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Scaling plays a crucial role in designing experiments aimed at understanding the behavior of landslides, debris
flows, and other geomorphic phenomena involving grain-fluid mixtures. Scaling can be addressed by using di-
mensional analysis or – more rigorously – by normalizing differential equations that describe the evolving dy-
namics of the system. Both of these approaches show that, relative to full-scale natural events, miniaturized
landslides and debris flows exhibit disproportionately large effects of viscous shear resistance and cohesion as
well as disproportionately small effects of excess pore-fluid pressure that is generated by debris dilation or con-
traction. This behavioral divergence grows in proportion toH3, whereH is the thickness of amovingmass. There-
fore, to maximize geomorphological relevance, experiments with wet landslides and debris flows must be
conducted at the largest feasible scales. Another important consideration is that, unlike stream flows, landslides
and debris flows accelerate from statically balanced initial states. Thus, no characteristicmacroscopic velocity ex-
ists to guide experiment scaling and design. On the other hand, macroscopic gravity-driven motion of landslides
and debris flows evolves over a characteristic time scale (L/g)1/2, where g is the magnitude of gravitational accel-
eration and L is the characteristic length of themovingmass. Grain-scale stress generationwithin themass occurs
on a shorter time scale, H/(gL)1/2, which is inversely proportional to the depth-averaged material shear rate. A
separation of these two time scales exists if the criterion H/L b b 1 is satisfied, as is commonly the case. This
time scale separation indicates that steady-state experiments can be used to study some details of landslide
and debris-flow behavior but cannot be used to study macroscopic landslide or debris-flow dynamics.

Published by Elsevier B.V.
1. Introduction

Experimentation forms the backbone of most science, but it consti-
tutes only a small fraction of the total body of work in geomorphology.
Although controlled experiments provide a sure means of isolating the
influences of key variables and performing definitive hypothesis tests,
in geomorphology a question invariably arises about the relevance of
experimental results. Critics commonly argue that experiments are too
small, too brief, too idealized, or too restricted by artificial boundary or
initial conditions to mimic the rich complexity of natural processes
(e.g., Baker, 1996). To some extent these criticismsmisconstrue the pur-
pose of experimentation, which is not to imitate nature but instead to
abstract it and thereby make it more amenable to systematic study
(e.g., Gilbert, 1914). On the other hand, such criticisms can be valid if ex-
periments misrepresent natural processes by abstracting them at inap-
propriate scales.

Scale plays a crucial role inmany geomorphological experiments be-
cause it affects nearly all phenomena involving interaction of sediment
and water. (One scale-dependent phenomenon is evident to anyone
who builds a sandcastle. Forming damp sand into a free-standing verti-
cal face 10 cm high is literally child’s play, whereas forming a similar
ng and design of landslide an
face 10 m high is impossible.) Many scaling issues can be addressed
by careful experiment design, however. This paper emphasizes scaling
and experiment design as they apply to laboratory studies of subaerial
mass movements such as landslides and debris flows, but the concepts
it summarizes also have relevance in a broader geomorphological
context.

2. Purposes of mass-movement experiments

Experimental studies of landslides and debris flows can target sever-
al broad classes of objectives, one of which is facilitation of field obser-
vations and measurements. Field experiments differ from laboratory
experiments because they generally aim to retain the scale and com-
plexity of natural processes while controlling their location and timing
(Fig. 1). A common strategy involves instrumenting a natural hillside
and watering it artificially until slope failure occurs (e.g., Ochiai et al.,
2004, 2007; Springman et al., 2009). Similar watering experiments
that do not lead to slope failure may transition into long-term field
monitoring studies (e.g., Montgomery et al., 1997, 2009). Other field ex-
periments bypass the onset of slope failure in order to focus on the dy-
namics of landslide or debris-flow runout. These experiments typically
involve controlled discharges of water or water − sediment mixtures
onto instrumented natural slopes or channels (e.g., Rickenmann et al.,
2003; Bugnion et al., 2012; Paik et al., 2012). Although field experiments
d debris-flow experiments, Geomorphology (2015), http://dx.doi.org/
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Fig. 1. Photograph of an instrumented natural hillside being prepared for a landslide-initi-
ation experiment, Ibaraki prefecture, Japan, 2003 (see Ochiai et al., 2004, 2007). USGS
photo by M.E. Reid.
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can be large enough to avoid scaling problems, and complex enough to
mimic nature, nofield experiment is strictly reproducible because of the
idiosyncrasies of the natural settings and materials involved.

Reproducible laboratory experiments differ fundamentally from
field experiments because they are designed to idealize natural pro-
cesses, minimize complexity, and thereby isolate the effects of key
variables. These goals are attainable in a laboratory setting because
initial conditions, boundary conditions, and material properties can
Fig. 2. Photograph of the aftermath of a large-scale laboratory landslide experiment at the Nat
2003 (see Moriwaki et al., 2004). NEID photo by H. Moriwaki.
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be closely controlled. Laboratories impose practical constraints on
experiment scale, however. The largest laboratory mass-movement
experiments to date have involved about 83 m3 of material
(Moriwaki et al., 2004) (Fig. 2), and many experiments have in-
volved b2 m3 (e.g., Eckersley, 1990; Parsons et al., 2001; Manzella
and Labiouse, 2009). Scaling is therefore a crucial – albeit sometimes
overlooked – aspect of experiment design.

Scaling can be particularly challenging in laboratory experiments
that aim not to test specific hypotheses but rather to strip away con-
founding influences that are prevalent in nature and thereby reveal
phenomenology that is difficult to observe or measure in the field.
Designs of such exploratory experiments can be very diverse
(e.g., Iverson et al., 2000; Okura et al., 2000; Bowman et al., 2012;
Hsu et al., 2014; Kaitna et al., 2014; Paguican et al., 2014). Neverthe-
less, experiment design can be informed by using dimensional anal-
ysis to evaluate the potential scale-dependence of conspicuous
physical phenomena, such as friction reduction by elevated pore-
fluid pressure, and of less-conspicuous phenomena, such as apparent
debris cohesion caused by electrostatic attraction of small particles
or surface tension of air–water interfaces (Iverson et al., 2004).

Another class of laboratory experiments aims to test specific hy-
potheses that have been formalized in precise mathematical form
(Iverson, 2003a). In these cases, normalization of a mathematical
model’s governing equations yields information about appropriate
experiment scaling (e.g., Iverson and Denlinger, 2001). Experiments
aimed at model testing are generally warranted only after the basic
phenomenology of a process has been repeatedly observed andmea-
sured, however. A classic example of the progression from observa-
tions and measurements to systematic model development and
testing is provided by the most famous scientific advances of the six-
teenth and seventeenth centuries, when Galileo, Brahe, and Kepler
established the empirical phenomenology that guided Newton’s
construction and testing of his mathematical theory of gravitation
and rigid-body motion.

Physically based mathematical models of mass-movement process-
es apply the principles developed by Newton, but this application can
be challenging because mass-movement models must account for the
effects of energy dissipation. Indeed, dissipative processes produce
most of the scale-dependent effects that can bedevil model formulation
as well as systematic experimentation and data interpretation. For ex-
ample, the energy expenditure necessary to overcome a debris yield
strength of 0.1 kPa can be important in a miniaturized laboratory debris
ional Research Institute for Earth Science and Disaster Prevention (NEID), Tsukuba, Japan,
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Fig. 3. Schematic vertical cross section of amovingmass descending a plane inclined at the
angle θ. The thickness and length of the mass are H and L, respectively. One slice of the
mass is magnified to depict key dependent variables considered in analyses. In the sim-
plest analysis (section 3.1), only the depth-averaged downslope velocity ū evolves with
time. In more sophisticated analyses (Sections 3.2 and 4), H and L also evolve, as do the
local thickness h, basal pore-fluid pressure, pb, and solid volume fraction,m (which affects
the debris bulk density, ρ) (after Iverson and George, 2014).
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flow b 0.1m thick (e.g., Parsons et al., 2001), but it is largely irrelevant in
a full-scale debris flow N 1 m thick (Iverson, 2003b). Individual mass-
movement experiments may therefore combine elements of the
exploratory and model testing objectives described in the preceding
paragraphs. In such experiments, scaling inferences derived from di-
mensional analysis can be merged with those derived frommodel nor-
malization (e.g., Iverson et al., 2004, 2010). This paper considers
dimensional analysis and model normalization as synergistic tools for
experiment scaling and design.

3. Dimensional analysis

Dimensional analysis is founded on the principle of dimensional
homogeneity, which has been understood since the birth of mathe-
matical physics (Bolster et al., 2011). In simplest terms, dimensional
homogeneity requires that the left-hand side of any physically valid
equation must have dimensions like those of the right-hand side. To
fully exploit this principle, Edgar Buckingham (1914, 1915) devised
formalized methods of dimensional analysis that are still used
today. These methods were elaborated by Percy Bridgman, a re-
nowned experimentalist and Nobelist who remarked that dimen-
sional analysis was quite foolproof when applied by someone with
suitable experience and judgment, but that ‘the untutored [geomor-
phologist] in the bushes would probably not be able to apply the
methods of dimensional analysis… and obtain results which would
satisfy us’ (Bridgman, 1922, p. 5). In the foregoing quote, ‘geomor-
phologist’ facetiously replaces a pejorative term used by Bridgman,
but in fact, all geomorphologists –even those of us who sometimes
work among the bushes – have the skills necessary to obtain useful
results by applying dimensional analysis. These results help prevent
oversights in experiment design and also inform analysis of field ob-
servations and data.

A key concept introduced by Buckingham (1914, 1915) and em-
braced by Bridgman (1922) involved systematic identification of di-
mensionless variables known as Π groups. This name derives from
Buckingham’s Π theorem, which states that any physically valid
relationship between n1 variables involving n2 fundamental physical di-
mensions (for example, mass, length, and time) can be reduced to a re-
lationship among n1 − n2 dimensionless variables. Expressing physical
relationships in terms of dimensionless variables has deep theoretical
significance because nature operates independently of human inven-
tions, including our definitions of mass, length, and time. Therefore,
any valid physical principle can be expressed in a dimensionless math-
ematical form that does not depend on such definitions.

Dimensionless Π groups also have great practical relevance for ex-
periment design because they serve as scaling parameters that guide
strategies for upsizing, downsizing, or simplifying an experiment. By
isolating the effects of n1 − n2 dimensionless Π groups rather than
those of n1 dimensional variables, researchers can narrow the objectives
of their experiments. Moreover, by holding the values ofΠ groups con-
stant as an experiment is downsized relative to a natural phenomenon,
an experimenter can create a valid scale model of a natural prototype.

3.1. Macroscopic dimensional analysis: blockslide or avalanche with no
fluid

As an illustration of dimensional analysis applied to mass-
movement experiments, first consider a rudimentary, macroscopic
analysis of an infinitely wide mass of homogenous material that retains
its macroscopic shape as it travels down a uniform slope in a vacuum
(Fig. 3). This simplistic view of a landslide omits any consideration of a
fluid phase (either air or water), but it provides a useful starting point.
The goal of the analysis is to draw inferences about dimensionless vari-
ables that control the evolving downslope velocity ū of the moving
mass. The fact that ū evolves during the course of a mass movement is
fundamental because, unlike some other geomorphological phenomena,
Please cite this article as: Iverson, R.M., Scaling and design of landslide an
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most mass-movement processes are inherently unsteady. They lack a
characteristic velocity, and they have distinct starting and ending points
in space and time.

The first step in the analysis consists of using physical intuition and
the sketch in Fig. 3 tomake a list ofmacroscopic variables thatmight in-
fluence evolution of ū. A basic list includes themovingmass’s bulk den-
sity, ρ, length, L, and thickness, H, as well as the acceleration due to
gravity, g, slope angle, θ, time, t, and basal Coulomb friction angle, ϕ.
In this simple approach, ϕ parameterizes the effects of energy dissipa-
tion during basal sliding, and any effects of internal deformation on en-
ergy dissipation are subsumed within a generic stress variable, σ. The
postulated effects of this list of variables can then be summarized as

u ¼ f 1 g; L;H;ρ;σ ; θ;ϕ; tð Þ ð1Þ

where f1 represents an unknown function.
Eq. (1) includes two intrinsically dimensionless variables (θ and ϕ)

as well as seven dimensional variables (ū, g, L, H, ρ, σ, and t). Variables
that are intrinsically dimensionless play no role in identification of
new dimensionless variables, indicating that θ and ϕ can be temporarily
ignored. The remaining seven variables in Eq. (1) involve various com-
binations of three fundamental physical dimensions: mass, length, and
time. Therefore, Buckingham’sΠ theorem indicates that these seven di-
mensional variables must be related in a manner that can be expressed
by 7 − 3 = 4 independent dimensionless variables. To identify these
four variables, the functional relation in Eq. (1) is first postulated to
have the generic form

u ¼ κ gaLbHcρdσ et f ð2Þ

inwhich values of a, b, c, d, e, and f are unknown and κ is a dimensionless
proportionality factor. By expressing all physical variables in Eq. (2) in
terms of their dimensions, which involve various combinations of
mass [M], length [L], and time [T], Eq. (2) can be recast as

L½ �
T½ � ¼

L½ �
T½ �2

� �a

L½ �b L½ �c M½ �
L½ �3

� �d ½M�
L½ � T½ �2

� �e

T½ � f ð3Þ

This equation is dimensionally homogeneous (and physically plausible)
only if powers of [M], [L], and [T] are the same on its left-hand and right-
d debris-flow experiments, Geomorphology (2015), http://dx.doi.org/
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Fig. 4. Photograph of a small-scale experiment involving an avalanche of dry sand in a
flume 20 cmwide. Avalanchemotion is instigated by sudden opening of a headgate. Topo-
graphic contours (red lines) are projected onto the flume bed (blue) and the sand surface
(white) by horizontal laser sheets (see Iverson et al., 2004). USGS photo by M. Logan.
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hand sides. Equating these powers yields three conditions that must be
satisfied:

• condition for homogeneity of [M]: 0 = d + e,
• condition for homogeneity of [L]: 1 = a + b + c − 3d − e, and
• condition for homogeneity of [T]:− 1 = −2a − 2e + f.

These conditions constitute three simultaneous algebraic equations
containing six unknowns (a, b, c, d, e, and f,), implying that three of
the unknowns can be eliminated. For example, a, b, and d can be elimi-
nated algebraically by finding that a = (1/2) − e + (f/2), b = (1/2) −
c − e − (f/2), and d = − e. Use of these substitutions in Eq. (2) then
yields

u ¼ κ g 1=2ð Þ−eþ f =2ð Þ
L 1=2ð Þ−c−e− f =2ð ÞHcρ−eσ et f ð4Þ

and grouping terms that share the same exponents reduces Eq. (4) to

u ¼ κ gLð Þ1=2 H
L

� �c σ
ρgL

� �e t
L=gð Þ1=2

� � f

ð5Þ

By dividing each side of Eq. (5) by (gL)1/2 and reintroducing the in-
trinsically dimensionless variables θ and ϕ, the general functional rela-
tionship postulated in Eq. (1) can be recast in the dimensionless form,

u
gLð Þ1=2 ¼ f 2

H
L
;
σ
ρgL

;
t

L=gð Þ1=2 ; θ;ϕ
� �

ð6Þ

where f2 represents a new unknown function. As anticipated from
Buckingham’sΠ theorem, Eq. (6) contains only six dimensionless vari-
ables rather than the original nine variables contained in Eq. (1). Note
that L serves as the fundamental length scale in Eq. (6) because it ap-
pears in the denominator of every variable except θ and ϕ. Moreover,
(L/g)1/2 serves as the fundamental time scale over which ū evolves.

Eq. (6) is entirely valid but is not unique. If c rather than b had been
selected for elimination in the algebraic step leading to Eq. (4), for ex-
ample, then H and L would trade positions in Eq. (6), and H would
serve as the fundamental length scale. This nonuniqueness indicates
that it is justifiable to revise the Π groups in Eq. (6) by combining
existing groups via multiplications or divisions – particularly if
such algebraic manipulation is motivated by physical experience
and insight. In the case of Eq. (6), experience with the effects of grav-
ity on rock and soil makes it logical to expect that stress will scale
with the thickness H rather than the length L of a mass. Therefore,
it is reasonable to divide σ/ρgL by H/L in Eq. (6) and thereby obtain
the revised Π group, σ/ρgH. This modification yields a relationship
among dimensionless variables that is suitable for guiding experi-
ment design:

u
gLð Þ1=2 ¼ f 3

H
L
;
σ

ρgH
;

t
L=gð Þ1=2 ; θ;ϕ

� �
ð7Þ

A trivial experiment that could be designedwith the aid of Eq. (7) in-
volvesmotion of a rigid blockwith constantH, L, ρ, andσ descending an
inclined plane. Even for this simple experiment, however, Eq. (7) pro-
vides useful guidance because it indicates that ū scales with (gL)1/2

while t scales with (L/g)1/2. Taken together, these scalings imply that ū
is proportional to gt, and Eq. (7) further implies that the proportionality
will depend on the values of θ and ϕ. These findings predict the ingredi-
ents of the exact equation describing motion of a sliding block released
from a state of rest at t=0 (i.e., ū= gt(sin θ− cos θ tanϕ)). If this equa-
tion were unknown, then dimensional analysis would facilitate its dis-
covery through experimentation using a single block and several
inclined planes with various combinations of θ and ϕ. Furthermore, no
Please cite this article as: Iverson, R.M., Scaling and design of landslide an
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information in Eq. (7) suggests that the effects of θ and ϕ on ū/gt
would be influenced by the size of the experimental apparatus. There-
fore, a researcher could reasonably infer that results of miniaturized ex-
periments with rigid sliding blocks might apply to analogous sliding
blocks at large scales. Few if any natural landslides behave as rigid
blocks, however.

A more relevant type of mass-movement experiment involves mo-
tion of a deformable avalanche consisting of millions of dry, rigid grains
(Fig. 4). In this case Eq. (7) still applies, but none of the quantities in
Eq. (7) can be viewed as constants. The inference ū ∝ gt remains the
same as for a rigid sliding block, but in a deforming avalanche ū varies
from point to point as H/L evolves. Concurrently, σ/ρgH may evolve
for a variety of reasons: ρmay change as a result of dilation or contrac-
tion of the granular material, vertical acceleration components may
modify the effective g force on avalanching grains, or granular momen-
tum exchange might transition from a contact-dominated to collision-
dominated mode. In any case, an experiment designed to track evolu-
tion of the most easily measured stress component, the basal normal
stress, would help constrain evolution of σ/ρgHwith time and position
along the avalanche path. Spatially distributed measurements of the
evolving basal normal stress could then be combined with measure-
ments of H/L and ū/(gL)1/2 in an effort to uncover the factors controlling
avalanche dynamics along paths with differing values of θ and ϕ.

A caveat in such granular avalanche experiments is that scale effects
might be important. A likely cause is scale-dependence of the relatively
poorly characterized processes that influence σ/ρgH. Thus, while many
useful bench-top experiments with dry granular avalanches have been
conducted during the past few decades (e.g., Densmore et al., 1997;
Iverson et al., 2004; Pudasaini and Hutter, 2007; Mangeney et al.,
2010), their geomorphological relevance should perhaps be taken
with a grain of salt. Indeed, the presumption that large, natural land-
slides ought to behave like miniature avalanches of dry granular mate-
rial led to a longstanding misperception in landslide science. Beginning
with Heim (1882), as recapitulated by Hsü (1978), many investigators
once regarded the mobility of large landslides as anomalous if the
ratio of horizontal runout distance to vertical descent distance exceeded
about 1.7, a value that is typical of laboratory-scale sand avalanches
(Dade and Huppert, 1998). These miniature avalanches omit a number
of scale-dependent phenomena that can influence the behavior of large
landslides, however. One of the most obvious scale dependencies in-
volves modification of σ/ρgH by pore-fluid pressure (Legros, 2002).
d debris-flow experiments, Geomorphology (2015), http://dx.doi.org/
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3.2. Macroscopic dimensional analysis: fluid-filled landslide or debris flow

Fluid plays a vital role in all debris flows and in many other land-
slides, and incorporation of fluid effects in experiments can increase
their geomorphological relevance. However, the presence of fluid
also complicates dimensional analysis, experiment scaling, and
data interpretation. In general the ambient fluid adjacent to a
mass as well as the intergranular fluid within a mass might be im-
portant, but the dimensional analysis presented here considers
only the effects of intergranular pore fluid. This simplification is
warranted for many dense, subaerial mass movements because
the surrounding air exerts negligible buoyancy or inertial reaction
forces.

Physical properties of an intergranular pore fluid include its density,
ρf, viscosity, μf, elastic bulk modulus (reciprocal compressibility), Ef, and
possibly its yield strength, cf – a property that may be relevant if the
fluid contains suspended mud (Table 1). Properties of solid grains,
which are treated here as incompressible, include their density, ρs,
and friction angle, ϕ. The solid volume fraction m (and the porosity,
1 − m) can evolve in a deforming debris flow or landslide so that
the compressibility of the bulk solid-fluid mixture – or its reciprocal,
the mixture bulkmodulus, E – can be important (Iverson and George,
2014). If the value of m is known and those of ρs and ρf are also
known, then the evolvingmixture bulk density ρ need not be consid-
ered independently because ρ = ρsm + ρf(1 − m) must be satisfied.
Nevertheless, it is useful to define a fixed reference value of ρ that
Table 1
Summary of all variables used in all dimensional analyses and in equation normalization (excl

Symbol Definition

cf cohesive shear strength of fluid phase containing m
D depth-integrated debris dilation rate
es coefficient of restitution of solid grains
E elastic bulk modulus of solid-fluid mixture
Ef elastic bulk modulus of fluid phase
Es elastic bulk modulus of solid grains
g magnitude of gravitational acceleration
gi i-direction component of gravitational acceleration
h local thickness of moving mass
H characteristic thickness of moving mass
k Darcian hydraulic permeability of granular mass
L characteristic length of moving mass
m solid volume fraction of granular mass
m0 characteristic (initial) value of m
mcrit static, critical-state value of m
N dimensionless state parameter
pb basal pore-fluid pressure
t time coordinate
ū depth-averaged mixture velocity in x direction
v depth-averaged mixture velocity in y direction
w depth-averaged mixture velocity in z direction
x, y, z position coordinates
Γf surface tension of fluid phase
γ
� debris shear rate
δs modal diameter of solid grains
ε = H/L
ζs measure of dispersion of grain diameters
ϕ friction angle of granular mass
θ slope angle of substrate
κ proportionality coefficient
λs measure of sphericity of grains
ξs measure of angularity of grains
μf viscosity of fluid phase
ρf mass density of fluid phase
ρs mass density of solid grains
ρ0 characteristic mass density of solid-fluid mixture
σ stress component (generic)
τii normal-stress component, i = x, y, or z
τij shear-stress component, i, j = x, y, or z (i ≠ j)
〈υ2〉1/2, 〈ω2〉1/2 root mean square translational and rotational grain

Please cite this article as: Iverson, R.M., Scaling and design of landslide an
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applies in an undeformed initial state. Here ρ0 denotes this reference
value, which applies whenm=m0. Another important bulk property
is the Darcian pore-fluid permeability k of the granular solid aggre-
gate. In general the value of k evolves as that of m evolves (Iverson
and George, 2014), but here the analysis considers only a representa-
tive, fixed value of k that summarizes the Darcian permeability of a
mixture of grains with diverse shapes and sizes (Table 1). Addition
of these material properties to the list of variables considered in
Eq. (1) yields an expanded functional relation:

u ¼ f 4 g; L;H;ρ0;ρs;ρ f ;σ ; θ;ϕ; μ f ; cf ; E f ; E; k;m; t
� �

ð8Þ

According to Buckingham’sΠ theorem, Eq. (8) can be reduced from
a relation involving 17 variables to one involving 14 dimensionless Π
groups. In these Π groups it is desirable to retain the fundamental
time scale (L/g)1/2, velocity scale (Lg)1/2, and mass scale ρ0H3 inferred
fromEq. (7). Indeed, identification of fundamental scales is a compelling
reason to perform a simple dimensional analysis like that in section 3.1
before undertaking dimensional analysis of a relationship as lengthy as
Eq. (8). Otherwise, the best choice of fundamental scalesmay not be ob-
vious. This choice guides the selection of algebraic cancellations, multi-
plications, and divisions that are necessary to obtain the most useful set
of Π groups.

By using amathematical procedure exactly analogous to that used to
obtain Eq. (7), while retaining the fundamental scales (L/g)1/2, (Lg)1/2,
uding those dimensionless variables defined and denoted by asterisks in Eq. (15)).

Dimensions SI Units

ud [M][L]−1[T]−2 Pa
[L][T]−1 m · s−1

0 --
[M][L]−1[T]−2 Pa
[M][L]−1[T]−2 Pa
[M][L]−1[T]−2 Pa
[L][T]−2 m · s−2

[L][T]−2 m · s−2

[L] m
[L] m
[L]2 m2

[L] m
0 --
0 --
0 --
0 --
[M][L]−1[T]−2 Pa
[T] s
[L][T]−1 m · s−1

[L][T]−1 m · s−1

[L][T]−1 m · s−1

[L] m
[M][T]−2 N · m−1

[T]−1 s−1

[L] m
0 --
0 --
0 --
0 --
0 --
0 --
0 --
[M][L]−1 [T]−1 Pa · s
[M][L]−3 kg · m−3

[M][L]−3 kg · m−3

[M][L]−3 kg · m−3

[M][L]−1[T]−2 Pa
[M][L]−1[T]−2 Pa
[M][L]−1[T]−2 Pa

velocities [L][T]−1 m · s−1

d debris-flow experiments, Geomorphology (2015), http://dx.doi.org/
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and ρ0H3, Eq. (8) can be reduced to a functional relationship involving
14Π groups:

u
gLð Þ1=2 ¼ f 5

H
L
;

σ
ρ0gH

;
t

L=gð Þ1=2 ; θ;ϕ;m;
ρs

ρ0
;
ρ f

ρ0
;

c f
ρ0gH

;
E f

ρ0gH
;

E
ρ0gH

;
L=gð Þ1=2

μ f H
2=kE

;
ρ0H gLð Þ1=2

μ f

 !
:

ð9Þ

The first six dimensionless variables in Eq. (9) are the same as those in
Eq. (7). The next six variables in Eq. (9) have straightforward physical
interpretations. They consist of the solid volume fraction,m, simple den-
sity ratios, ρs/ρ0 and ρf/ρ0, a scaled yield strength, cf/ρ0gH, and scaled
bulk moduli, Ef/ρ0gH and E/ρ0gH. Typical values of Ef for water and air
at Earth’s surface are about 2.2 × 109 Pa and 1× 105 Pa, respectively, im-
plying that Ef/ρ0gH N N 1 is satisfied formassmovements of virtually any
size if they contain water, whereas Ef/ρ0gH N N 1 is satisfied for mass
movements containing air only ifH is smaller than about 1m. Therefore,
it is reasonable to infer that compressional deformation of water plays a
minimal role inmassmovements of all sizes, but that compression of air
within very large mass movements could produce important effects
that are less pronounced at laboratory scales (cf. Shreve, 1968; Roche
et al., 2010). Finally, the Π group cf/ρ0gH in Eq. (9) implies that the ef-
fects of cf can be exaggerated in miniaturized experiments that have H
values much smaller than those of large landslides or debris flows
(Iverson, 2003b).

From the standpoint of experiment scaling, the final two dimension-
less variables in Eq. (9) are of greatest interest, and each involves the
fluid viscosity, μf. The first of these variables can be interpreted as a
time scale ratio because the numerator (L/g)1/2 is the time scale for
gravity-driven downslope motion of a landslide or debris flow, and
the denominator μfH2/kE is the time scale for slope-normal diffusion of
excess pore-fluid pressure that is generated by porosity changes. Recog-
nition of this time scale requires some prior familiarity with well-
established pore-pressure diffusion theory (e.g., Rice and Cleary,
1976), because pore pressure itself is not explicitly included in Eq. (9).
Instead, pore pressure is subsumedwithin the normalized generic stress
variable, σ/ρ0gH. Nevertheless, the presence in Eq. (9) of aΠ group con-
taining the pore-pressure diffusion time scale μfH2/kE is unsurprising
because the dynamics of landslides and debris flows are commonly reg-
ulated by pore-pressure diffusion coupled to internal deformation
(Iverson, 2005; Schaeffer and Iverson, 2008; George and Iverson,
2014). The final Π group in Eq. (9) is also easy to interpret because
ρ0H(gL)1/2/μf constitutes a Reynolds number in which (gL)1/2 serves as
Fig. 5. Graphs of the Reynolds number ρ0H(gL)1/2/μf and time scale ratio (L/g)1/2/(μfH2/kE) as f
viscosity typical of air (μf=0.00002 Pa s), water (μf=0.001 Pa s), andmud slurry (μf=0.1 Pa s
sorted debriswith amuddymatrix (k=10−14m2). To generate these graphs,fixed valueswere
movements), the compressive stiffness E = 107 Pa (typical of loose granular soils), and the bu
(2004).
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a velocity scale. This Reynolds number summarizes the ratio of bulk in-
ertial forces to viscous shear resistance in a fluid-filled, gravity-driven
moving mass that has a finite length L but no characteristic velocity.

TheΠ groups (L/g)1/2/(μfH2/kE) and ρ0H(gL)1/2/μfhave a crucial ram-
ification for experiment design because μfH2 appears in the denomina-
tor of one of them, while μf/H appears in the denominator of the other
if it is rewritten as ρ0(gL)1/2/(μf/H). Thus, if μf is held constant while H
is reduced (i.e., fromfield scale to laboratory scale), then the importance
of viscous shear resistance becomes disproportionately large while that
of pore-pressure diffusion becomes disproportionately small (Fig. 5).
Manipulating the value of μf in experiments cannot alleviate this scaling
problembecausemodification of μf alters the values of (L/g)1/2/(μfH2/kE)
and ρ0H(gL)1/2/μf proportionately.

A seemingly plausible but ultimately futile strategy for addressing
the scaling problem noted above might involve holding the ratio of
the parameters (L/g)1/2/(μfH2/kE) and ρ0H(gL)1/2/μf constant, while
H is reduced from field scale to laboratory scale. The resulting ratio,
kE/ρ0gH

3, constitutes a viable Π group. Evaluation of this Π group
for a dense, flowing body of water-saturated sand and gravel with
H = 1 m, k ~ 10−9 m2 and E ~ 106 Pa yields kE/ρ0gH3 ~ 10−6. Evalua-
tion of the sameΠ group for a miniaturized body of water-saturated
fine sandwithH=0.02m, k ~ 10−12 m2, and E ~ 105 Pa also yields kE/
ρ0gH3 ~ 10−6. Thus, the value of kE/ρ0gH3 can be preserved by chang-
ing the material composition while downsizing H from 1 to 0.02 m.
Scaling that considers kE/ρ0gH3 and only one of the groups (L/g)1/2/
(μfH2/kE) or ρ0H(gL)1/2/μf might therefore lead to the spurious infer-
ence that valid downsizing of experiments is feasible. This strategy
does not address the conflicting effect that downsizing has on the
values of (L/g)1/2/(μfH2/kE) and ρ0H(gL)1/2/μf, however. Instead it il-
lustrates a pitfall that can arise from injudicious selection of Π
groups. In general a group such as kE/ρ0gH

3, which has an opaque
physical meaning, is less useful than Π groups that have clear phys-
ical meanings.

To date no satisfactory strategy has been proposed for avoiding the
scaling problem manifested in the Π groups (L/g)1/2/(μfH2/kE) and
ρ0H(gL)1/2/μf, and theseΠ groups have large implications for evaluating
the effects of pore fluid in reducing effective basal friction. Experiments
that artificiallymimic the effects of such friction reduction have entailed
installation of a viscous basal layer in miniature laboratory landslides
(Paguican et al., 2014), but this mimicry does not constitute physical si-
militude. Thus, themost viable alternative for designing properly scaled
experiments involvingfluid-laden landslides and debrisflows is to build
unctions of landslide or debris-flow size (as measured by thickness H) for values of fluid
); and for values of hydraulic permeability typical of clean sand (k=10-10m2) and poorly
assumed for three other quantities: the length-scale ratioH/L=100 (typical ofmanymass
lk density ρ0 = 1500 kg/m3 (typical of loosely packed granular soils). After Iverson et al.
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Fig. 7. Photograph of water application during a landslide initiation experiment involving
a rectangular 6-m3 sediment prism positioned behind a retaining wall near the top of
USGS debris-flow flume in Oregon, USA. Landslide onset was triggered by gradually rising
pore-water pressure (see Iverson et al., 1997, 2000; Reid et al., 1997). Video recordings of
this experiment and many similar experiments are viewable at http://pubs.usgs.gov/of/
2007/1315/ (see Logan and Iverson, 2007).
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and utilize the largest feasible laboratory facilities. This rationale
prompted construction of the National Research Institute for Earth Sci-
ence and Disaster Prevention (NIED) large-scale rainfall simulator and
landslide test facility in Japan in 1974 (Fig. 2), and also prompted con-
struction of the large-scale U.S. Geological Survey debris-flow flume in
Oregon in 1991 (Figs. 6 and 7). Even at these facilities, however, exper-
imental mass movements cannot duplicate all behavior that might
occur in large natural events.

3.3. Mesoscopic dimensional analysis: steady shear flow of a solid-fluid
mixture

A different style of experiment addresses the internal dynamics of
grain − fluid mixtures without attempting to simulate the large-scale
dynamics of mass movements or the small-scale dynamics of individual
grains. These mesoscale experiments commonly focus on steady, uni-
form shear flows of nearly identical grains immersed in liquid (Fig. 8).
By examining simple deformations of idealized materials, such experi-
ments can reveal details of behavior that otherwise would be inaccessi-
ble (e.g., Bagnold, 1954; Iverson and LaHusen, 1989; Armanini et al.,
2005; DeBoeuf et al., 2009; Boyer et al., 2011). Results of such experi-
ments lack direct geomorphological relevance, but they can help build
understanding of the more-complicated materials involved in geomor-
phic phenomena.

In steady-state experiments with idealized materials, stress is typi-
cally treated as a dependent variable while bulk flow velocity is con-
trolled or at least well-constrained. By contrast, the macroscopic
approach of Sections 3.1 and 3.2 treats stress as an independent vari-
able, which influences the unconstrained bulk velocity of a landslide
or debris flow. This difference in approaches is justified because stress
is a continuum-scale quantity that summarizes the effects of momen-
tum exchange processes operating at scales too small to be observed
at the scale of a landslide or debris flow. Indeed, a chief objective of me-
soscale experiments and dimensional analyses is to draw inferences
about grain − grain and grain − fluid interactions that may influence
stresses at larger scales.

Another distinction between macroscopic and mesoscopic dimen-
sional analyses involves the role of time. The analyses in Sections 3.1
and 3.2 treat time as an independent variable, whereas the mesoscopic
analysis presented here considers steady shear flows in which the
Fig. 6. Photographs of a large-scale experiment inwhich a 10-m3 debris flowwas released from t
and1.0 s after theheadgate began to open. Panel (C) shows debrisflowdescendingflume about
uniformly at 31° (after Iverson et al., 2010). Video recordings of this experiment andmany simila
2007).
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observable dynamics of the system are time-invariant. This distinction
is warranted because landslide behavior commonly involves a sepa-
ration of time scales. Large-scale landslide motion evolves over the
macroscopic time scale tmacro ~ (L/g)1/2, as noted in Sections 3.1 and
3.2, whereas mesoscopic grain interactions occur on a time scale
given by the reciprocal of the shear rate (Goldhirsch, 2003). The
heheadgate of theUSGSdebris-flowflume. Panels (A) and (B) showflow front at times 0.8
5 s after headgate began to open. Flume is 95m long and2mwide.Most of theflume slopes
r experiments are viewable at http://pubs.usgs.gov/of/2007/1315/ (see Logan and Iverson,
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Fig. 8. Close-up stop-action photograph of an idealized mass-movement experiment in
which a water-submerged, close-packed array of cylindrical fiberglass rods (each with di-
ameter 1.9 cm) moves steadily from right to left across the surface of a similar array,
resulting in momentary hydroplaning caused by transient support of the moving array’s
entire weight by basal pore-fluid pressure. Device visible at top of image is a specially fab-
ricated LED digital timer with resolution 0.01 s (see Iverson and LaHusen, 1989).
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depth-averaged shear rateγ
�
maybe estimated asγ

� ∼u=H, and becasue ū
scales with (Lg)1/2, the time scale associated with the reciprocal shear
rate may be estimated as tmeso ~ H/(Lg)1/2. Thus, the ratio of the time
scales for shear deformation and evolution of downslope landslide mo-
tion may be expressed as

tmeso

tmacro
∼H= gLð Þ1=2

L=gð Þ1=2 ¼ H
L

ð10Þ

The timescale ratio therefore reduces to the geometric ratioH/L that ap-
pears in Eqs. (7) and (9). Becausemany landslides anddebrisflowshave
geometries that satisfyH/L b b 1 (Fig. 3), separation of the time scales for
internal shear deformation and evolution of macroscopic landslide or
debris-flow motion is commonly justified.

Dimensional analyses of steady, uniform shear flows can build on a
foundation established by Savage’s (1984) analysis of dry granular
flows. To have relevance for landslides and debris flows, however,
Savage’s (1984) analysismust be generalized to include the effects of in-
tergranular fluid. Making this generalization, the mixture shear stress
τzx and normal stress τzz on planes of shearing are postulated to be func-
tions of 22 variables:

τzx; τzz ¼ f 6 γ
�
; υ2
D E1=2

; ω2
D E1=2

;H; g;m;ϕ; k;ρs;ρ f ; Es; E f ; δs; ζ s; es;λs; ξs; μ f ; Γ f ; c f

� �

ð11Þ

Variables in Eq. (11) that did not appear in Sections 3.1 and 3.2 are the
one-dimensional mixture shear rate, γ

�
, the translational and rotational

components of root-mean-square local grain velocities, 〈υ2〉1/2 and
〈ω2〉1/2, thefluid-phase surface tension, Γf, and a host of solid grain prop-
erties, including the elastic bulkmodulus, Es, coefficient of restitution, es,
modal grain diameter, δs, dispersion of grain diameters, ζs, grain spheric-
ity, λs, and grain angularity, ξs (Table 1). Even this extended list of vari-
ables is too brief to characterize the complexity of some natural grain ‐

fluidmixtures, but it provides an indication of the range of complexities
involved.

The choice of fundamental scales influences the outcomeof a dimen-
sional analysis of (11). The fundamental time scale is clearly given by
the reciprocal of the shear rate, 1= γ

�
, as noted above. One choice for

the fundamental length scale is themodal grain diameter, δs, and the as-

sociated mass scale is then ρsδs
3. These choices lead to a Bagnold stress

scaling, wherein τzx and τzz each scale with ρsδ
2γ

� 2
(cf. Bagnold, 1954;

Hunt et al., 2002). Alternatively, if the fundamental length scale is cho-
sen as H, then the associated scale for stresses is ρsgH. This gravitational
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stress scalingmay be a more appropriate choice for mass movements in
which stress generation is dominated by enduring grain contacts rather
than by the binary grain collisions considered by Bagnold (1954). Here,
the implications of each of these scaling choices are considered in turn.

Adopting the Bagnold stress scaling and carrying out a dimensional
analysis in the manner of section 3.1 reduces Eq. (11) to

τzx
ρsδ

2γ
� 2 ;

τzz
ρsδ

2γ
� 2 ¼ f 7

 
υ2
D E1=2
δs γ

� ;
ω2
D E1=2
δs γ

� ;
H
δs

;
k
δs

2 ;
ρ f

ρs
;

g

δsγ
� 2 ;

Es
ρsδ

2γ
� 2 ;

E f

ρsδ
2γ

� 2 ;
μ f

ρsδ
2 γ

� ;

Γ f

ρsδ
2γ

� 3 ;
c f

ρsδ
2γ

� 2 ;m;ϕ; ζ s; es;λs; ξs

!
:

ð12Þ

This relationship involves 19 dimensionless Π groups and provides
clear evidence that even simple experiments with complex granular
mixtures can be difficult to design in way that will yield unambiguous
conclusions about the mechanisms that generate stress. On the other
hand, if experiments employ mixtures of identical rigid spheres fully
immersed in an incompressible Newtonian liquid, thenmany of the var-
iables in Eq. (12) are irrelevant, and the equation reduces to a signifi-
cantly simpler form:

τzx
ρsδ

2γ
� 2 ;

τzz
ρsδ

2γ
� 2 ¼ f 8

υ2
D E1=2
δs γ

� ;
ω2
D E1=2
δs γ

� ;
H
δs

;
k
δs

2 ;
ρ f

ρs
;

g

δsγ
� 2 ;

μ f

ρsδ
2 γ

� ;m;ϕ; es

0
B@

1
CA

ð13Þ

Interpretation of Eq. (13) is facilitated by performing some simple

algebraic manipulations to reframe three of theΠ groups. First, g=δsγ
� 2

can be inverted to form a Savage number, NSav ¼ δsγ
� 2
=g, which indi-

cates whether grain interactions are likely to be dominated by inertial

collisions or enduring gravitational contacts. Second, k=δs2 can be com-

bined with μ f =ρsδ
2 γ

�
to form a Darcy number, NDar ¼ μ f =ρsk γ

�
, which

describes the tendency for restriction of pore-fluid flow to impede rear-

rangement of grains during shearing. Finally, μ f =ρsδ
2 γ

�
is a reciprocal

Stokes number, which indicates the degree towhich pore-fluid viscosity
dampens grain inertia and consequent grain collisions (Raju and
Meiburg, 1995). The Savage number, Darcy number and Stokes number
have been used previously to categorize regimes of shear behavior in
debris flows (Iverson, 1997), but this categorization is predicated on
use of the Bagnold stress scaling noted above.

It is simple to rescale Eq. (13) to focus on the alternative regime in
which enduring, gravitational grain contacts dominate stress genera-
tion. The rescaling can be accomplished by multiplying all parameters

in Eq. (13) by ρsδ
2γ

� 2
=ρsgH (except for the last three parameters,

which are intrinsically dimensionless). The result is

τzx
ρsgH

;
τzz
ρsgH

¼ f 9
υ2
D E1=2

δs γ
�

gH
;

ω2
D E1=2

δs γ
�

gH
;
δsγ

� 2

g
;
kγ

� 2

gH
;
ρ f δs

2γ
� 2

ρsgH
;
δs
H
;
μ f γ

�

ρsgH
;m;ϕ; es

0
B@

1
CA

ð14Þ

This expression includes the Savage number NSav ¼ δsγ
� 2
=g and the

length-scale ratio δs/H that were identified in Eq. (13), reflecting the
universal importance of these quantities.

Three new parameters on the right-hand side of Eq. (14) also de-

serve emphasis. First, the parameter ρ f δs
2γ

� 2
=ρsgH can be multiplied

by the density ratio ρs/ρf to obtain the square of an inertia number de-
fined as NI ¼ δs γ

�
=
ffiffiffiffiffiffiffi
gH

p
. A similar inertia number has been identified

as a key parameter governing the effective rheology of dense granular
flows that lack significant fluid effects (GDR MiDi, 2004; Forterre and
d debris-flow experiments, Geomorphology (2015), http://dx.doi.org/
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Pouliquen, 2008). The inertia number is closely related to the Savage
number, but it additionally accounts for the effects of confining pressure
that depends on the total flow thickness, H. Second, the parameter μ f γ

�

=ρsgH in Eq. (14) is comparable to a viscous number Nv that has been
identified as a key parameter governing the effective rheology of
dense grain − fluid mixtures in which fluid viscosity is significant
(Cassar et al., 2005; Boyer et al., 2011). Themeaning of the third newpa-

rameter in Eq. (14), kγ
� 2
=gH, is relatively obscure, but its interpretation

can be clarified by dividing it by NI
2 ¼ δs2γ

� 2
=gH. This manipulation re-

duces kγ
� 2
=gH to the simple ratio k=δs2, which appears in Eqs. (12) and

(13) and reflects the influences of grain size and packing on
permeability.

The scaling relationships summarized in Eqs. (12), (13) and (14) hold
some clear implications for design of mesoscale experiments aimed at
clarifying the effective rheology and mechanisms of stress generation in
shearing grain − fluid mixtures. Equation (12), for example, demon-
strates that a large number of dimensionless parameters might influence
the behavior of geological mixtures involving diverse grains. Equa-
tions (13) and (14) show that better prospects exist for evaluating the be-
havior of idealized mixtures containing nearly identical spherical grains.
The experiments of Boyer et al. (2011), for example, demonstrated that
dense mixtures of liquid and uniform spheres exhibit Coulomb-like be-
havior (in which shear stress is proportional to effective normal stress)
for a wide range of shear rates. However, these experiments also showed
that the solid volume fractionm and Coulomb friction angle ϕ varied sys-
tematically as a function of the viscous number, NV ¼ μ f γ

�
=ρsgH. As NV

increased,m smoothly declined and ϕ smoothly increased, giving rise to
a pseudo-viscous behavior regulated by normal stress. This behavior can
be viewed as a form of Coulomb friction that is sensitive to rate- and
state-dependent feedbacks (Iverson and George, 2014).

The existence of feedbacks that influence effective rheology indi-
cates that the very notions of a prevalent landslide rheology or a
debris-flow rheology may be flawed, because local material behavior
may evolve in response to evolving large-scale dynamics (Iverson,
2003b; Iverson et al., 2010). Effects of such evolution are difficult to
evaluate using dimensional analysis and are better addressed through
formulation and normalization of differential equations that describe
landslide and debris-flow dynamics.
4. Scaling inferred from differential equation normalization

Normalization of differential equations that describe the evolving
dynamics of landslides and debris flows leads to scaling inferences
that are more precise than those obtained from dimensional analy-
sis. Similarly precise inferences result, for example, from normaliza-
tion of the Navier-Stokes equations describing gravity-driven flow of
a pure viscous fluid, which shows that the Reynolds and Froude
numbers are the relevant scaling parameters for this phenomenon
(Bird et al., 1960). However, scaling inferences obtained from differ-
ential equations are only as general – and as accurate – as the equa-
tions themselves.

Here I focus on scaling inferences obtained from a set of six differ-
ential equations that describe the depth-integrated dynamics of
water-saturated landslides and debris flows that move across rigid,
planar beds. The equations describe a system in which the thickness
h(x, y, t), the three vector components of the depth-integrated veloc-
ity, ū(x, y, t), v x; y; tð Þ , and w x; y; tð Þ , the solid volume fraction,
m(x, y, t), and the basal pore-fluid pressure, pb(x, y, t), coevolve as
functions of time, t, and the areal position coordinates, x and y
(Fig. 3). Derivations, numerical solutions, and tests of the differential
equations are presented elsewhere (George and Iverson, 2014;
Iverson and George, 2014).

The choice of fundamental scales influences the outcomeof equation
normalization. Here, as in the dimensional analyses of Sections 3.1 and
Please cite this article as: Iverson, R.M., Scaling and design of landslide an
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3.2, I use scales appropriate for a debris flow or landslide with a charac-
teristic length L and thickness H (Fig. 3). Because downslope motion
of a landslide or debris flow is driven by gravitational potential, the
scale is (gL)1/2 for the x-velocity component ū and y-velocity compo-
nent v, whereas the scale for the z-direction velocity componentw is
(gH)1/2 (cf. Savage and Hutter, 1989). The scale (gH)1/2 also applies
for the depth-integrated debris dilation rate D, because D ≠ 0 indi-
cates that relative motion of solid and liquid phases occurs in the z
direction (Iverson and George, 2014). The length scale L divided by
the downslope velocity scale yields the time scale for downslope
debris-flowmotion, (L/g)1/2. The scale for ρ is the initial static debris
bulk density ρ0 associated with the initial solid volume fraction m0:
ρ0 = m0ρs + (1 − m0)ρf. The value m0 also serves as the scale for
m. Finally, the scale for all depth-averaged stress components (τxx;
τyy; τzz; τyx; τzx; and τyz) and for the basal pore pressure pb is ρ0gH.
Use of these scales leads to definition of the following dimensionless
quantities, denoted by asterisks:

x� ¼ x=L; y� ¼ y=L; z� ¼ z=H; t� ¼ t= L=gð Þ1=2;
u� ¼ u= Lgð Þ1=2; v� ¼ v= Lgð Þ1=2; w� ¼ w= gHð Þ1=2; h� ¼ h=H;
D� ¼ D= gHð Þ1=2; m� ¼ m=m0; ρ� ¼ ρ=ρ0; p� ¼ pb=ρ0gH;
τxx

�
; τyy

�
; τzz

�
; τyx

�
; τzx

�
; τyz

�� �
¼ τxx; τyy; τzz; τyx; τzx; τyz
� �

=ρ0gH

ð15Þ

Substitution of Eqs. (15) into the dimensional model equations
derived by Iverson and George (2014) yields normalized forms of
the equations. The normalized equations describing conservation of
the x, y, and z components of momentum may be written as

ρ� ∂ h�u�ð Þ
∂t� þ

∂ h�u�2� �
∂x� þ ∂ hu�v�ð Þ

∂y�

2
4

3
5−ε−1=2 ρ�−

ρ f

ρ0

� �
D�u�

¼ ρ�h�
gx
g
þ ε

∂ τyx
�h�

� �
∂y� −∂ τxx

�h�ð Þ
∂x�

2
4

3
5−τzx

� 0ð Þ
ð16Þ

ρ� ∂ h�v�ð Þ
∂t� þ

∂ h�v�2
� �
∂y� þ ∂ hv�u�ð Þ

∂x�

2
4

3
5−ε−1=2 ρ�−

ρ f

ρ0

� �
D�v�

¼ ρ�h�
gy
g
þ ε

∂ τxy
�h�

� �
∂x� −

∂ τyy
�h�

� �
∂y�

2
4

3
5−τzy

� 0ð Þ
ð17Þ

and

ε1=2ρ�h�
∂w�

∂t� þ u� ∂w�

∂x� þ v�
∂w�

∂y�
� �

¼ ρ�h�
gz
g
þ ε

∂ τxz
�h�ð Þ

∂x� þ
∂ τyz

�h�
� �
∂y�

2
4

3
5−τzz

� 0ð Þ

ð18Þ

where

ε ¼ H=L ð19Þ

is a fundamental length-scale ratio that satisfies ε b b 1 in most land-
slides and debris flows (cf., Savage and Hutter, 1989).

The normalized mass-conservation equations for the solid − fluid
mixture and for the solid grains alone may be expressed as

ρ� ∂h�

∂t� þ ∂ h�u�ð Þ
∂x� þ ∂ h�v�ð Þ

∂y�
� �

¼ ε−1=2 ρ�−
ρ f

ρ0

� �
D� ð20Þ

and

ρ� ∂ h�m�ð Þ
∂t� þ ∂ h�u�m�ð Þ

∂x� þ ∂ h�v�m�ð Þ
∂y�

� �
¼ ε−1=2 −

ρ f

ρ0

� �
D�m� ð21Þ
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If these two equations are satisfied, then an analogous mass-
conservation equation for the fluid phase is automatically satisfied
(Iverson and George, 2014).

The normalized equation describing evolution of the basal pore-fluid
pressure may be expressed as

∂p�

∂t� þ u� ∂p�

∂x� þ v�
∂p�

∂y� þ
L=gð Þ1=2

μ f H
2=kE

� � 3
h�2

p�−
ρ f

ρ0

gz
g
h�

� �

¼ ε−1=2 D�

4ρ�
ρ f

ρ0

gz
g

ρ�−
ρ f

ρ0

� �
− gz

g
h�

4
∂u�

∂x� þ
∂v�

∂y�
� �� �

3ρ� þ ρ f

ρ0

� �

−ε−1 E
ρ0gH

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u�2 þ v�2

p
h�

m0m
�− mcrit

1þ ffiffiffiffi
N

p
� �

ð22Þ

wheremcrit is a static, critical-state value ofm (i.e., the equilibriumvalue
of m following large deformations), and N is a dimensionless state pa-

rameter defined as N ¼ μ f γ
�
= ρsγ

� 2δs
2 þ ρgzh−pb

h i
. This definition

shows that N is a generalized version of the viscous number NV de-
scribed in section 3.3 (Iverson and George, 2014).

Finally, the model includes a closure equation that employs Darcy’s
law and mass conservation to relate the depth-averaged dilation rate
D(x, y, t) to the basal pore-fluid pressure. The normalized version of
this closure equation is

D� ¼ ε1=2
ρ0gH
E

L=gð Þ1=2

μ f H
2=kE

� �
0
@

1
A p�−

ρ f

ρ0

gz
g
h�

� �
ð23Þ

Mathematically, the set of normalized model equations (Eqs. 16
through 23) is rather complicated, but the equations contain relatively
few dimensionless parameters. Values of these parameters, in addition
to initial conditions, dictate the behavior of solutions (George and
Iverson, 2014). Three of the parameters, gx/g, gy/g, and gz/g, reflect the
extrinsic influence of the local slope angle θ and orientation, which are
independent of the properties of a landslide or debris flow. The remain-
ing eight parameters express the influence of landslide or debris-flow
geometery or material properties:

ε; mcrit ;
ρ f

ρ0
;

L=gð Þ1=2
μ f H

2=kE
;

ρ0gH
E

; ϕ;
ρ0H gLð Þ1=2

μ f
;

ρ0gH
cf

ð24Þ

The first five of these parameters appear explicitly in Eqs. (16) through
(23), whereas the last three parameters are contained implicitly in
Eqs. (16) and (17) as a result of boundary shear tractions τzx(0) and
τzy(0) that depend on the granular Coulomb friction angle, ϕ, and on
the cohesion cf and viscosity μf of pore fluid thatmay contain suspended
mud particles. Importantly, each of the dimensionless parameters listed
in Eq. (24) – or closely related surrogates for these parameters – also ap-
pears in Eq. (9), which was obtained by different means. Only a few
quantities in Eq. (9) do not appear in Eq. (24), and these quantities are
either embedded implicitly in the definitions provided in Eq. (15), or
they are superfluous in the present context (i.e., in a landslide or debris
flow that is saturated with water). The agreement of the results in
Eq. (9) and Eq. (24) illustrates the fact that dimensional analysis and dif-
ferential equation normalization provide synergistic tools for inferring
scaling relationships.

From the standpoint of experiment design, Eq. (9) and Eq. (24) yield
the same key inference: downsizing fromprototype scale to experiment
scale is complicated by the fact that the scalingparameter (L/g)1/2/(μfH2/
kE) decreases in proportion to H2, whereas the parameter ρ0H(gL)1/2/μf
increases in proportion toH, and each parameter contains the pore-fluid
viscosity μf in its denominator. As detailed in section 3.2, these trends
point to an inevitable tendency for miniaturized laboratory landslides
to exhibit disproportionately small effects of pore-pressure evolution
Please cite this article as: Iverson, R.M., Scaling and design of landslide an
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and disproportionately large effects of pore-fluid shear resistance.
Therefore, in small-scale experiments, any excess pore-fluid pressure
generated by landslide or debris-flow motion will dissipate too rapidly
to mimic behavior in full-scale prototypes.

Differential equation normalization yields additional insight that
cannot be obtained from dimensional analysis. The normalization de-
scribed above demonstrates the role of the length-scale ratio ε = H/L,
which appears in Eqs. (16) through (23). Because ε b b 1 applies in
many landslides and debris flows (Fig. 3), terms containing the factor
ε or ε1/2 in Eqs. (16) through (23) are generally small in comparison to
other terms. On the other hand, the term in Eq. (22) containing ε−1 is
the single most important term in the model. It demonstrates the over-
arching importance of pore-pressure evolution coupled to changes inm.
Such inferences regarding the probable magnitudes of various physical
effects are useful for targeting objectives in experiments and also for
guiding numerical computations. In some cases the high-order terms
containing ε or ε1/2 in Eqs. (16)-(23) may be entirely negligible.

5. Initial and boundary conditions

The foregoing results emphasize criteria for evaluating the dynamic
similarity of water-laden landslides and debris flows at laboratory and
field scales. These criteria are crucial for guiding experiment design,
but they are not the only important considerations. Other key concerns
involve the effects of initial and boundary conditions.

Effects of initial conditions can be evaluated in a simpleway by com-
paring the initial geometries and force balances of geomorphic proto-
types and laboratory models. Most natural landslides and debris flows
evolve from static masses of material that are poised in states of me-
chanical equilibrium on slopes. Movement generally begins in response
to a small perturbation of this balanced initial state (George and Iverson,
2014). Such perturbations may result from gradual changes in pore-
water pressure or gradual erosion of the toe of a slope, for example. By
contrast, many laboratory mass-movement experiments use dam-
break initial conditions, in which granular debris is retained behind a
gate and then suddenly released (e.g., Iverson et al., 2010; Mangeney
et al., 2010). This dam-break type of initial condition is both convenient
and replicable, but it violates geometric similarity with most geomor-
phic prototypes. Moreover, in dam-break experiments a large force im-
balance develops almost instantaneously as a free face of debris is
exposed during opening of the headgate, and the flow front is driven
rapidly downslope by this force imbalance (e.g., Figs. 4 and 6). Thus, al-
though dam-break experiments with either wet or dry debris can have
great value for testing mathematical models, they cannot be used as
scale models of geomorphic prototypes. This problem is most severe if
the height of the dam face is large enough to be comparable to the
total height descended by an experimental landslide or debris flow.

A different type of shortcoming exists in dynamic steady-state ex-
periments, which are commonly used to investigate debris-flow rheol-
ogy (e.g., Parsons et al., 2001). Imposing an initial steady state
excludes the physical effects summarized in the key dimensionless
time scale ratio (L/g)1/2/(μfH2/kE) identified in Eqs. (9) and (24). In
such experiments, any tendency for the state of deforming grain-fluid
mixtures to evolve is removed a priori. Thus, although steady-state rhe-
ology experiments are important in many contexts, they may lack the
necessary degrees of freedom to reveal crucial features of landslide
and debris-flow dynamics (Iverson, 2003b).

Boundary conditions also play a critical role in designing experi-
ments intended to improve understanding of landslides and debris
flows. Most experiments performed to date have involved motion
across rigid beds (e.g., Iverson et al., 2004, 2010; Pudasaini and Hutter,
2007). By contrast, many natural landslides and debris flows travel
across deformable, erodible beds, and interactions with such beds can
produce profound feedbacks, particularly if the bed sediment is wet
(Fig. 9). Scaling considerations that apply to a moving tabular mass
also apply to a layer of static sediment that exchanges momentum
d debris-flow experiments, Geomorphology (2015), http://dx.doi.org/
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Fig. 9. Photograph of an experimental debris flow growing dramatically in mass and mo-
mentum as it interacts with a wet, erodible sediment bed in the USGS debris-flow flume
on 19 September 2006. The highly agitated flow front advancing beneath the flume-span-
ning crossbeam carries some light-colored blocks of foam thatwere used to seal the flume
headgate prior to release of the debris flow (see Iverson et al., 2011). Video recordings of
this experiment and many similar experiments are viewable at http://pubs.usgs.gov/of/
2007/1315/ (see Logan and Iverson, 2007).
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with that mass during erosion or deposition by a landslide or debris
flow (Iverson, 2012; Iverson and Ouyang, 2015). This scaling, along
with experimental data, indicates that pressurization of pore water in
overridden basal sediment may be a very effective mechanism for re-
ducing basal friction and enhancing landslide and debris-flow runout,
provided that the sediment bed and the overriding mass are thick
enough (Iverson et al., 2011). This type of scale-dependent friction re-
duction points to a simple explanation for the surprisingly long runouts
of many large landslides (Iverson, 1997; Legros, 2002).

6. Concluding discussion: design and relevance of geomorphological
experiments

Experimental investigations of landslides and debris flows have di-
rect geomorphological relevance only if they employ appropriate scal-
ing and initial and boundary conditions. Many experiments and
analyses performed over the past few decades to investigate granular
flows and grain− fluid physics have limited relevance for understand-
ing and interpreting the behavior of landslides and debris flows – be-
cause the scale, initial conditions, or boundary conditions are
inappropriate. Indeed, designers of landslide and debris-flow experi-
ments must confront scaling problems that designers of granular phys-
ics experiments can commonly disregard.

One key difference between landslide and debris-flow experiments
and many granular physics experiments arises from the differing char-
acters of the grains themselves. The goal of physics experiments is gen-
erally to distil a phenomenon to its simplest possible form. For that
reason, such experiments commonly employ grains consisting of iden-
tical rigid spheres. By contrast, grains in landslides and debris flows
Please cite this article as: Iverson, R.M., Scaling and design of landslide an
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typically consist of irregular rock fragments with sizes that span many
orders of magnitude. An assemblage of incompressible spheres in con-
tact with one another has no elastic component of compressibility be-
cause any volume change must be accommodated by irreversible slip
at grain contacts. By contrast, an assemblage of irregular, incompress-
ible grains can exhibit a finite bulk elastic compressibility (1/E) because
some porosity change can be accommodated by elastic shear distortions
of angular grain contacts. Thus, the presence of E in the crucial timescale
ratio (L/g)1/2/(μfH2/kE) identified in the foregoing sections of this paper
provides evidence that evolving, gravity-driven flows of natural sedi-
ment mixtures may exhibit behaviors that differ fundamentally from
those involving mixtures of uniform, incompressible spheres.

Other difficulties in designing relevant landslide and debris-flow ex-
periments arise as a result of the physical properties of the pore fluid.
Sediment mixtures commonly undergo significant porosity changes as
they are loaded or as they shear, and these porosity changes produce
pore-pressure changes that are proportional to the pore-fluid viscosity,
μf. The effect of pore-fluid viscosity on pore pressure (and hence on fric-
tional resistance tomotion) increaseswith landslide or debris-flow size,
as indicated by the factor μfH2 in (L/g)1/2/(μfH2/kE). On the other hand,
the effect of pore-fluid viscosity and cohesive yield strength on mass-
movement resistance decreaseswith landslide or debris-flow size.Min-
iaturized experiments consequently exhibit pore-fluid pressure effects
that are too small and pore-fluid shear resistance effects that are too
large, relative to those exhibited in large-scale field phenomena. An ex-
acerbating factor is that natural mixtures of irregular grains have hy-
draulic permeabilities (k values) that are smaller than those of
assemblages of identical spheres because small grains impede the
flow of fluid between larger grains. The low k values of natural sedi-
ments increase solid-fluid drag and the potential for development of
persistent high pore-fluid pressures in gravity-driven flows of grain-
fluid mixtures.

The scaling considerations summarized here imply that, although ex-
perimentation can contribute greatly to understanding of landslides and
debris flows, experimentsmust be designedwith care, and experimental
results must be interpreted with a healthy dose of skepticism. In partic-
ular, the geomorphological insight gained from experiments cannot be
judged on the basis of superficial morphometric similarities of experi-
mental and natural landforms. Consider a miniature debris-flow fan
built by flows involving b 1 m3 of muddy sand in a laboratory. Although
the laboratory fan may superficially resemble a natural debris-flow fan
built by gravel- and boulder-rich flows that are 106 times larger, motion
of the flows that formed the laboratory fan may be resisted largely by
fluid viscosity, cohesion, and surface tension, whereas motion of field-
scale debris flows is resisted largely by Coulomb friction regulated by
evolving pore-fluid pressure (Iverson, 2003b). Thus, in landslide and
debris-flowexperiments – and perhaps inmany other geomorphological
experiments – similarity of form does not imply similarity of process.
Scaling analyses of experiment dynamics therefore add perspective
that cannot be attained by inspection of experiment outcomes alone.
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