β2uuρ2h2u2

2
� �

∂x
þ ∂ β1uvρ1h1u1 v1 þ β2uvρ2h2u2 v2ð Þ

∂y
¼ ρ1h1 þ ρ2h2ð Þgx þ τ1zx top � τ2zx bot :

(22)

Because the only external forces acting on the two-layer system described by (22) are those due to gravity
and the boundary shear tractions τ1 zx top and τ2 zx bot, other terms that appear on the right-hand sides of (20)
and (21) cancel one another. Thus, (22) shows that no net x momentum is gained or lost as a consequence
of entrainment.

The jump condition for x momentum at the interface between layers 1 and 2 is the sum of the terms that
were canceled from (22) when it was obtained by addition of (20) and (21):

ρ1u1 z1botð Þξ1 botE1 bot � ρ2u2 z2top
� �

ξ2 topE2 top � τ1 zx bot þ τ2 zx top ¼ 0: (23)

Substituting (6) and (7) into (23) and using the abbreviated notation z2 top = z1 bot = zb, τ1 zx bot = τ1bot, and
τ2 zx top = τ2top yields a more explicit form of the equation:

ρ1u1 zbð Þw1 zbð Þ � ρ2u2 zbð Þw2 zbð Þ � ρ1u1 zbð Þ � ρ2u2 zbð Þ½ �∂zb
∂t

��
ρ1u1 zbð Þu1 zbð Þ

� ρ2u2 zbð Þu2 zbð Þ�∂zb
∂x

� ρ1u1 zbð Þv1 zbð Þ � ρ2u2 zbð Þv2 zbð Þ½ �∂zb
∂y

� τ1 bot þ τ2 top ¼ 0:
(24)
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This jump condition can be recast as a relatively simple erosion rate equation if the eroding interface
satisfies ∂zb/∂x= ∂zb/∂y= 0:

� ∂zb
∂t

¼ ρ2u2 zbð Þw2 zbð Þ � ρ1u1 zbð Þw1 zbð Þ þ τ1 bot � τ2 top
ρ1u1 zbð Þ � ρ2u2 zbð Þ : (25)

If, in addition, layer 2 is static, then (25) simplifies further to

� ∂zb
∂t

¼ τ1 bot � τ2 top
ρ1u1 zbð Þ � w1 zbð Þ: (26)

If layer 2 is static, but the condition ∂zb/∂x= ∂zb/∂y= 0 is not satisfied, then u1(zb)[∂zb/∂x] + v1(zb)[∂zb/∂y] is
added to the right-hand side of (26).

In (26) � ∂zb/∂t describes the downward erosion rate in a fixed, Eulerian reference frame, whereas
� ∂zb/∂t +w1(zb) is the bed material entrainment velocity—a quantity that depends on the upward
material velocity w1(zb) (Figure 6). Indeed, by neglecting w1(zb) and using the substitution E=� ∂zb/∂t, (26)
can be written in the alternative form E ¼ τ1 bot � τ2 top

� �
=ρ1u1 zbð Þ, which is equivalent to entrainment rate

equations obtained previously by considering x momentum jumps and neglecting z momentum [e.g.,
Fraccarollo and Capart, 2002; Iverson, 2012].

3.5. Conservation of y Momentum and Accompanying Jump Condition

The depth-integrated equations for the y momentum component and attendant jump condition are
precisely analogous to those derived above for the x component. Thus, interchanging x and y as well as u and
v in the preceding section yields the y component equations. These equations provide no additional insight,
however, and we do not address them further.

3.6. Conservation of z Momentum and Accompanying Jump Condition

The equation describing conservation of the bed-normal component of momentum in a layer with
depth-invariant bulk density ρ is

∫
ztop

zbot

∂ ρwð Þ
∂t

þ ∂ ρuwð Þ
∂x

þ ∂ ρvwð Þ
∂y

þ ∂ ρw2ð Þ
∂z

� 	
dz

¼ ∂
∂t

ρ ∫
ztop

zbot

wdz � ρw ztop
� �∂ztop

∂t
þ ρw zbotð Þ∂zbot

∂t
þ ∂
∂x

ρ ∫
ztop

zbot

uwdz � ρu ztop
� �

w ztop
� �∂ztop

∂x
þ ρu zbotð Þw zbotð Þ∂zbot

∂x

þ ∂
∂y

ρ ∫
ztop

zbot

vwdz � ρv ztop
� �

w ztop
� �∂ztop

∂y
þ ρv zbotð Þw zbotð Þ∂zbot

∂y
þ ρw2 ztop

� �� ρw2 zbotð Þ

¼ ∂ ρhwð Þ
∂t

þ ∂ ρhuwð Þ
∂x

þ ∂ ρhvwð Þ
∂y

þ ∂
∂x

ρ ∫
ztop

zbot

u� uð Þ w � wð Þdz þ ∂
∂y

ρ ∫
ztop

zbot

v � vð Þ w � wð Þdz

þ ρw ztop
� �

ξ topEtop � ρw zbotð ÞξbotEbot ¼ ∫
ztop

zbot

ΣFzdz :

The forcing term ∫
ztop

zbot
ΣFzdz in (27) can be expressed as

∫
ztop

zbot

ΣFzdz ¼ ρgzhþ ∫
ztop

zbot

∂τxz
∂x

þ ∂τyz
∂y

� ∂σzz
∂z

� �
dz

¼ ρgzhþ ∂ τxzhð Þ
∂x

� τxz top
∂z top
∂x

þ τxz bot
∂z bot
∂x

þ ∂ τyzh
� �
∂y

� τyz top
∂z top
∂y

þ τyz bot
∂z bot
∂y

� σzz top þ σzz bot;

where the normal-stress component σzz is defined as positive in compression. Note that ∂σzz/∂z is negative if

σzz counteracts the effects of gravity, because gz< 0.

(27)

(28)
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We next adopt a rationale like that used to obtain the x momentum jump condition (23). This procedure
yields leading-order zmomentum equations for layers 1 and 2, and addition of these two equations yields a
merged, two-layer, z momentum equation,

∂ ρ1h1w1 þ ρ2h2w2ð Þ
∂t

þ ∂ β1uwρ1h1u1w1 þ β2uwρ2h2u2w2ð Þ
∂x

þ ∂ β1vwρ1h1v1w1 þ β2vwρ2h2v2w2
� �

∂y
¼ ρ1h1 þ ρ2h2ð Þgz � σ1zz top þ σ2zz bot:

(29)

Identification of terms canceled from (29) yields an equation describing the z momentum jump between
layers 1 and 2:

ρ1w1 zbotð Þξ1 botE1 bot � ρ2w2 ztop
� �

ξ2 topE2 top þ σ1 zz bot � σ2 zz top ¼ 0: (30)

Expanding (30) by using (6) and (7) yields a more explicit form of the equation,

ρ1w1
2 zbð Þ � ρ2w2

2 zbð Þ � ρ1w1 zbð Þ � ρ2w2 zbð Þ½ �∂zb
∂t

��ρ1w1 zbð Þu1 zbð Þ

�ρ2w2 zbð Þu2 zbð Þ�∂zb
∂x

� ρ1w1 zbð Þv1 zbð Þ � ρ2w2 zbð Þv2 zbð Þ½ �∂zb
∂y

þ σ1 bot � σ2 top ¼ 0:
(31)

For a planar interface with ∂zb/∂x= ∂zb/∂y=0, (31) reduces to

� ∂zb
∂t

¼ σ2 top � σ1 bot � ρ1w1
2 zbð Þ þ ρ2w2

2 zbð Þ
ρ1w1 zbð Þ � ρ2w2 zbð Þ : (32)

Like the mass jump equation (14), (32) is closely analogous to one of the Rankine-Hugoniot jump conditions
for the one-dimensional Euler equations. However, consistent with (14), the erosion front speed � ∂zb/∂t in
(32) describes motion in a direction opposite to that of a shock wave in an ideal gas. If layer 2 is static, then the
jump condition (32) reduces further to

� ∂zb
∂t

¼ σ2 top � σ1 bot
ρ1w1 zbð Þ � w1 zbð Þ: (33)

If layer 2 is static but the condition ∂zb/∂x= ∂zb/∂y=0 is not satisfied, then u1(zb)[∂zb/∂x] + v1(zb)[∂zb/∂y] is
added to the right-hand side of (33).

Equation (33) shows that if w1(zb)> 0, then bed erosion occurs only if σ2top� σ1bot> ρ1w1
2(zb). On the other

hand, if w1(zb)< 0, then bed erosion occurs only if σ2top� σ1bot< ρ1w1
2(zb). These possibilities illustrate the

crucial role of z momentum in constraining the behavior of an erosional or depositional interface.

4. Summary of Jump Conditions and Their Implications

The foregoing analysis identifies three jump conditions that must be satisfied simultaneously at an evolving
interface between adjacent layers of material with ρ1≠ρ2. To examine the implications of these conditions for
bed sediment entrainment, we focus on forms that apply if the bottom layer is static. Table 2 summarizes
dimensional and normalized forms of the conditions for cases in which ∂zb/∂x= ∂zb/∂y=0 is satisfied and also
lists normalized forms that apply if ∂zb/∂x= ∂zb/∂y=0 is not satisfied and the additional term

Table 2. Summary of Jump Conditions at an Erosional or Depositional Interfacea

Type of Equation Mass Jump x Momentum Jump z Momentum Jump

Dimensional form for ∂zb/∂x = ∂zb/∂y = 0 � ∂zb
∂t ¼ ρ1w1 zbð Þ

ρ2�ρ1
� ∂zb

∂t ¼ τ1 bot�τ2 top

ρ1u1 zbð Þ � w1 zbð Þ � ∂zb
∂t ¼ σ2 top�σ1 bot

ρ1w1 zbð Þ � w1 zbð Þ
Normalized form for ∂zb/∂x = ∂zb/∂y = 0 �ż* ¼ ρ*w* �ż* ¼ τ*�w* �ż* ¼ σ*

w*� w*

Normalized form for ∂zb/∂x, ∂zb/∂y ≠ 0 �ż* ¼ ρ* w*�A*ð Þ �ż* ¼ τ*� w*�A*ð Þ �ż* ¼ σ*
w*� w*�A*ð Þ

aMoving upper layer is denoted by subscript 1, stationary lower layer is denoted by subscript 2, and dimensionless
quantities denoted by asterisks are defined in the text
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A= u1(zb)[∂zb/∂x] + v1(zb)[∂zb/∂y] is
included. All normalizations employ the
velocity scale u1(zb), because u1(zb) must
be finite for the notion of a flow-bed
boundary to have any physical meaning.

The normalized jump conditions in
Table 2 contain six independent,
dimensionless quantities, defined as
� ż * ¼ � ∂zb=∂tð Þ=u1 zbð Þ, w * =w1(zb)/
u1(zb), ρ* ¼ ρ1= ρ2 � ρ1ð Þ, A * = [u1(zb)
(∂zb/∂x) + v1(zb)(∂zb/∂y)]/u1(zb),
σ* ¼ σ2 top � σ1 bot

� �
=ρ1u1

2 zbð Þ, and
τ* ¼ τ1 bot � τ2 top

� �
=ρ1u1

2 zbð Þ.
Generally, these quantities have
straightforward physical interpretations
that require no elaboration. However,
w * has a special interpretation in the
context of granular mechanics, because
it can be regarded as a dilatancy angle

that relates the bed-normal and tangential velocity components of material entrained at the interface
between layers 1 and 2. More specifically, w *> 0 indicates dilative behavior, w *< 0 indicates contractive
behavior, and w * = 0 indicates behavior without any dilation or contraction.

Some basic implications of the jump conditions in Table 2 can be summarized graphically for cases in which
A= ∂zb/∂x= ∂zb/∂y= 0 is satisfied. Figures 7–9 depict the signs of interface discontinuities required by the
jumps as wells as hypothetical profiles of dimensional variables on either side of the jumps for three distinct
cases in which bed erosion occurs. (For simplicity the figures assume that the profiles of all variables are linear,
but this need not be the case; the jump conditions dictate only the changes in values of variables at the
interface, where z= zb.) Figure 7 illustrates a baseline case in which the upper layer has the same bulk density
as the underlying layer, such that entrainment involves jumps in only the boundary shear traction and
tangential velocity. Figure 8 illustrates a case in which the lower layer is denser than the upper layer, such that
material dilates during entrainment and jumps in all variables occur at the boundary. Figure 9 illustrates the
opposite case in which the lower layer is loose and contracts as it is entrained. Owing to the effects of

w1(zb)< 0, the contractive case
necessarily involves smaller jumps in
shear traction τ and normal traction σ
than in a dilative case with an identical
erosion rate. Sediment contraction
during entrainment also implies the
existence of a higher normal traction σ
on the upper side than on the lower side
of the interface. This counterintuitive
condition reflects the lack of balance
between gravitational forcing and
normal stress that is associatedwith finite
downward momentum, ρ1w1 zbð Þ < 0.

Under ideal conditions, observable
properties of eroding interfaces include
the position of the boundary between
moving and static material, velocity
components of material adjacent to
the boundary, and bulk density
contrasts [Capart and Fraccarollo, 2011].

Figure 8. Graphical depiction of jump conditions for a case in which layer
1 is less dense than layer 2, indicating that bed material dilates as it is
entrained. Jumps in all quantities therefore exist at the eroding boundary
(red) between layer 1 and layer 2.

Figure 7. Graphical depiction of jump conditions for a baseline case in
which shearing layer 1 maintains the same bulk density as underlying
static layer 2. As a consequence, erosion at the boundary between layers 1
and 2 (red) involves jumps in only shear stress and downstream velocity.
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By algebraically manipulating the
normalized jump conditions for
∂zb/∂x= ∂zb/∂y=0 listed in Table 2, these
properties can be expressed entirely in
terms of the jumps in normal and shear
tractions acting at the eroding boundary:

� ż* ¼ τ*� σ*
τ*

; (34)

w* ¼ σ*
τ*

; (35)

ρ* ¼ τ�2
σ*

� 1: (36)

Equation (34) shows that the
normalized erosion rate � ż* depends
on the normalized excess shear traction
acting at the boundary τ * minus the
resisting effects of dilatancy expressed
by (35), σ */τ * =w *. Indeed, (35) can

be viewed as a stress-dilatancy relationship applicable at an eroding interface [cf. Rowe, 1962]. If the effects of
dilatancy are large enough that σ * = τ * 2, then (34) indicates that no erosion occurs. However, (36) shows
that the condition σ * = τ * 2 cannot be realized except in the limit ρ *→ 0. Therefore, for any material with
finite ρ1, the conditions (34)–(36) not only show that erosion will inevitably occur if τ *> 0 but also show that
the rate of erosion will be restricted if it is accompanied by positive dilatancy—irrespective of whether
sediment dilation during entrainment involves pore pressure feedback of the type considered by van Rhee
[2010] or Iverson [2012].

In cases in which sediment entrainment involves negative dilatancy (i.e., contraction), (34) and (35) show that
the rate of bed erosion is enhanced because w *< 0. Contractive motion during entrainment can occur, for
example, when loose sediment beds are overrun by debris flows or avalanches [Wang et al., 2003; Iverson
et al., 2011]. In this case σ */τ *< 0 applies, and (36) therefore requires that ρ *<� 1. This restriction indicates
that ρ1 > ρ2must apply—as is necessary if bed material contracts as it is entrained and merged with a denser
overriding flow.

4.1. Implications for Depth-Integrated Conservation Equations

Substitution of the jump conditions into the depth-integrated mass and momentum conservation equations
demonstrates that the effects of entrainment can be expressed in several different ways. For example,
substitution of (14) into (9) yields the mass conservation equation for layer 1:

∂ ρ1h1ð Þ
∂t

þ ∂ ρ1h1u1ð Þ
∂x

þ ∂ ρ1h1v1ð Þ
∂y

¼ ρ2 �∂zb
∂t

� �

¼ ρ1 w1 zbð Þ � ∂zb
∂t

� �
¼ ρ1E :

(37)

Three forms of the source term on the right-hand side of this equation are shown in order to highlight
relationships between E, w1(zb), and the bulk density contrast ρ2≠ρ1. The first form shows that mass entering
layer 1 during bed erosion depends on the bulk density ρ2 of layer 2, whereas the second form shows that if
ρ2≠ρ1, then the mass transfer between layers necessarily involves dilatancy (i.e., w1(zb)≠ 0). The third
form shows that if ρ2≠ρ1, then mass conservation couched in terms of the volumetric entrainment rate E
depends on the bulk density ρ1 rather than on the bulk density ρ2. The physical reasons for these differing
representations of entrainment terms in (37) are quite transparent, but reasons for analogous differences in
momentum conservation equations are subtler and a source of considerable disagreement (Table 1).

Figure 9. Graphical depiction of jump conditions for a case in which layer
1 is denser than layer 2, indicating that bed material contracts as it is
entrained. Jumps in all quantities therefore exist at the eroding boundary
(red) between layer 1 and layer 2. The signs of three of the five jumps are
opposite of those illustrated in Figure 8.
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The xmomentum conservation equation for layer 1 is obtained by substituting (26) into (20). As in (37), three
forms of the terms associated with entrainment are shown on the right-hand side of the resulting equation:

∂ ρ1h1u1ð Þ
∂t

þ ∂ β1uuρ1h1u1
2

� �
∂x

þ ∂ β1uvρ1h1u1 v1ð Þ
∂y

¼ ρ1gxh1 þ τ1zx top � τ2zx top

¼ ρ1gxh1 þ τ1zx top � τ1zx bot þ ρ1u1 zbð Þ w1 zbð Þ � ∂zb
∂t

� �
¼ ρ1gxh1 þ τ1zx top � τ1zx bot þ ρ1u1 zbð ÞE :

(38)

The first form of the right-hand side of (38) includes no momentum source term. Instead, all effects of
momentum exchange with the static bed are summarized by the basal shear traction, τ2 zx top, which
expresses the basal flow resistance engaged during the interaction of layer 1 with the eroding upper surface
of layer 2. By contrast, the second and third lines of (38) each contain momentum gain terms proportional to
ρ1u1 zbð Þ. These apparent gains arise only because the second and third lines of (38) also contain the basal
shear traction term, τ1 zx bot, whichmisrepresents the basal flow resistance engaged during entrainment. (The
term τ1 zx bot would be correct in the absence of entrainment, but if entrainment occurs, then the resisting
traction is τ2 zx top, and the jump conditions derived above show that τ2 zx top≠ τ1 zx bot is mandatory.) Thus,
although each of the forms of the right-hand side of (38) is mathematically correct, any change inmomentum
associated with entrainment results physically from attendant reduction of the resisting basal shear traction
from τ1 zx bot to τ2 zx top. In no case does this reduction imply a loss of x momentum by layer 1 as a result of
momentum transfer to the static bed, as is erroneously indicated by some of the models listed in Table 1.

The z momentum conservation equation for layer 1 is obtained in an analogous manner, yielding

∂ ρ1h1w1ð Þ
∂t

þ ∂ β1uwρ1h1u1w1ð Þ
∂x

þ ∂ β1vwρ1h1v1w1
� �

∂y
¼ ρ1gzh1 � σ1zz top þ σ2zz top

¼ ρ1gzh1 � σ1zz top þ σ1zz bot þ ρ1w1 zbð Þ w1 zbð Þ � ∂zb
∂t

� �
¼ ρ1gzh1 � σ1zz top þ σ1zz bot þ ρ1w1 zbð ÞE :

(39)

As in (38), the first form of the right-hand side of (39) shows that layer 1 gains or loses no momentum as a
result of entrainment of static bed material, because the external force per unit area exerted on layer 1 by
layer 2 is expressed entirely by the normal traction σ2 zz top. The second and third forms of the right-hand
side of (39) have implications like those of the second and third lines of (38): if the normal traction acting on
layer 1 is expressed in terms of σ1 zz bot instead of σ2 zz top, then illusorymomentum gain terms proportional to
ρ1w1 zbð Þ appear.
The conservation equations (37)–(39) can be written in alternative forms that facilitate comparisons with the
diverse models listed in Table 1. If the equations’ left-hand sides are written in forms like those used in
standard shallow-water equations (which assume that ρ1 is constant), then additional source terms must
appear on the equations’ right-hand sides to account for the effects of any evolution of ρ1. Table 3
summarizes both the modified left-hand sides and the additional source terms that arise when the
conservation equations are written in this way.

Equations (37)–(39) may also be written in Lagrangian forms (or closely analogous primitive Eulerian forms)—
provided that velocity profiles are assumed uniform, such that β = 1 applies everywhere. In this case some

Table 3. Modifications of Conservation Equations (37)–(39) That Result From Expressing Left-Hand Sides in theManner of
Standard Shallow-Water Equationsa

Equation Modified Left-Hand Side Additional Source Term on Right-Hand Side

(32) ρ1
∂h1
∂t þ ∂ h1u1ð Þ

∂x þ ∂ h1v1ð Þ
∂y

h i
�h1

dρ1
dt

(33) ρ1
∂ h1u1ð Þ

∂t þ ∂ β1uuh1u1
2ð Þ

∂x þ ∂ β1uvh1u1 v1ð Þ
∂y

� �
�h1u1

dρ1
dt

(34) ρ1
∂ h1w1ð Þ

∂t þ ∂ β1uwh1u1w1ð Þ
∂x þ ∂ β1vwh1v1w1ð Þ

∂y

� �
�h1w1

dρ1
dt

aThe notation d=dt ¼ ∂=∂t þ u1∂=∂x þ v1∂=∂y is used to denote a depth-averaged material time derivative.
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terms cancel from the left-hand sides of (38) and (39) through use of (37), but the cancelation leads to
additional momentum source terms on the right-hand sides of the equations (Table 4). Importantly, the
additional source terms� ρ1u1E and� ρ1w1E shown in Table 4 cancel other terms on the right-hand sides of
(38) and (39) if all motion is concentrated as basal slip (i.e., u1 = u(zb) and w1 ¼ w zbð Þ, such that β = 1) and
the basal tractions τ1 zx bot and σ1 zz bot are used. On the other hand, use of the correct basal tractions τ2 zx top
and σ2 zz top in the Lagrangian forms of (38) and (39) shows that the effects of the source terms � ρ1u1E
and � ρ1w1E are physically meaningful: they represent the inertia of static bed material that must be
accelerated to attain the velocity of the Lagrangian reference frame, as inferred by Hungr [1995]. No
analogous inertial effect exists in an Eulerian reference frame—a contrast that has led to some confusion in
the literature [Iverson, 2013b].

4.2. Implications for Bed Erosion Formulas

The foregoing results show that conservation of mass and momentum requires that the erosion rate� ∂zb/∂t
of a planar bed with ∂zb/∂x= ∂zb/∂y= 0 satisfies (34). In dimensional form, (34) can be expressed as

� ∂zb
∂t

¼ τ1 bot � τ2 top
ρ1u1 zbð Þ � u1 zbð Þ σ2 top � σ1 bot

τ1 bot � τ2 top

� �
: (40)

Any erosion rate formula that does not consider the influence of bed topography must be consistent with
(40), and in Table 5 we use this inference to categorize various published erosion formulas. The second term
on the right-hand side of (40) represents the effects of dilatancy in suppressing the erosion rate, and if this

term is zero, then (40) reduces to an erosion rate formula � ∂zb=∂t ¼ τ1 bot � τ2 top
� �

=ρ1u1 zbð Þ deduced by

Fraccarollo and Capart [2002].

The presence of u1(zb) in the denominator of the first term on the right-hand side of (40) might seem puzzling
in two respects. First, it indicates that erosion rates decrease as the basal flow velocity u1(zb) increases,
provided that τ1 bot� τ2 top remains constant. This effect is a necessary consequence of x direction
momentum conservation. However, it is important to recognize that τ1 bot� τ2 top might increase faster
than u1(zb) increases and that the relative rates of change of τ1 bot� τ2 top and u1(zb) cannot be ascertained
from conservation laws alone. Another implication of the first term on the right-hand side of (40) is that
� ∂zb/∂t→∞ as u1(zb)→ 0. Physically, this singular behavior implies that the flow layer merges with the static
bed layer as the flow layer ceases to move. In this case the notions of a flow-bed boundary or erosion rate lack
any conventional meaning.

Equation (40) can be written in an alternative form that may be more illuminating:

� ∂zb
∂t

¼ u1 zbð Þ τ1 bot � τ2 top
� �
τ1 ref

� u1 zbð Þ σ2 top � σ1 bot
� �

τ1 bot � τ2 top
: (41)

Here u1(zb)[τ1bot� τ2top] is the excess power per unit bed area that causes erosion (similar to the “excess
stream power” of Harsine and Rose [1992]), and τ1 ref≡ ρ1[u1(zb)]

2 is a reference value of τ1 bot. Physically, τ1 ref
can be interpreted as the value of τ1 bot that would enable erosion to occur at a steady rate given by
� ∂zb/∂t= u1(zb)�w1(zb) if entrainment were resisted only by the inertia of the entrained sediment, and no
other forces were acting (an inference drawn from the second line of (38)). Thus, erosion rates described by (41)
increase with flow power, but they are restricted by noninertial forces that influence τ1 bot, and also by the
effects of dilatancy.

Table 4. Modifications of Conservation Equations (37)–(39) That Result From Assuming β = 1 and Expressing Left-Hand
Sides in a Lagrangian Forma

Equation Modified Left-Hand Side Additional Source Term on Right-Hand Side

(32) ρ1
dh1
dt

�h1
dρ1
dt

� ρ1h1
∂u1
∂x þ ∂v1

∂y

h i
(33) ρ1h1

du1
dt

�h1u1
dρ1
dt

� ρ1u1E

(34) ρ1h1
dw1

dt
�h1w1

dρ1
dt

� ρ1w1E

aThe notation d=dt = ∂=∂t þ u1∂=∂x þ v1∂=∂y is used to denote a depth-averaged material time derivative.
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Erosion formulas that are less abstract andmore explicit than (40) and (41) can be obtained only if constitutive
assumptions are invoked to evaluate the magnitude of the traction jumps τ1 bot� τ2 top and σ2 top� σ1 bot. Here
we do not attempt to find definitive constitutive relationships, but we describe implications of some logical
possibilities. The simplest possibility is that there is no dilatancy or normal traction jump (i.e., the second term on
the right-hand side of (40) is zero) and that τ1 bot and τ2 top each obey Coulomb friction equations,

τ1 bot ¼ σ1 bot � p1 botð Þtanϕ1; (42)

τ2 top ¼ σ2 top � p2 top
� �

tanϕ2; (43)

whereϕ1 andϕ2 are friction angles for layers 1 and 2, respectively, and p1 bot and p2 top are pore-fluid pressures
that may counteract the effects of σ1 bot and σ2 top. In this case an erosion rate formula like that of Iverson [2012]
results from postulating lithostatically balanced total normal tractions (i.e., σ1 bot ¼ σ2top ¼ ρ1g�z H� zbð Þ,
where z=H denotes the top of the two-layer system), and then substituting (42) and (43) into (40) to obtain

� ∂zb
∂t

¼ ρ1g�z H� zbð Þ tanϕ1 � tanϕ2ð Þ � p1 bottanϕ1 þ p2 toptanϕ2

ρ1u1 zbð Þ : (44)

This equation is well posed only if the conditions ϕ1≤ϕ2 and p1 bot tanϕ1≤ p2 top tanϕ2 are both satisfied.
(If they are not satisfied, then (44) implies either that zb grows exponentially with timewhen quantities other than
zb(t) are constant or that zb>Hwhen ∂zb/∂t=0. Neither behavior is physically plausible.) We focus on the simplest

well-posed case, in which ϕ1=ϕ2 applies and (44) reduces to �∂zb=∂t ¼ p2top � p1bot
� �

tanϕ1

� �
=ρ1u1 zbð Þ.

Table 5. Erosion Rate Formulas Used in Some Depth-Integrated Flow Dynamics Modelsa

Source Erosion Rate Formula Comments

Takahashi [1991] E ¼
α1

ce � c
c� � ce

h1u1
d

; if c < ce

α1
ce � c
c�

h1u1
d

otherwise

8>><
>>: Formula is based on contrast between flow sediment

concentration, c, and an equilibrium concentration, ce.
E lacks explicit dependence on boundary tractions.

Egashira et al. [2001] E = c*u1 tan(θ� θe) Formula is based on contrast between equilibrium bed
slope θe and ambient slope θ. E lacks explicit dependence

on boundary tractions.

Fraccarollo and Capart [2002] �∂zb
∂t

¼ 1
ρ1u1

τ1zxbot � τ2zxtop
� �

where τ2zxtop ¼ tan ϕ2ð Þ σzz � pð Þu1= u1j j;
τ1zxbot ¼ ρsCf u1 u1j j

Formula is compatible with (40) if bulk density contrast and
dilatancy at eroding boundary are zero.

Pitman et al. [2003] E ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1

2 þ v1
2

p
if τ1zxbot ≥ τthreshold

0 if τ1zxbot < τthreshold

(

where α is a fitting parameter

Empirical formula. E lacks explicit dependence
on boundary tractions.

Cao et al. [2004] E ¼ ϕ
θ � θc
h1

u1d
�0:2; if θ < θc

0 otherwise

8<
:

where θ is Shields parameter and θc is its critical value

Empirical formula postulated to describe bed erosion in
response to dam-break floods. E lacks explicit dependence

on boundary tractions.

McDougall and Hungr [2005] ∂zb
∂t

¼ EMh1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u12 þ v12

q
where EM ¼ ln Vf =V0ð Þ=S

Empirical formula postulated to describe bed erosion by
rapid landslides. E lacks explicit dependence on

boundary tractions

Sovilla et al. [2006] E ¼
σ2top � σ1bot
ρ1w1 zbð Þ if σ2top > σ1bot;

0 otherwise;

8<
: Formula postulated to describe bed erosion by snow avalanches.

Similar to z momentum jump condition in Table 2.

Medina et al. [2008] �∂zb
∂t

¼ 1

ρ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1

2 þ u1
2

p τ1zxbot � τ2zxtop
� �

where τ1zxbot is obtained from Bingham;

Herschel-Bulkey; or Voellmy model;

τ2zxtop ¼ c þ h1ρ1g 1� λð Þcos θð Þtanϕ2

Formula is compatible with (40) if bulk density contrast and
dilatancy at eroding boundary are zero.

aNotation is modified to match ours, insofar as possible. Here α1 and α2 are empirical coefficients; c* is sediment concentration in static bed material; Cf is a
dimensionless friction coefficient, d is grain size, ϕ is an empirical entrainment parameter, and V0 and Vf are flow volume before and after entrainment occurs.
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This formula indicates that erosion occurs if p2top exceeds p1bot, a condition that may develop as a result of
undrained bed deformation caused by rapid loading by an overriding flow [e.g., Wang et al., 2003; Iverson et al.,
2011; Reid et al., 2011]. Normalization of (44) using a length scale H and pore pressure scaleρ1g�zH shows that the
timescale of this erosion is u1(zb)/g� z. If u1(zb) < 10m/s, then values of u1(zb)/g� z are smaller than about 1 s,
implying that erosion described by (44) responds almost instantly to changes in u1(zb). Thus, the principal factor
limiting erosion described by (44) is the capacity of overridden bed sediment to develop and sustain high pore
pressures.

An alternative model of erosion results from retaining the assumption of zero dilatancy but assuming that
the basal shear traction τ1 bot in (40) increases as u1(zb) increases. Several studies summarized by Fraccarollo

and Capart [2002] have inferred that the traction obeys τ1 bot ¼ Cρ1 u1 zbð Þ½ �2, where C is a dimensionless
proportionality coefficient that is typically smaller than 0.1. This quadratic dependence of shear traction on slip
velocity (or shear rate) might be a consequence of grain collisions [e.g., Bagnold, 1954], but irrespective of

this interpretation, τ1 bot ¼ Cρ1 u1 zbð Þ½ �2 is a rational postulate based on dimensional reasoning. Use of this
postulate in conjunction with (40), (43), and the assumptions of a hydrostatic pore-pressure distribution
(i.e., p(zb) = ρwg� z(H� zb) + p|z = H, where ρw is the pore-fluid density and p|z = H denotes the fluid pressure at
z=H) and lithostatically balanced total normal tractions (i.e., σ1 bot ¼ σ2top ¼ ρ1g�z H� zbð Þ þ pjz¼H), leads to

the result

� ∂zb
∂t

¼ Cu1 zbð Þ � ρ1 � ρwð Þg�z½ � H� zbð Þtanϕ2

ρ1u1 zbð Þ : (45)

This formula is equivalent to that derived by Fraccarollo and Capart [2002, p. 194], who used it successfully to
predict key features of erosion patterns measured in laboratory experiments involving dam-break water
floods. The formula indicates that Coulomb friction of bed material restricts erosion but that the restriction
diminishes as u1(zb) increases and the erosion rate becomes dictated mostly by the values of C and u1(zb).

If all quantities except zb on the right-hand side of (45) are treated as constants, then (45) has an

exponential-decay solution, zb tð Þ ¼ z0 � zsteady
� �

e�t=t0 þ zsteady, which indicates that an increment of

erosion due to an imposed change in u1(zb) causes zb to relax from the initial value z0 toward the steady

equilibrium value zsteady ¼ H� C u1 zbð Þ½ �2= 1� ρw=ρ1ð Þ g�ztanϕ2ð Þ½ �
� �

. The timescale of this relaxation is

t0 ¼ u1 zbð Þ= 1� ρw=ρ1ð Þ g�ztanϕ2ð Þ½ �, which differs little from the erosion timescale u1(zb)/g� z identified in
conjunction with (44). Indeed, t0< 1 s generally applies for reasonable ranges ofu1 zbð Þ; ρw ; ρ1; g�z and ϕ2

in (45). This finding implies that bed erosion described by (45) can largely keep pace with changes in flow
dynamics [Fraccarollo and Capart, 2002]. Unlike erosion described by (44) with ϕ2 =ϕ1, however, erosion
described by (45) is a self-limiting relaxation process if u1(zb) is constant.

For cases in which entrainment involves sediment dilation or contraction, plausible bed erosion formulas are
more complicated than (44) or (45) because they must satisfy the three jump conditions (34)–(36)
simultaneously. If the normal traction jump condition satisfiesσ1 bot < σ2top ¼ ρ1g�z H� zbð Þ þ pjz¼H (implying
lithostatic bed stresses and positive dilatancy during entrainment), then combination of (35), (40), and (43) with

the postulate τ1 bot ¼ Cρ1 u1 zbð Þ½ �2 of Fraccarollo and Capart [2002] leads to a generalized version of (45):

� ∂zb
∂t

¼ C � w*ð Þ u1 zbð Þ½ � �
ρ1g�z H� zbð Þ þ pjz¼H � pjz¼zb

h i
tanϕ2

ρ1u1 zbð Þ : (46)

In this formula w * is used to isolate the influence of bed sediment dilatancy, defined as w * =w1(zb)/u1(zb),
and the notation pjz¼zb

is used to denote the pore pressure at z= zb. Equation (46) implies that w *> 0 causes

a reduction in erosion rates, irrespective of pore pressure, but pore pressure feedback might produce
additional effects owing to coupling between the dilation rate and pjz¼zb

[Iverson, 2012].

Development of erosion rate formulas constrained by jump conditions remains in its earliest stages. However,
it is important to emphasize that formulas such as (44)–(46) differ fundamentally from formulas generally
used in fluvial erosion studies, which have focused on laboratory settings or river systems in which driving and
resisting forces are essentially balanced and bed load transport rates equilibrate as part of this balance
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[e.g., Gilbert, 1914; García, 2008; Berzi and Fraccarollo, 2013; Revil-Baudard and Chauchat, 2013]. Most
investigations of the bed sediment entrainment process have also focused on a narrow range of conditions
close to equilibrium [e.g., Pugh and Wilson, 1999; Lamb et al., 2008; Capart and Fraccarollo, 2011]. Early analyses
of bed mobilization by mass flows took a similar approach; they implicitly adopted Bagnold’s [1956] postulate,
which states that basal shear tractions exerted by overriding flows are balanced by resisting shear tractions
engaged during the onset of bed sediment motion [e.g., Takahashi, 1978; Bovis and Dagg, 1992]. However,
this postulate can be inappropriate even for steady states [Seminara et al., 2002; Parker et al., 2003], and it is
clearly inappropriate for unsteady mass flows in which entrainment can occur under conditions far from
equilibrium. In such flows momentum and mass evolve interdependently, as reflected by the unbalanced
boundary tractions that are explicit in (40) and (41) and implicit in (44)–(46).

5. Reconciliation of Disparate Models

Equations (37)–(39) differ from the conservation equations employed in many depth-integrated models of
Earth-surface flows that entrain bed sediment (Appendix B). The model of Cao et al. [2004], for example, is
commonly used to simulate the effects of bed sediment entrainment by dam-break floods, but it employs
conservation equations with forms quite different from those presented here. To reconcile these disparate
forms, we first note that equation (1) of Cao et al. [2004] is essentially the same as our mass conservation
equation (37). Furthermore, manipulation of mass conservation equations (3) and (5) of Cao et al. [2004] using
our notation shows that the equations imply that the evolving sediment concentration c1 in a flow that
entrains bed sediment with constant concentration c2 (i.e., with bed porosity 1� c2) obeys

dc1
dt

¼ c2 � c1
h1c2

E � Dð ÞCao ¼ 1
h1c2

ρ2 � ρ1
ρs � ρw

E � Dð ÞCao; (47)

where d=dt denotes the depth-averaged material time derivative defined in Tables 3 and 4 and (E�D)Cao is
the net volumetric sediment influx per unit area due to bed erosion. Note that (E�D)Cao differs from our
quantity E, which describes the entrainment rate of a solid-fluid mixture, rather than that of sediment alone.
Moreover, Cao et al. [2004] use D to explicitly represent sediment deposition rates, whereas we use E< 0 to
implicitly indicate net deposition.

Through use of (47), the last term in momentum conservation equation (6) of Cao et al. [2004], identified by

the authors as a “momentum transfer” term, can be recast as �u1h1 ρs � ρwð Þ=ρ1½ � dc1=dt
� �

. The origin and

meaning of this term can be clarified by noting that dρ1=dt ¼ ρs � ρwð Þ dc1=dt
� �

applies and thereby making

the identification

�u1h1
ρs � ρw

ρ1

dc1
dt

¼ � u1h1
ρ1

dρ1
dt

: (48)

This result demonstrates that the last term in equation (6) of Cao et al. [2004] is the same as the additional
source term listed here in the second row of Table 3. The term accounts for changes in flow bulk density,
which are independent of any effects of momentum exchange with the bed.

Another widely used entrainment model is that of McDougall and Hungr [2005], whose x momentum
conservation equation is cast in a Lagrangian form similar to that shown here in the second row of Table 4.
Unlike Cao et al. [2004], McDougall and Hungr [2005] assume that all flow material and entrainable bed
material have the same, invariant bulk density (i.e., ρ1 ¼ ρ2). As a result, in the x momentum equation of
McDougall and Hungr [2005],�ρ1u1E is the only source term analogous to those derived here and listed in the
second row of Table 4. This term expresses the apparent negative momentum of entrained, static bed
material when it instantaneously enters a moving reference frame that has velocity u1. The term �ρ1u1E is
correct in the model of McDougall and Hungr [2005] only if β = 1, implying that the basal slip velocity is the
same as the depth-integrated flow velocity. By contrast, use of an Eulerian frame to model the entrainment
process obviates the need for this assumption and reveals the importance of differences between
depth-averaged and basal velocities.

Finally, it is worthwhile to note that the models used by Cao et al. [2004],McDougall and Hungr [2005], and in
the other entrainment studies we have examined make the implicit assumption of a nearly planar erosional
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interface that satisfies (∂zb/∂x)2<< 1 and (∂zb/∂y)2<< 1. Under this assumption, the jump conditions listed
in the first two rows of Table 2 and in the conservation equations (37)–(39) apply exactly. For irregular
erosional interfaces in which (∂zb/∂x)2<< 1 and (∂zb/∂y)2<< 1 do not apply, the jump conditions have the
forms listed in the final row of Table 2, and their implications for conservation equations are more
complicated. Despite these complications, (37)–(39) demonstrate that a clear distinction must be made
between the boundary shear traction τ1 zx bot acting at the base of a flow crossing an effectively rigid bed and
the smaller boundary shear traction τ2 zx top engaged during entrainment.

6. Summary and Outlook

Depth-integrated conservation equations are widely used to model the behavior of Earth-surface mass flows
that entrain bed material. A two-layer depth-integrated analysis that accounts for mass and momentum
conservation as material moves across an evolving flow-bed boundary yields three jump conditions that
constrain the correct forms of single-layer depth-integrated equations. Many published single-layer
equations are inconsistent with these jump conditions. Sources of disparities in published equations are
diverse, but many stem from imprecise accounting for the relationships between boundary tractions and
flow-bed momentum exchange during entrainment.

Identification of mass and momentum jump conditions applicable at an evolving boundary also enables any
continuous medium to be represented as a stack of layers that interact at multiple boundaries. As the number
of layers increases, the mathematical description provided by a set of depth-integrated conservation laws
and boundary jump conditions can be used to approximate a full, three-dimensional description of the
physical system. The key step in this procedure is identification of all conditions that must be satisfied at an
individual, evolving boundary.

Several alternative forms of the single-layer depth-integrated conservation equations are each correct
mathematically, but some are better suited than others for clarifying the physics represented by the
mathematics. In our view the first lines of (37)–(39) provide the clearest exposition of the underlying physics.
The left-hand sides of these equations accurately represent evolution of conserved quantities (mass and
momentum), and the right-hand size sides contain only simple source terms and boundary tractions that are
engaged during entrainment. Source terms that are more complicated and more difficult to interpret arise if
different boundary tractions are used or if the left-hand sides of the equations are expressed in
nonconservative forms such as those shown in Tables 3 and 4. Use of a nonconservative form and Lagrangian
reference frame can be particularly problematic because it requires the use of a frame-dependent source
term to account for the relative negative momentum of static bed sediment that is entrained. In this context
the distinction between relative and total momentum is crucial. In any valid model, regardless of its frame of
reference, basic physics dictates that the inertia of entrained static bed material can affect the velocity but
not the total momentum of a flow that entrains it.

Any depth-integrated model that considers entrainment of bed material must also consider the jump in
boundary shear traction that necessarily exists at the interface between moving and static material (i.e.,
τ1bot� τ2top> 0). Such a jump implies that if all other factors are constant, then an actively eroding bed exerts
less shear resistance than that exerted in the absence of erosion. Thus, to correctly represent evolution of flow
momentum during bed material entrainment, models must clearly distinguish between resisting shear
tractions engaged in the presence of static and eroding beds. Otherwise models can confuse the effects of
constitutive assumptions (which influence calculated boundary shear tractions) with those of momentum
conservation. In depth-integrated models, decreased basal shear resistance can be the only source of flow
momentum gains that sometimes accompany entrainment [e.g., Iverson et al., 2011].

The jump conditions used to obtain (37)–(39) invoke no physics beyond that which is contained in mass and
momentum conservation laws themselves. Indeed, the jump conditions simply embed into single-layer
equations the constraints that two-layer conservation laws impose. In this way, the jump conditions can
enhance the scope and rigor of single-layer models without adding the computational burdens of a
two-layer formulation.

To our knowledge no previous study has identified a z momentum jump condition that links boundary
normal tractions and bed sediment dilatancy during entrainment. We have shown that this condition is
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inextricably coupled to a mass jump condition that must be satisfied if moving material and static bed
material have differing bulk densities. The z momentum jump can have particularly important ramifications
when viewed in the context of bed erosion formulas, owing to its possible association with pore pressure
feedback accompanying dilative or contractive motion of water-saturated sediment.

The three jump conditions summarized in Table 2 indicate that erosion formulas for planar beds with
∂zb/∂x= ∂zb/∂y=0 must be consistent with the form of equation (40). If a change in bulk density and z
momentum jump during entrainment are absent, then (40) reduces to a relatively simple form derived by
Fraccarollo and Capart [2002]. On the other hand, some commonly used erosion formulas are difficult to reconcile
with (40), regardless of whether changes in bulk density occur during entrainment (Table 5). To provide testable
erosion rate predictions, (40) must be accompanied by constitutive information that describes shear and normal
tractions at eroding interfaces. High-resolution experiments with idealized, well-sorted sediment beds have
identified some relevant constitutive information [Capart and Fraccarollo, 2011], but similarly detailed experiments
with poorly sorted natural debris are needed. A critical issue concerns identification of themagnitude and location
of basal slip in complicated sediment beds that contain natural grains with diverse shapes and sizes.

In our opinion, further progress in using depth-integrated models to predict the behavior of evolving, erosive
Earth-surface flows will hinge on meeting four objectives. First, consistent use of rigorously derived conservation
equations that embed the effects of basal jump conditions will minimize the potential for confusion about
the roles of momentum exchange and boundary tractions during bed sediment entrainment. Second, use of
high-resolution, shock-capturing numerical methods to solve the conservation equations will minimize the
potential for spurious computational results. Third, and perhaps most challenging, refinement of erosion rate
formulas that satisfy the constraints imposed by basal jump conditions will ensure that predictions are well
founded mechanistically. Finally, and perhaps most importantly, predictions must be subjected to unequivocal
tests that employ data from controlled experiments with geophysically relevant materials. Such work is in its
earliest stages.

Appendix A: Effects of Vertical Accelerations in Depth-Integrated Models

Many models of dam-break floods, debris flows, and rock avalanches use depth-integrated conservation
equations formulated in terms of Earth-centered coordinates with z vertical and x horizontal, whereas our
equations employ rotated coordinates with z normal to the spatially averaged basal slope and x parallel to the
slope (Figures 4 and 6). This difference in coordinate systems can complicate comparisons, but it also helps reveal
a fundamental difficulty that can arise when using an Earth-centered formulation tomodel flows on steep slopes.

To appreciate the source of the problem, it is useful first to consider a scenario in which both formulations
give correct results: hydrostatic equilibrium of a liquid of uniform density ρ in a pond with sloping bottom
topography (Figures A1a and A1b). In a typical formulation with z vertical [e.g., Cao et al., 2004], the local x
direction static force balance in the pond is expressed by the equation ρgh[∂(h+ zb)/∂x] = ρgh[tan θ� tan θ] = 0,
where θ is the local angle of bed inclination. In our rotated coordinates the same balance is expressed by the
equation ρghsin θ� ρghcos θ[∂(h+ zb)/∂x] = ρgh[sin θ� cos θ tan θ] = 0. Thus, although the quantities h and zb
have different meanings in the two formulations, the formulations give equivalent results.

Now consider a scenario in which the two formulations give differing results: a tabular mass of uniform density
ρ and thickness h accelerates as it descends a uniform frictionless slope inclined at the angle θ (Figures A1c and
A1d). For this scenario the source terms in the x momentum equations are the same as in the static balances
for the ponds. The formulation with z vertical describes evolution of the horizontal velocity, uhor, given by

ρh duhor=dtð Þ ¼ ρgh ∂ h� zbð Þ=∂x½ �
¼ ρghtanθ :

(A1)

By contrast, the rotated-coordinate formulation describes evolution of the slope-parallel velocity, upar, which
obeys the downslope momentum equation

ρh dupar=dt
� � ¼ ρghsinθ � ρghcosθ ∂ hþ zbð Þ=∂x½ �

¼ ρghsinθ :
(A2)

Equation (A1) is not equivalent to (A2), because (A2) implies that the horizontal component of upar obeys
ρh(duhor/dt) = ρghsin θ cos θ. The difference between this result and (A1) arises from the fact that (A1)
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disregards the existence of a vertical
acceleration component that obeys ρh
(duver/dt) =� ρghsin2θ and necessarily
exists when a frictionless mass
descends a slope.

Corrections to (A1) (and to classical
shallow-flow equations) to account for
the effects of different coordinate
systems can be considered in a
general way [e.g., Keller, 2003], but in
the context of the simple problem
illustrated here, the value of g can be
adjusted to account for the effects of
vertical acceleration, such that in
(A1) g is changed to g(1� sin2θ).
The consequent reduction of g is 25%
for slopes of 30°, which are routinely
encountered by debris flows and
avalanches and occasionally by water
floods. Without this adjustment, the
error in equation (A1) is substantial.

Appendix B: Mathematical Summary of Some Key Models
See Table B1 on the following page.

Appendix C: Derivation of Kinematic Boundary Conditions
In a fixed Cartesian reference frame, consider a bed or flow layer with a bounding interface that has a
geometry that can evolve in response to both motion of material along the interface and passage of material
through the interface. The interface position can be described mathematically by

F x; y; z; tð Þ ¼ z � zb x; y; tð Þ ¼ 0; (C1)

where z = 0 defines a reference plane, x and y are coordinates normal to z, and zb is the height of the
interface above z = 0 (Figure 6). The function F is defined everywhere, but it satisfies (C1) only on the
interface. Vectors defined by ∇F are necessarily normal to surfaces of constant F, and unit vectors normal to
F are defined by

→n ¼ ∇F= ∇Fj j; (C2)

where |∇F| denotes the magnitude of ∇F. Together, (C1) and (C2) imply that positive unit vectors ( →n > 0) are
directed outward from the interface of interest, which in this case forms the top boundary of a layer that
occupies a region where z< zb.

The instantaneous velocity of the interface
→
i depends on the velocity of material at the interface

→
u and on

the rate at whichmaterial passes outward through the interface during erosion (or inward during deposition),
E
→
n. Here E is the outward volumetric flux of material per unit area normal to the interface. Therefore, the

interface velocity can be expressed as
→
i ¼ →

u � E →n; (C3)

where
→
i ,
→
u , E and →n are each functions of x, y, and t on the interface, where F=0 and z= zb(x, y, t).

A differential equation describing evolution of the interface can be obtained by noting that the
interface definition F = 0 implies that the time derivative of F must vanish in a reference frame

Figure A1. Diagrams illustrating relationships between bed elevation zb
and layer thickness h evaluated using coordinate systems with z vertical
and z rotated at the angle of the local bed slope, θ. (a and b) A statically
ponded layer. (c and d) A tabular layer descending a frictionless slope.
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moving with the interface velocity
→
i . Expressing this time derivative as D=Dt ¼ ∂=∂t þ→

i � ∇, we
stipulate that

DF
Dt

¼ ∂F
∂t

þ →
i �∇F ¼ 0 (C4)

applies at F= 0. This equation is similar to a standard kinematic boundary condition commonly used in fluid
mechanics, except that the relevant velocity is the interface velocity

→
i rather than the material velocity→u. By

using (C3), (C4) can be expressed in terms of →u as

∂F
∂t

þ →u � E →n
� ��∇F ¼ 0: (C5)

A more useful from of (C5) results from employing (C2) and the vector identify ∇F �∇F= |∇F|2 to find that
→n�∇F ¼ ∇Fj j. Substitution of this relationship in (C5) reduces the equation to

∂F
∂t

þ →u�∇F � E ∇Fj j ¼ 0: (C6)

This equation describes three-dimensional motion of an evolving interface at F=0 with a flux of material E
passing normally through it, and it differs from a standard kinematic boundary condition owing to inclusion
of the interface flux term, � E|∇F|.

A more specific form of (C6) that employs only Cartesian scalar quantities is needed for use in depth-integrated
models. This form can be obtained by first differentiating (C1) to find that the x, y, and z components of ∇F on
the interface at F=0 are given by

∂F=∂x ¼ �∂zb=∂x; ∂F=∂y ¼ �∂zb=∂y; ∂F=∂z ¼ 1 ; (C7)

and also to find that the time derivative of F is given by

∂F=∂t ¼ �∂zb=∂t: (C8)

Next, the magnitude of ∇F at the interface can be expressed by using the magnitudes of the vector
components in (C7) and the Pythagorean theorem to find that

∇Fj j ¼ ∂zb
∂x

� 	2

þ ∂zb
∂y

� 	2

þ 1

" #1=2

: (C9)

Substitution of (C7), (C8), (C9) in (C6) then reduces the kinematic boundary condition to

∂zb
∂t

þ u zbð Þ ∂zb
∂x

þ v zbð Þ ∂zb
∂y

� w zbð Þ ¼ �E
∂zb
∂x

� 	2

þ ∂zb
∂y

� 	2

þ 1

" #1=2

; (C10)

where u(zb), v(zb), and w(zb) are the x, y, and z components of the material velocity →u along the
interface. Equation (C10) it is the kinematic boundary condition we express as equations (6) and (7) of
the main text.

The terms involving (∂zb/∂x)2 and (∂zb/∂y)2 in (C10) account for the fact that the material volume flux directed
normally across the interface, E, can have components in the x and y directions, and not merely in the z

direction. These terms can be interpreted further by considering the relationship between→n and the x, y, and

z direction unit vectors,→ex,
→ey, and

→ez at the interface where F= 0 [cf. Gray, 2001]. Using these unit vectors in
conjunction with (C7), the vector ∇F at the interface can be expressed as

∇F ¼ �→
ex

∂zb
∂x

�→
ey

∂zb
∂y

þ→
ez : (C11)
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The magnitude of ∇F at the interface can also be expressed in terms on these unit vectors:

∇Fj j ¼ →ex


 

 ∂zb

∂x

� 	2

þ →ey


 

 ∂zb

∂y

� 	2

þ →ez


 

2" #1=2

: (C12)

This equation simply recapitulates (C9) because →ex


 

 ¼ →ey



 

 ¼ →ez


 

 ¼ 1. Thus, substitution of (C11) and (C12)

in (C2) yields

� →ex
∂zb
∂x

�→ey
∂zb
∂y

þ→ez ¼ ∂zb
∂x

� 	2

þ ∂zb
∂y

� 	2

þ 1

" #1=2
→n: (C13)

This result shows how the terms in brackets in (C10) account for differences in the orientation of the unit

normal vector →n and the orientations of the unit vectors →ex ,
→ey , and

→ez .

Appendix D: Evaluation of Stress Components Affecting x Momentum

Explicit evaluation of the stress components in (18) reveals their potential influences on bed sediment
entrainment and also facilitates comparisons of our xmomentum conservation equation with equations used in
other models. Evaluation of stress components requires constitutive assumptions, and we restrict the scope of
our evaluation by assuming that stresses within any individual layer are gravitationally induced and are linearly
dependent on depth H� z, where z=H denotes the top of the multilayer system. This assumption is routinely
used in geomechanics, but it does not necessarily require that z direction forces are statically balanced (i.e.,
“lithostatic”). However, it implies that for layer 1, the stress components σxx and τyx in (18) can be expressed as

σ1xx ¼ κ1Nρ1g�z H� zð Þ; (D1)

τ1yx ¼ κ1Sρ1g�z H� zð Þ; (D2)

where κ1N and κ1S are proportionality coefficients and g� z=� gz is used to clarify the fact that σxx and τyx are
positive (because z is positive upward and, consequently, g� z> 0). If z direction forces are unbalanced,
upward or downward acceleration modifies the influence of g� z, and in (D1) and (D2) this influence is
absorbed into κ1N and κ1S. The simplest special case of (D1) and (D2) is the hydrostatic case assumed in many
shallow-water models. In this case κ1N=1 and κ1S=0 apply. In layer 2, σxx and τyx depend on tractions
imposed by the base of layer 1, which has thickness h1, and on the weight of material within layer 2.
Consequently, the stress components in layer 2 can be expressed as

σ2xx ¼ κ1Nρ1g�zh1 þ κ2Nρ2g�z H� h1 � zð Þ
¼ κ1Nρ1 � κ2Nρ2ð Þg�zh1 þ κ2Nρ2g�z H� zð Þ ;

(D3)

τ2yx ¼ κ1Sρ1g�zh1 þ κ2Sρ2g�z H� h1 � zð Þ
¼ κ1Sρ1 � κ2Sρ2ð Þg�zh1 þ κ2Sρ2g�z H� zð Þ :

(D4)

The second lines of (D3) and (D4) show the stresses in layer 2 involve a term proportional to H� z, analogous to
(D1) and (D2), but additionally involve a term proportional to the differencesκ1Nρ1 � κ2Nρ2 andκ1Sρ1 � κ2Sρ2 at
the interface between layers 1 and 2. Nonzero values of these differences imply that jumps in σxx and τyx exist at
the interface. If no jump exists, then (D3) and (D4) reduce to forms like (D1) and (D2).

For the special case without a jump in σxx and/or τyx, we evaluate the effects of stress components by
substituting (D1) and (D2) into (18), and then generalizing the algebraic procedure of Iverson [2012, p. 15] to
account for nonzero gradients of ρ. The resulting equation may be written as

∫
ztop

zbot

ΣFxdz ¼ ρgxh� Lx þ Ly þ τzx top � τzx bot; (D5)

where

Lx ¼ κNg� zh ρ
∂H
∂x

þ H� zmidð Þ ∂ρ
∂x

� �
and (D6a)

Ly ¼ κSg� zh ρ
∂H
∂y

þ H� zmidð Þ ∂ρ
∂y

� �
(D6b)
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summarize the effects of stress gradients in the x and y directions, respectively, and zmid = (ztop + zbot)/2
denotes the height of the midpoint of a layer bounded by the surfaces at ztop and zbot. Subscripts denoting
layer 1 or layer 2 are omitted from (D5) and (D6a) and (D6b) because the equations apply equally to either
layer, provided that κ1Nρ1 � κ2Nρ2 ¼ κ1Sρ1 � κ2Sρ2 ¼ 0 applies. The terms H� zmidð Þ ∂ρ=∂xð Þ and H� zmidð Þ
∂ρ=∂yð Þ in (D6a) and (D6b) account for the effects of bulk density gradients on stress gradients, and for a
single-layer model with zbot = 0, (D6a) and (D6b) reduce to

Lx ¼ κNg� zh ρ
∂h
∂x

þ h
2
∂ρ
∂x

� �
and (D7a)

Ly ¼ κSg� zh ρ
∂h
∂y

þ h
2
∂ρ
∂y

� �
: (D7b)

If κN= 1 and κS= 0 apply, then (D7a) and (D7b) can be manipulated to obtain the concentration gradient
source term in momentum equation (6) in the model of Cao et al. [2004]. This term arises irrespective of
whether bulk density gradients are caused by entrainment.

For more complicated cases that involve jumps in σxx and τyx at the interface between layers 1 and 2,
additional terms must be included in (D5) to account for derivatives of κ1Nρ1 � κ2Nρ2ð Þg�zh1 and
κ1Sρ1 � κ2Sρ2ð Þg�zh1 that arise when (D3) and (D4) are substituted into (18). These additional terms are
relevant only for layer 2, and after some algebraic manipulation they can be reduced to the form

J2x ¼ g� zh2 κ1N
∂ ρ1h1ð Þ

∂x
� κ2N

∂ ρ2h1ð Þ
∂x

� �
; (D8a)

J2y ¼ g� zh2 κ1S
∂ ρ1h1ð Þ

∂y
� κ2S

∂ ρ2h1ð Þ
∂y

� �
: (D8b)

Use of these expressions generalizes (D5) to

∫
ztop

zbot

ΣFxdz ¼ ρ2gxh2 � L2x þ L2y � J2x þ J2y þ τ2zx top � τ2zx bot; (D9)

where subscripts are used to distinguish quantities in layers 1 and 2. Physical interpretation of J2x and J2y is
straightforward if κ values are the same in each layer. In this case (D8a) reduces to J2x ¼ g�zh2κN∂ ρ1 � ρ2ð Þh1½ �=∂x,
demonstrating that longitudinal variations inρ1 � ρ2 associatedwith themass jump condition (14) can produce
a longitudinal thrust that affects the net x direction force acting on layer 2. This force, in turn, could influence
entrainment by modifying the x momentum jump condition (26). However, the effect of this force is higher
order (i.e., of order ε) than are the effects already represented in (38), and it is likely to be negligible in many
cases. Similar higher-order effects are neglected in the z momentum equation (39) and jump condition (33).
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