

1Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the
U.S. Government.

An unstructured preconditioned conjugate gradient solver for MODFLOW-2005
with support for general-purpose graphics processing units (GPGPU)

Jeremy T. White1, J.D. Hughes2

1 U.S. Geological Survey, jwhite@usgs.gov, Tampa, FL, USA
2 U.S. Geological Survey, jdhughes@usgs.gov, Tampa, FL, USA

ABSTRACT

An unstructured preconditioned conjugate gradient (UPCG) solver has been developed to improve the
solution times of MODFLOW-2005 by utilizing general-purpose graphics processing units (GPGPU). The
UPCG solver uses a compressed row storage scheme and includes Jacobi and zero fill-in incomplete and
modified-incomplete lower upper (LU) factorization preconditioners. The UPCG solver includes an option
to execute a double-precision version of the solver on either the central processing unit (CPU) or a
combination of the CPU and GPGPU. The solver utilizes the Compute Unified Device Architecture
(CUDA) Basic Linear Algebra Subprograms (BLAS) developed by NVIDIA for calculations performed on
the GPCPU. For simulations utilizing the GPGPU, all dot-product, element-by-element vector operations,
and matrix-vector operations are performed on the GPGPU; extensive memory copies between the CPU
and GPCPU are only performed on the first iteration of the UPCG solver and are performed after
satisfying (a) user-specified infinity-norms for head and flow or (b) a user-specified total number of
iterations is exceeded.

The efficiency of the UPCG solver for GPGPU and CPU solutions was benchmarked using several
steady-state simulations of unconfined aquifers with millions of active grid cells. Testing indicates
significant efficiency gains can be achieved through the use of GPGPUs when (1) memory copies
between the CPU and GPGPU are optimized, (2) the percentage of time performing memory copies
between the CPU and GPGPU is small relative to the calculation time, (3) high-end GPGPU cards (e.g.
NVIDIA FERMI) capable of high-speed memory access and double-precision calculations are utilized,
and (4) CPU-GPGPU combinations are used to accommodate sequential operations that are not
amenable to parallelization on the GPGPU.

INTRODUCTION

MODFLOW-2005 (Harbaugh, 2005) is a finite-difference groundwater flow model that has been
effectively applied to two- and three-dimensional problems. MODFLOW-2005 uses a cell-centered finite-
difference (CCFD) approximation and a rectilinear grid. Model computational burdens are often
increased by a factor of four or two with increased horizontal or vertical discretization, respectively. To
date, larger model sizes have been accommodated through a combination of faster CPUs and better
linear solvers. The model includes several powerful linear solvers including the preconditioned conjugate
gradient (PCG2) linear solver (Hill 1990), the link-algebraic multi-grid (LMG) linear solver (Mehl and Hill
2001), the geometric multi-grid (GMG) linear solver (Wilson and Naff, 2004), and the preconditioned
conjugate gradient with improved nonlinear control (PCGN) linear solver (Naff and Banta, 2008).

Parallelization of linear solvers is another approach for accommodating larger model sizes. Dong and Li
(2009) parallelized the MODFLOW PCG solver using the OpenMP (OpenMP Architecture Review Board,
2005) programming paradigm and observed a reduction by as much as a factor of five in run times on
machines with multi-core CPUs. Naff (2008) developed a parallelized linear solver for MODFLOW using
the Message Passing Interface (MPI) standard and observed a reduction by a factor of seven in run
times. In addition to OpenMP and MPI, GPGPUs also present an option for linear solver parallelization.
In comparison to CPUs of similar price, GPGPUs are much faster, have higher bandwidth, and typically
have more cores (e.g., 448 in the case of the 1NVIDIA® Tesla™ C2050 and C2070 GPGPUs). Use of
GPGPUs to parallelize linear solvers for MODFLOW-2005 is attractive because of the availability of the
CUDA (Compute Unified Device Architecture) capable NVIDIA GPGPUs, which support development of
parallel GPGPU code using Dynamic Link Libraries (DLLs) exposed through an

627

MODFLOW and More 2011: Integrated Hydrologic Modeling - Conference Proceedings, Maxwell, Poeter, Hill, & Zheng - igwmc.mines.edu

application programming interface (API). In this paper, we evaluate MODFLOW run-time reductions for
unconfined groundwater flow problems that result from GPGPU parallelization of an unstructured PCG
linear solver. We also evaluate the performance of the UPCG linear solver using Jacobi and incomplete
lower upper LU preconditioners on the CPU and GPGPU.

CONJUGATE GRADIENT LINEAR SOLVER

The conjugate gradient (CG) iterative method is a popular method for solving large systems of linear
equations of the form,
 =Ax b (1)

where A is a known square, symmetric, positive-definite matrix, x is an unknown vector, and b is a known
vector. The groundwater flow equation can be cast in a form identical to equation (1) where A would be a
conductance matrix [L2/T], x would be the groundwater head h [L], and b would be the right-hand side
representing known fluxes [L3/T]. The pseudocode for the PCG method as applied in MODFLOW to the
groundwater flow equation is,

- -

- - -

- - -

=
=

=
=
=

0 0 0

1 1

1 1 1

0

1 1

 Compute = for some initial guess
 1, 2, . . .
 1
 2
 1
 3

 4 =

i i
T

i i i

i

i i i

i

ρ
i

β ρ ρ

r b - Ah h
for

solve Mz r
r z

if
p z

else

- - -

-

-

-

= +

=
=
= +
= -

2

1 1 1

1

1

1

 5

 6
 7
 8
 9
10 check convergence; continue if necessary

i i i i

i i
T

i i i i

i i i i

i i i i

β

α ρ
α

α

p z p
end if
q Ap

p q
h h p
r r q

end

(2)

where r is the residual [L3/T], i is the linear iteration index, M is the preconditioned form of A [L2/T], z is the
solution resulting from application M to r [L], p is the orthogonal search direction [L], β is a scalar used to
determine the next search direction [-], q is the residual change resulting from multiplication of A and the
search direction p [L3/T], α is the step-size [-].

All linear iteration steps, except for line 1 in (2), include operations that are independent for each active
groundwater cell. In cases where no preconditioner (z = r) or a Jacobi preconditioner (M = I D-1 -- where I
is the identity matrix and D-1 is a matrix that only contains the inverse of the diagonal elements of A) is
applied, line 1 in (2) is highly parallelizable. For most practical problems, these preconditioners will not
significantly improve the spectral condition of A, and therefore will not reduce the number of linear
iterations (i) required to achieve convergence (Li and Saad, 2010). As a result, better preconditioners,
such as incomplete factorizations of A, are generally applied. Unfortunately, preconditioning using
incomplete factorization requires a forward substitution (Ly = b -- where L is the lower triangular portion of
A) followed by a backward substitution (Uz = y – where U is upper triangular portion of A) and is difficult
to parallelize efficiently (Barrett et al., 1994).

NUMERICAL IMPLEMENTATION

The GPGPU implementation of the UPCG linear solver was evaluated on a NVIDIA Tesla T20 GPGPU
with 3 GB of RAM and is capable of 515 GFLOPs/sec of double precision processing performance
(compute capability 2.0). The GPGPU was mounted in a 16-pin PCI local bus on a quad core Intel Xeon

628

MODFLOW and More 2011: Integrated Hydrologic Modeling - Conference Proceedings, Maxwell, Poeter, Hill, & Zheng - igwmc.mines.edu

3GHz CPU with 6 GB of RAM and running a 64-bit version of the Windows XP OS (Service Pack 2). The
UPCG linear solver was coded to allow solution of the groundwater flow equation on either the CPU or
GPGPU using double precision operations via the UPCG control file.

Available CUDA matrix-vector products and level-1 BLAS operations were used to parallelize the GPGPU
capabilities of the UPCG linear solver. These routines are accessed via the CUDA DLLs and are invoked
by a C++ library, statically linked to MODFLOW at compile time. Because of the serial nature of forward
and back substitution operations used by the ILU0 and MILU0 preconditions, application of these
preconditioners is performed on the CPU. The results of the matrix-vector product, calculated by
application of the ILU0 and MILU0 preconditioners on the CPU, is accessed as page locked memory by
the GPU to achieve higher memory bandwidth.

Although the connectivity of the finite-difference discretization used in MODFLOW-2005 uses a fixed 5-
and 7-point stencil in two- and three-dimensions, respectively, the PCG method in (2) was coded to use
an unstructured, compressed row storage (CRS) format (Barrett, 1994) with the diagonal element in the
first position in each row to facilitate use of CUDA GPGPU libraries. The UPCG linear solver includes
Jacobi, zero-fill incomplete LU (ILU0), and modified zero-fill incomplete LU (MILU0) preconditioners
(Sadd, 2003). The CRS format is poor for system utilization because of slow memory access patterns on
triangular solves performed as part of application of the ILU0 and MILU0 preconditioners (line 1 in (2)).
The modified storage approach proposed by Smith and Zhang (2010) for the lower and upper entries of
the preconditioner has been implemented as an option in UPCG.

Infinity norms are used to evaluate convergence of the UPCG linear solver with respect to the change in
groundwater head (HCLOSE) and the r (RCLOSE). In MODFLOW, non-linearities are resolved using
Picard iteration. Picard iteration is implemented such that the A matrix is formulated using the latest
estimate of h and the h is updated using a linear solver. This process is continued until the change in h
and r is less than HCLOSE and RCLOSE, respectively, on the first iteration (i=1) of the linear solver or
the maximum number of outer (Picard) iterations is exceeded.

TEST PROBLEM DESCRIPTION

The performance of the GPGPU implementation of the
UPCG linear solver was evaluated using two different
test cases. The model domain of the test cases were
identical and represent a two-dimensional 1,000 m2
aquifer with constant heads on the left and right sides
and no-flow boundaries at the top and bottom. The
head value is specified as 10 m on the left side and 0 m
on the right side, which causes an ambient
groundwater flow field from left to right. Initial heads
were specified to be 0 m everywhere except along the
left side where initial heads were specified to be 10 m.
A single pumping well is located in the center of the
domain and withdraws groundwater at a constant rate
of 1,000 m3/d. There is no recharge or
evapotranspiration; all groundwater flow to the well is
provided by the constant-head boundaries. The bottom
of the aquifer is flat with a specified elevation of -30 m.

Case A is characterized by unconfined flow in a homogeneous aquifer with a hydraulic conductivity of 10
m/d and an aquifer thickness ranging from 15-40 m, depending on proximity to boundary conditions.
Case B is the same as Case A except that it has a heterogeneous hydraulic conductivity distribution. The
heterogeneous hydraulic conductivity distribution was generated using sequential Gaussian simulation
with an exponential variogram and a range of 1,000 m. The axis of anisotropy was rotated by 45 degrees
to the model grid and a 3:1 ratio of horizontal anisotropy was used. The hydraulic conductivity field was
generated using log-transformed (base 10) parameters. The log10 mean hydraulic conductivity value was

Figure 1. Domain and boundary
conditions for the two test cases and
hydraulic conductivity distribution used
in Case B

629

MODFLOW and More 2011: Integrated Hydrologic Modeling - Conference Proceedings, Maxwell, Poeter, Hill, & Zheng - igwmc.mines.edu

specified as 10 m/d, and the variance was specified as 0.5. The randomly generated hydraulic
conductivity field was sampled onto a regular grid with a 0.33 m cell size, 3,001 columns, and 3,001 rows
(Figure 1).

The two different test cases were evaluated using model domains discretized using 1,002,001 cells,
4,004,001 cells, and 9,006,001 cells. A heterogeneous field for each of the lower levels of discretization
was produced by sampling the original 3,001-by-3,001 field. The maximum number of iterations per
linear solver call was specified to be 50 and the maximum number of Picard iterations was specified to be
100 for all test cases to facilitate direct comparison among preconditioners. An HCLOSE value of 0.01 m
and an RCLOSE value based on the product of the cell area and a residual flow per unit area value of
0.01 m/d were specified for each test case. Jacobi, ILU0, and MILU0 preconditioners were evaluated for
each discretization for each test case. The unpreconditioned CG linear solver was also evaluated.
Furthermore, the modified storage approach of Smith and Zheng (2010) was evaluated.

DISCUSSION AND SUMMARY

CPU and GPGPU run times and run time reductions for all of the test cases evaluated are summarized in
Tables 1 and 2. The resulting number of CPU and GPGPU linear and Picard iterations for each test case
were the same. Run time reductions are largest for the unpreconditioned and Jacobi preconditioner
simulations but run times on the CPU and GPU for these simulations greatly exceed run times observed
using the other preconditioners. The maximum number of Picard and linear iterations were exceeded for
the unpreconditioned and Jacobi preconditioners for all simulations. The un-modified ILU0 only met
tolerances for the smallest homogenous test case, demonstrating the importance of compensating for
discarded entries in the factorization process. Run time reductions using the GPGPU/CPU combination
range from 1.75 to 2.0 for simulations using incomplete factorization preconditioners. The performance in
this case is limited by the speed of the data transfer rate between the device and host required during
each linear iteration for application of the preconditioner.

Cells
None Jacobi ILU0

CPU GPU Red. CPU GPU Red. CPU GPU Red.
1,002,001 409* 37.0* 11.0 445* 40.5* 11.0 386 221 1.75
4,004,001 1660* 133* 12.5 1790* 145* 12.3 3030* 1720* 1.76
9,006,001 3680* 265* 13.9 3960* 273* 13.5 6680* 3750* 1.78

Cells
MILU0 ILU0 Smith and Zhang MILU0 Smith and Zhang

CPU GPU Red. CPU GPU Red. CPU GPU Red.
1,002,001 33.6 19.5 1.72 378 212 1.78 29.5 15.6 1.90
4,004,001 178 102 1.75 2660* 1490* 1.78 158 85.4 1.85
9,006,001 519 301 1.72 5320* 2960* 1.80 415 221 1.88

 * did not meet convergence tolerance in 5000 linear iterations
Table 1. CPU and GPU run times (seconds) and run time reductions for homogeneous Case A.
(CPU = Central Processing Unit; GPU = Graphics Processing Unit; Red. = reduction)

Although it is easy to realize significant run time reductions using a GPGPU implementation of the UPCG
linear solver without a preconditioner or the Jacobi preconditioner (applied on the GPGPU), this is not a
fair comparison to standard CPU linear solvers with stronger preconditioners, such as PCG2, which
includes a modified incomplete Cholesky preconditioner. Through a combined use of the GPGPU and
application of incomplete LU factorization preconditioners on the CPU, it is possible to obtain a run time
reduction ranging from 1.7 to 2.0. This drop in performance of the GPGPU when compared to the
unpreconditioned or the Jacobi (applied on the GPGPU) highlights the need to eliminate CPU/GPGPU
data transfer during each linear iteration.

It is possible that the performance of the GPGPU implementation of the UPCG linear solver can be
further improved using 1) alternative storage formats, that improve memory access patterns and exploit
the fixed stencil resulting from the CCFD approximation used in MODFLOW, and/or 2) preconditioners

630

MODFLOW and More 2011: Integrated Hydrologic Modeling - Conference Proceedings, Maxwell, Poeter, Hill, & Zheng - igwmc.mines.edu

that are more amenable to parallelization (such as a least-squares polynomial or multi-grid preconditioner
(Ashby 1996)) but are comparable in quality to the MILU0 preconditioner.

Cells
None Jacobi ILU0

CPU GPU Red. CPU GPU Red. CPU GPU Red.
1,002,001 411* 37.5* 11.0 448* 40.6* 11.0 745* 429* 1.73
4,004,001 1660* 133* 12.5 1790* 145* 12.3 3120* 1770* 1.76
9,006,001 3690* 263* 14.0 3980* 300* 13.3 6720* 3780 1.78

Cells
MILU0 ILU0 Smith and Zhang MILU0 Smith and Zhang

CPU GPU Red. CPU GPU Red. CPU GPU Red.
1,002,001 76.9 44.5 1.72 730* 374* 1.95 67.4 35.2 1.91
4,004,001 420 239 1.75 2970* 1520* 1.96 369 188 1.97
9,006,001 1430 814 1.76 5920* 3020* 1.96 1250 642 1.95

 * did not meet convergence tolerance in 5000 linear iterations
Table 2. CPU and GPU run times (seconds) and run time reductions for heterogeneous Case B.
(CPU = Central Processing Unit; GPU = Graphics Processing Unit; Red. = reduction)

REFERENCES

Ashby, S.F., and R. D. Falgout, (1996), A parallel multigrid preconditioned conjugate gradient algorithm
for groundwater flow simulations, Nuclear Science and Engineering, 124(1), 145-159 p.

Barrett R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine,
C., Van Der Vorst, H., 1994. Templates for the Solution of Linear Systems, Building Blocks for
Iterative Methods, Philadelphia, Pennsylvania, SIAM, 124 p.

Dong, Y., Li, G., 2009. A Parallel PCG Solver for MODFLOW, Ground Water, 47: 845–850. doi:
10.1111/j.1745-6584.2009.00598.x

Harbaugh, A.W., 2005. MODFLOW-2005, the U.S. Geological Survey modular ground-water model -- the
Ground-Water Flow Process, U.S. Geological Survey Techniques and Methods 6-A16, variously
p.

Hill, M.C., 1990. Preconditioned conjugate-gradient 2 (PCG2), a computer program for solving ground-
water flow equations, U.S. Geological Survey Water-Resources Investigations Report 90-4048,
43 p.

Li, R., Saad, Y., 2010. GPU -accelerated preconditioned iterative linear solvers, Minnesota
Supercomputer Institute Report umsi-2010-112, University of Minnesota, Minneapolis, MN, 24 p.

Mehl, S.E., Hill, M.C., 2001. MODFLOW-2000, the U.S. Geological Survey modular ground-water model -
- User guide to the LINK-AMG (LMG) Package for solving matrix equations using an algebraic
multigrid solver, U.S. Geological Survey Open-File Report 01-177, 33 p.

Naff, R.L., 2008. Technique and Application of a Parallel Solver to MODFLOW, Proceedings of
MODFLOW and More 2008: Ground Water and Public Policy, v. 5, May 19-21, 2008, Colorado
School of Mines, Golden, Colorado.

Naff, R.L., Banta, E.R., 2008. The U.S. Geological Survey modular ground-water model—PCGN: A
preconditioned conjugate gradient solver with improved nonlinear control, U.S. Geological Survey
Open-File Report 2008–1331, 35 p.

OpenMP Architecture Review Board, 2005. OpenMP Application Program Interface, Version 2.5,
accessed March 17, 2011 at http://www.openmp.org/mp-documents/spec25.pdf.

Saad, Y., 2003. Iterative methods for sparse linear systems – 2nd edition, Philadelphia, Pennsylvania,
SIAM, 528 p.

Smith, B., Zhang, H., 2010. Sparse triangular solve revisited: data layout crucial to better performance, nt.
J. High Perform. Comput. Appl., doi:10.1177/1094342010389857.

Wilson, J.D., Naff, R.L., 2004. The U.S. Geological Survey modular ground-water model -- GMG linear
equation solver package documentation, U.S. Geological Survey Open-File Report 2004-1261,
47 p.

631

MODFLOW and More 2011: Integrated Hydrologic Modeling - Conference Proceedings, Maxwell, Poeter, Hill, & Zheng - igwmc.mines.edu

