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15 Role of Remote Sensing 
for Land-Use and Land-
Cover Change Modeling

Terry Sohl and Benjamin Sleeter

15.1 INTRODUCTION

As the impacts of land-use and land-cover (LULC) change on carbon dynamics, climate  ch ange, 

hydrology, and biodiversity have been recognized, modeling of this transformational force has 

become increasingly important. Given the wide variety of applications that rely on the availability 

of LULC projections , modeling approaches have originated from a variety of disciplines, includ-

ing geography, landscape ecology, economics, biology, and others. Initial modeling was often iso-

lated within each discipline, but multidisciplinary modeling frameworks were developed as LULC 

modelers  began to integrate the socioeconomic and biophysical components of LULC change. The 

empirical and theoretical basis for this work  falls within land-use science, and this fi eld documents 

both land-use and land-cover change, explains the coupled human–environment dynamics that pro-

duce the changes, and provides tools for producing spatially explicit LULC models (Mertens and 

Lambin, 1999; Rindfus s et al., 2004).

 L ULC models are data hungry , needing both historical and current land-cover maps coupled 

with data representing the driving forces of change. Availability of data, especially spatially and 

temporally consistent data representing those driving forces, is a primary challenge for LULC mod-

eling (P arker et al., 2002; Tayyebi  et al., 2008). Site-based observations can be used, but remote-

sensing data have several characteristics, most notably repeated synoptic coverage with consistent 

observation at a relatively low cost, that make them ideal for modeling change. Direct observation 
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226 Remote Sensing of Land Use and Land Cover

and mapping of land cover through remote-sensing analysis are critical for identifying and quantify-

ing the major processes of change. This raster (or grid-cell-based) view of the earth’s sur face offers 

simplicity, completeness, and effi cient processing for analysis (Crews and Walsh, 2009). Empirical 

diagnostic models of LULC chang e can then be developed from  these observations (Mertens and 

Lambin, 1999). However, to understand the driving forces of such observed change, thes  e data must 

be linked to socioeconomic data.

Remote-sensing data play an increasingly important role in LULC modeling. Here we summa-

rize the role of remote  sensing in LULC modeling, the use of remote-sensing data in model con-

struction, parameterization, and validation, and the chal lenges in linking remote-sensing data with 

analyses of LULC processes.

15.2 THE ROLE  OF REMOTE SENSING IN LULC MODELING

 Sohl et al. (201 0) discussed the need to address several “foundational elements” of LULC  model-

ing, which are as follows: (1) geographic context, (2) regional land-use history, (3) representation of 

drivers of change, and (4) representation of local land-use patterns. Heistermann et al. (2006)  noted 

four classes of data needed for LULC models, three of which can b e derived from or supported by 

remote-sensing data: (1) current and historical land-use data, (2) environmental data, and (3) sce-

nario data. Several of these foundational elements can be directly informed through the use and 

analysis of remotely sensed data. In the following section, we discuss remote-sensed information of 

relevance to LULC modeling and illustrate the di scussion with a number of specifi c applications.

15.2.1 INFORMATION OBTAINED FROM REMOTE-SENSING DATA SOURCES

Most LULC  models attempt to untangle the driving forces behind anthropogenic land use, including 

socioeconomic and biophysical driving forces, but the resulting thematic classifi cation produced by 

the models often focuses on resulting land covers or a mix of land-use and land-cover “classes.” It is 

important to be clear about the defi nition of land use and land cover at this stage. Land use refers to 

how land is used by human beings, whereas land cover refers to the actual vegetative, structural, or 

other surface cover resulting from a given land use. Agriculture is a land use, but the crop “corn” is a 

land cover. Remote sensing simply measures the refl ective response of the earth’s surface, and so it can 

be used to directly to observe the land cover for a given pixel. Land use must be inferred by linking 

the measured land cover with ancillary information such as socioeconomic data, fi eld data, or “expert 

knowledge.” Remote sensing excels at detecting surface cover type and condition and provides a num-

ber of landscape attributes that can be used by LULC models (Figure 15.1). These are outlined below:

 15.2.1.1 Land Cover
Land  cover refers to the actual surface cover for a given location (e.g., vegetation type, anthropo-

genic structure, etc.). Remote-sens ing data have a long history of being used for deriving land-cover 

maps, even before the launch of the fi rst Landsat platform in 1972. Aerial photography served as 

a primary source of information on land cover before the availability of satellite imagery, and 

it remains an important source of land-cover information even today (Akbari  et al., 2003; Co ts-

Folch et al., 2007). Aerial photography, which was available before the launch of the fi rst Landsat, 

remains a valuable tool for analyzing historical LULC change  (Gerard et al., 2010; Thom son  et al., 

2007). With the advent of Landsat and other commercial remote-sensing satellites, land-cover map-

ping at all scales has fl ourished. Land-cover information at multiple spatial, thematic, and temporal 

resolutions has direct relevance to LULC forecast modeling. Consistent, broad-scale, multitemporal 

land-cover mapping programs such as the United States’ N ational Land Cover Database (NLCD) 

(Homer et al., 200 7; Vo ge lma nn et al.,  2001), USGS Lan d Cover Trends (Loveland et al., 2002), and 

Land  Fire (Ro llins and Frame, 200 6) projects and Europe’s CO RINE Land Cover (CLC) databases 

(Büttn er et al., 2002; Heymann et al ., 1994) are particularly suited for LULC-modeling efforts.

AQ2
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FIGURE 15.1 (See color insert.) The area shown covers seven ecoregions (Omernik, 1987; EPA, 1999) in the 

Pacifi c Northwest of the western Un ited States, falling in California, Oregon, and Washington. The ecoregions 

are the Coast Range, Puget Lowlands, Willamette Valley, Cascades, East Cascades, Slopes and Foothills, North 

Cascades, and Klamath Mountains. All the ecoregions are primarily forested, with varying levels of agriculture, 

urban, and other land uses. The m ap shows data from the 2001 Na tional Land Cover Database (NLCD) (Homer 

et al., 2007) derived from Landsat thematic mapper (TM) and enhanced thematic mapper plus (ETM+) data at a 

spatial resolution of 30 m. The pie charts represent two sources of important LULC data. Land-cover composition is 

characterized by the relative size of each “wedge” and is based on NLCD data. The size of the pie charts refl ects the 

amount of land that experienc ed changes in LULC as measured by the USGS Land Cover Tren ds  project (Love  land 

et al., 2002). The extent of land area that changed at least once between 197 3 and 2000 varies considerably acr oss 

the seven ec oregions, including ecoregions with similar land-cover compo si tions. The changes  in LULC refl ect 

variability in the biophysical conditions, land ownership and management, and the impact of regional and national 

policy among other drivers. LULC change  data, such as thos e presented here, are most readily obtained thro ugh 

examination of historical satellite imagery and aerial photo graphs. The size and density of forest clear-cuts for the 

seven ecoregions are displayed in a series of bar charts. Landscape metrics such as these are useful for a wide range 

of ecosystem assessments and are immediately available through examin ation of remotely sensed data.
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228 Remote Sensing of Land Use and Land Cover

15.2.1.2 Land Use
Unlike land cover, which can be directly observed and monitored from remote-sensing data, land 

use typically must be inferred through a combination of remote-sensing observation, regional and 

local knowledge (including fi eld observation), and other ancillary information that links a given 

land cover in a region with a given land use. As with the mapping of land cover, use of remote-

sensing  data to assist in the creation of spatially explicit maps of land use has had a long history. 

Marschner (1950)  linked interpreted aerial photography with fi eld notes and statistical summaries to 

produce the fi rst continental scale, moderate-resolution map of major land uses in the United States. 

Marschner’s basic paradigm is still widely utilized; it uses fi eld surveys, regional knowledge, and 

other information to infer land use from land-cover observations made from remotely sensed imag-

ery. For example, Brown et al. (2008a) used a combination of MODIS imagery, land-cover classifi -

cation informatio n from the 2001 NLCD (Homer et al., 2007), and county-level  irrigation statistics 

to create a land-use map of irrigated cropland. Millette et al. (1995) advocated linkages between 

remote-sensing  data, groun  d truthing, fi eldwor k, and personnel interviews to provide information 

on land-use and land-management practices for three villages in Nepal.

15.2.1.3 Landscape Pattern
Spatial patterns of LULC change are regio nally unique and dependent on both physical and cul-

tural factors (Gallant et al., 2004). Monitoring and characterizing spatial patterns of LULC change 

are vital  for understan ding and predicting LULC change (Petit et al., 2001). Within the fi eld of 

landscape ecology, mode ling of spatial patterns o f LULC change needs to  be improved (W u et al., 

2008), but this cannot be done without information on current and historical landscape patterns and 

the driving forces behind the patterns. Remote-sensing information is widely used to analyze land-

scape pattern. Typically land use and/or land cover is mapped from remote-sensing data and then 

processed using separate software such as FRAGSTATS (McGarigal et al., 2002) to analyze spatial 

patterns (S il va et al., 2008; Wan   g et al., 2009).

15.2.1.4 Landscape Condition
Remote sensing also has the ability to map and monitor changes in surface conditions, which are not 

related to a direct change in land cover or land use, most notably that of vegetation condition. Long-

term datasets such as those provided by the Landsat sensor since the 1970s are particularly valuable 

for monitoring and understanding changes in vegetation condition (Vogelmann et al., 2009; Wallace 

 et al., 2006). These are complemented by higher temporal resolution sensors such as M ODIS, which 

can map within-season changes in condition (Brown et al., 2008b; Gu et al. , 2008; Reeves  et al., 

2001). Active sensors such as LIDAR or RADAR have the abili ty  to obtain measurem ents of land 

surface at any time or season and are also often used for monitoring landscape condition. Together, 

these sensors have the ability to assess a wide array of landscape condition metrics. Trends in 

the normalized difference vegetation index (NDVI) or other similar indices are often u sed as a 

proxy measure of vegetation condition (Al-Bakri and Taylor, 2003) and  f or analysis of the impac t 

of drought (Liu and Kogan, 1996; Pet ers e t al., 2002). Active sensors excel at measuring soil mois-

ture (Njoku et al., 2002), canopy height, and forest structure ( Lim et al., 2003; Means  et  al., 2000). 

Although not many LULC model s directly forecast changes in landscape condition, this informa-

tion can potentially be used within many LULC-modeling environments.

15.3 USE OF REMOTE-SENSING DATA IN LULC MODELING

His torical and current sources of remote-sensing  information are obviously quite impor-

tant for measuring and monitoring changes in landscape parameters. Table 15.1 provides a 

summary of major categories of spatially explicit LULC models, the majority of which rely 

directly on remote-sensing information. Data describing changes in land cover, land use, land-

scape conditi on, and/or landscape pattern are relevant to a number of associated modeling 
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AQ11
TABLE 15.1
Most Commonly  Used Methodologies for Producing Spatially Explicit LULC Projections

Category Summary Examples

Markov chain • Probabilistic state-transition models, with LULC 

at time t + 1 strictly a function of LULC at time t
• Transition rules for a given LULC type are often 

dependent on historical transition probabilities

• Transition probabilities typically independent 

from status or dynamics of adjacent cells

• Muller and Middleton (1994)

• Petit et al. (2001)

• Coppedge et al. (2007)

• Tang et al. (2007)

Geostatistical—
empirical

• Development of suitability or probability maps 

for modeled LULC types to guide placement and 

location of LULC change

• Regression-based analyses often used for 

development of probability surfaces

• Artifi cial neural networks (ANNs) one 

subcategory

• GEOMOD—Hall et al. (1995); Pontius 

et al. (2001)

• CLUE—Verburg et al. (1999b, 2008)

• FORE-SCE—Sohl et al. (2007); Sohl 

and Sayler (2008)

• Land Transformation Model—

Pijanowski et al. (2002); Tang et al. 

(2005)

Cellular 
automata

• Spatial-temporal extension of Markov transition 

models

• State-transition model with neighborhood 

component

• Transition rules defi ned by current state of a cell, 

but also by status of neighboring cells

• SLEUTH—Claggett et al. (2004); 

Xibao et al. (2006)

• Walsh et al. (2006)

• Ozah et al. (2010)

Agent-based • Recognizes and attempts to model the role of 

human decision-making in LULC change

• Models behavior and interaction of “agents” 

(individuals, businesses, governmental bodies, or 

other entities with power to infl uence change)

• Agents infl uence LULC change at a given 

location

• LULC patterns emerge from interactions between 

human and natural processes

• MR. POTATOHEAD—Parker et al. 

(2006)

• PALM—Matthews (2006)

• SAMBA—Castella and Verburg (2007)

• Valbuena et al. (2010)

Integrated • Integration of multiple modeling approaches and/

or frameworks

• May include tightly coupled models with 

signifi cant feedback or loose model coupling 

focusing on passing data between models

• Advantage of potentially incorporating both 

spatial and aspatial modeling approaches

• Typically include econometric or other economic 

modeling framework

• IMAGE—Alcamo et al. (1998); 

Strengers et al. (2004)

• Verburg et al. (2008)

• Jansson et al. (2008)

• Moreira et al. (2009)

Note: This table is not all-inclusive. Aspatial modeling frameworks are not included, as they are less likely to directly incor-

porate remote-sensing data. Model names are noted under “Examples,” where appropriate. For additional discussion 

of LULC modeling types, see Irwin and Geoghegan (2001), Agarwal et al. (2002), and Matthews et al. (2007).

 All of the aforementioned methodologies often rely on remote sensing information.
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230 Remote Sensing of Land Use and Land Cover

fields including scenario development, driving-force analysis, model parameterization, and 

model validation.

15.3.1 SCENARIO DEVELOPMENT

Scenarios of future land conditions are an important tool for a variety of research themes, including 

land-use impacts on greenhouse gas emissions and climate change (Strengers et al., 2004), biodi-

versity (Leadley et al., 2010; S al a et al., 2000), and hydrologic change and water availability (Ray 

et al., 2010; Wil k and Hughes, 2002)  (Figure 1  5.2). The ability to blend thematically rich narratives 

describing future conditions with traditional quantitative results stimulates scenario users to think 

“outside the box” when considering complex human–environmental systems. Several large global 

environmental assessments have adopted a scenario-based approach. The Intergovernmental Panel 

on Climate Change (IPCC) defi ned scenarios as “images of the future that are neither projec tions 

nor forecasts” (Nak icenovic et al., 2000) while the Millennium Ecosystem Asses sm ent defi ned 

scenarios as “plausible and often simplifi ed descriptions of how the future may develop based on 

a coherent and internally consistent set of assumptions about key driving forces and relationships” 

(Car penter et al., 2005). Alcamo and Henrichs (2008) p roposed the following defi nition: “A sce-

nario is a description of how the future may unfold based on ‘if-then’ propositions and typically 

consists of a representation of an initial situation and a description of the key driving forces and 

changes that lead to a particular future state.”

Regardless of the defi nition preferred, LULC scenarios require  two things: knowledge of present 

conditions and an understanding of how drivers of change interact to create historical landscapes. 

AQ10
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FIGURE 15.2 (See color insert.) Scenarios are a vital component of LULC modeling, allowing the explora-

tion of multiple possible futures and resultant impacts on ecological processes. Remote sensing both directly 

and indirectly informs the construction of viable LULC scenarios through (1) construct ion of regional land-

scape histories, (2) examination of LULC patterns, and (3) exploration of linkages between historical LULC 

 change and socioeconomic and biophysical driving forces. Each of these three components was used to develop 

scenarios and model 2020 LULC for a portion of southwestern Kansas, in the central United States (Sohl et al., 

2007). Scenario A depicts a business-as-usual scenario. Scenario B depicts a scenario  of low precipitation and 

declining groundwater availability,  leading to agricultural decline.  Scenario C depicts a scenario of increased 

precipitation and a more effi cient utilization of groundwater, leading to agricultural expansion. The modeled 

scenarios wer e used to examine the impacts of LULC change on regional weather and climate variability.
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LULC scenarios also critically need a baseline map, and irrespective of scale, remotely sensed data 

have a considerable advantage over survey and fi eld-based methods for deriving  such a product. 

Perhaps even more important is the use of remote-sensing data for developing LULC histories. 

LULC historie s “expose the evolutionary patte rns of a specifi c landscape by revealing its ecological 

stages, cultural periods, and keystone processes” (Mar cucci, 2000). Specifi cally, LULC histories 

quantify LULC chang e over a suffi ciently long timescale to illumina te relationships between driv-

ing forces such as population growth, economic development, and technological innovation and 

LULC change. The NLCD (Homer et al., 2007) and Land Cover Trends (Loveland et al., 2002; 

Sleeter   et al., 2010) projects in the United States, the CORINE  project in Europe (Büttner et al., 

2002; Heymann e t al., 1994), and the land-cover ch ange component of Australia’s Nati onal Carbon 

   Accounting System (Furby, 2002; Waterwort h et al., 2007) a ll rely on historical data from the 

Landsat archive to map and characterize LULC change. Identifying the rates and types of historical 

LULC change occurring withi n socioec onomic and biophysical settings offers the basic under-

standing from which we can construct alternative visions of the future. Combining the quantitative 

land-use histories with our understanding of the processes that drive change provides a powerful 

foundation from which we can develop alternative scenarios based on predefi ned assumptions about 

the interaction of various drivers of change.

Scenario development can also include simple projections of historical rates of LULC change. 

Verburg et al. (19 99a) simulated land-use conversions in China using  a scenario based on present 

land-use dynamics. Many LULC-modeling efforts  focus on establishing a single reference condi-

tion, usually based on extrapolation of historical trends, while modifying certain LULC types to test 

the hypothesis about future impacts. For example, Kok and Winograd (2002) developed a “base” 

scena rio established by extrapolatin g historical LULC trends, while using “optimistic” and “natural 

h azard” scenarios to test LULC response under e xtremely favorable and unfavorable conditions, 

respectively. While being relatively simple in design, these types of scenario are still dependent on 

LULC histories, which are based primarily on satellite observations.

15.3.2 DR IVING-FORCE ANALYSIS

One of the great challenges in LULC modeling, and in remote sens ing, is the ability to “socialize 

the pixel” (Ge oghegan et al., 2008), linking social science analyses with remotely sensed data. 

Increasingly, spatially explicit LULC studies using remote sensing have an ultimate goal of not 

only analyzing the location and type of  land-use change but also identifying the primary driving 

forces of that change (Chowdhury, 2006). Those LULC models that  link remote-sensing observa-

tions with ground-based social data can greatly improve our understanding of the determinants of 

LULC change (Rindfuss and Stern, 1998). Generally, remote-se nsing data are used in com bination 

with ancillary informatio n on the human decision-making process to understand the cause–effect 

relationship between driving forces and LULC change. Governmental poli cy, for example, can have 

a major impact on LULC change, but remote sensing cannot directly observe and monitor the pol-

icy. What remote sensing can  do is examine the effects of the policy on land use, allowing LULC 

modelers to develop qualit ative and quantitative relationships between a policy driver and impacts 

on LULC change. Remote sensing can be used to quantify the effects of a national policy such as 

the Conservation Reserve Program (CRP) of the  Un ited States, which pays farmers for converting 

environmental ly sensitive lands to natural vegetative cover or examining land-use effects of local 

policies such as property taxation, zoning, or land ownership (Rindfuss and Stern, 1998) (Figure 

15.3). Similarly, it can be used to deduce the effects of  climate change on vegetation structure or 

condition (Ingram and Dawson, 2005; Stow  et al., 2004).

Information on population distributions is used  in a wide variety of LULC models. Census data 

can provide detailed information on population  characteristics but are not available globally and 

vary greatly in consistency and accuracy. The LandScan database (Dobson et al., 2000) uses night-

time-lights data from the Defense Meteorological  Satellite Program (DMSP) (Elvidge et al., 1997) 

AQ4
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and remote sensing-based land-cove r  and topography  data in conjunction with census data and o ther 

ancillary data sources to produce  global maps of population. Similarly, data on roads and other 

transportation infrastructure are widely used in  LULC modeling, but reliable GIS data are often not 

availab le. Remote sensing can provide either direct observation of transportation networks or can 

be used to deduce transportation network extents by mapping associated land-use changes (Bong 

et al., 2009; Lin et al ., 2009). Su ch remote sensing-based “proxy” datasets are invaluable for LULC 

models that require spatia lly explicit socioeconomic data for analyses and modeling of driving 
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FIGURE 15.3 (See color insert.) Two La ndsat TM images acquired on August 29, 1987 (top) and August 

12, 2010 (bottom). Both images are of the same region in northern California, covering parts of Humboldt 

and Del Norte counties. The images use visible and near-infrared bands to depict vegetation in hues of red. 

Dense old-growth conifer stands appear dark red, whereas recent clear-cuts appear bright. Dimensionall y, the 

images are approximately 30 km fro m east to west and 13 km from north to south. The images span three 

major land ownershi p types. Redwood National Park is in the west and is most easily recognized by the large 

contiguous stand of old-growth redwoods found in Prairie Creek Redwoods State Park. In the eastern por-

tion of the images is Six River National Forest (SRNF). SRNF is managed for multiple uses, including timber 

harvest. In the center of the image is a large swath of private land holdings along the Klamath River. Cutting 

on private lands generally occurs in relatively large, often contiguous patches, while SRNF is characterized 

by a smaller more dispersed pattern of cutting. No cutting is evident in the National Park. Cutting also seems 

to have accelerated in this area on both  private and public lands. Satellite imagery, such a s  those presente d 

here, are extremely useful for mapping and characterizing changes to landscapes, which provide the founda-

tional understanding for LULC modeling efforts. In this example, land ownership is an important driver and 

constraint on LULC change and should be considered in any modeling effort.
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force. Other approaches attempted to establish more direct links between remote-sensing data and 

social science. McCracken et al. (1999) linked remo  te-sensing data with survey-based household 

property-level data to examine agricultural land-use strategies, and Sil va et al. (2008) proposed a 

quantitative method to associate individual patches of land in a remote-sensing image with specifi c 

agents of change.

One of the most common uses of remote-sensing data for analyzing driving forces lies in regres-

sion-based approaches commonly used for empirical-/statistical-based modeling. Remote-sensing 

data are commonly used as sources of data for both the dependent variables (LU LC  type) and inde-

pendent variables (to pographic variables, climate variables, landscape structure information derived 

from LULC data, etc.) used in regression analyses meant to produce probability-of-occurrence or 

 suitability maps for LULC and LULC change. For example, Verburg et al. (2006) used S POT imag-

ery along  with data on slope, elevation, road access, populati on density, and market accessibility to 

develop probab ility surfaces for analyzing land-use change in the Philippines. Similarly, Sohl and 

Sayler (2008) used Landsat-derived   LULC data from the NLCD project (Homer et al., 2007) and 

a series of spatially explicit  independent variables to produce regre ssion-based probability surf   aces 

to model the placement of LULC change. Brown et al. (2002) used a generalized additive model 

rather than logistic regression to model forest change in Michigan, using  a time series of LULC 

data  derived from Landsat MSS to parameterize the model. Not only are the base LULC data from 

projects like these often derived from remote-sensing data, but so are many of the independent or 

ancillary variables. Information on landscape structure, topography, “distance to” measures (e.g., 

dis ta nce to roads), and other independent variables typically use d in regression-based approaches 

often have a remote-sensing origin.

15.3.3 MODEL PARAMETERIZATION

Many mo deling frameworks depend directly on consistent, historical remote-sensing data for model 

parameterization. The SLEUTH model is typically parameterized and cal ibrated with patterns of 

historical LULC change, with the historically derived parameters driving the modeling of future 

urban growth patterns (Claggett et al., 2004;  Si lva et al., 2002; X i bao et al., 2006). Model cali-

bration is also built on a series of spatial metrics, and several of these parameters rely directly on 

remote-sensing data. Artifi cial neural net (ANN) models also typically rely on hist orically mapped 

LULC information, as well as other ancillary spatial data, for model parameterization and cali-

 bration. The Land Transformation Model, for example, develops spatially explicit predictor layers 

based on how neighborhood effects, patch size, distance measures, and site-specifi c characteristics 

affect LULC transitions, with these measu res typically derived from remotely sensed data sources 

(Pijanowski et al., 2002; Tan g et a l., 2005). Other models, such as GEOMOD (Hall et al., 1995) and 

F ORE-SCE (Sohl an d Sayler,  2008)  also use current local pattern informati on to parameterize and 

model futur e LULC change.

Many modeling frameworks rely on remote-sensing data for establishing transition rules and 

transition probabilities, with mapped historical LULC often driving model parameterization. Petit 

et al. (2001) used a temporal series of SPOT data to analyze historical LULC change in southeast-

ern Zambia and provided transition probabilities for a Markov chain model. Walsh et al. (2006) 

used remote sensing to para meterize a CA-based agricultural change model in Thailand, using 

time series land-cove  r information interpreted from Landsat TM and MSS images to defi ne state 

and transition rule s. Wu et al. (2006) used   LULC information derived from Landsat d ata between 

1986 and 2001 to establish transition probabilities in a fi rst-order Markov-chain model for modeling 

urban development in Beijing, China. Coppedge et al. (2007) used aerial photography to analyze 

historical patterns  of LULC change  in the grasslands of Oklahoma, information that was used to 

populate transition probabilities and  decision rules in a Markov-chain model. Tan g et al. (2007) 

used both changed LULC area (derived from Landsat) and neighborhood LULC info  rmation to  

construct transition probabilities for a Markov-chain model. The FORE-SCE model used historical 
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LULC information from the USGS Trends project (Loveland et al., 2002) to establish conversion 

e lasticity parameters, a parameter governing transition probability for a given LULC change (Sohl 

et al., 200  7).

15 .3.4 MODEL VALIDATION

Model validation remains an un derdeveloped com ponent of LULC-model ing sc   ience. The problem 

for LULC model validation lies more often with the availability of data rather than with suitable 

validation techniques, as several techniques and tools for val idating LULC models have b een devel-

oped (Chen and Pontius,  2010; Pontius an d Petrova, 2010; Visser and de Nijs, 2006). Validation 

data obviously are not available for modeled future dates, so LULC modelers typically rely on 

modeling a his tori cal period to  perfor m model validation. Traditi onal accuracy assessment for one-

point-in-time LULC classifi cations is often made by using aerial photography or another high-res-

olution remote-sensing source and developing ri gorous, pixel-based accuracy assessments. Ray and 

Pijanowski (2010) used a similar procedure to validate model output for a backcasting application in 

the Muskegon River watershed in Michigan, using black-and-white aerial photography to interpret 

sampled validation points for assessing m odel output.

However, such pixel-by-pixel accuracy asses sments are often less d  esirable choices for LULC-

modeling applications, owing to path-dependence and the inherent stochasticity of LULC-modeling 

processes (Brown et al., 2005). LULC modelers often rely on the validation of landscape patterns 

rather than on pixel-by-pixel accuracy assessments where the model fi t can be determin ed by the 

proportion of pixels correctly pred icted in   a local neighborhood (typically at multiple resolutions) or 

by comparison of generated landscape metrics between reference and modeled LULC. Brown et al. 

(2005) calculated edge density, patch size, and other landscape metrics from interpreted LULC 

to look at a model fi t between an agent-based model and reference maps. Castella and Verburg 

(2007) used LULC maps i nterpreted from SPOT imagery to assess a CLUE-S model application in 

Vietnam, using a multiresolution neighborhood validation procedure (Costanza, 1989).

15.4 DISCUSSION

Remote-sensing data and analyses are a vit  al component of  many LULC-mo deling efforts. Given 

the reliance on  remote-sensing data for informing LULC models, a prima ry concern for modelers 

is continued availability  of consistent data. Heistermann et al. (2006) noted that a maj or problem 

in LULC modeling was the availa bility of spatially explicit time series data, whi le Rindfuss et al. 

(2004) stated that  it was often impossible to obtain consistent, cost-effective, spatially and tempo-

rally relevant hist orical remote-sensing data for supporting  land-change science. Crews and Walsh 

(2009) noted the extreme importance of continue d development and maintenance of consistent sat-

ellite sensors and databases, with timely data delivery at reasonable prices. Sellers et al. (1995) 

not  ed that consistent land-cover data was one of the highest priorities for Land Science, with Herold 

et al. (2006) even advocating for adoption of a single standard land-cover legend. Even when syn-

optic, consistent data are available from remotely sensed sources, issues regarding data quality and 

consistency can strongly affect mode ling result s. Programs such as the USGS Land Cover Trends 

project (Loveland et al., 2002) or CORINE (Büttner et al., 2002) certainly have shown their ability 

to inform LULC modeling, but consistent databases of LULC change are often not widely avail-

able, and there is no guarantee of existing programs continuing.  Contin uance of the remote-sensing 

programs such as Landsat, as well as   consistent LULC mapping and monit oring programs, is vital 

to the growth of land-change science and LULC modeling.

Conti nued improvements must also be made in linking remote sensing with the socioeconomic 

driving forces of LULC change. LULC modelers recognize the hu man dimension of change, but 

translating that recog nition into sound, integrated theory has been a struggle. Linking pixel-based 

remote-sensing data with human decision making remains a primary challenge (Matthews et al., 
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2007; Rindfuss et al., 2004). McNoleg (20 03) stated that the issues  were “unbridgeable” for social 

scientists to utilize raster data models and remote-sensing data, whereas Crews and Walsh (2009) 

stated tha t the probl em was far too   often choosing between “people and pixels.” However, given 

their advantages, remote-sensing data remain too attractive to be dismis sed, even for LULC models 

originating in social sciences. Remote-sensing platforms are built to measure physical phenomenon, 

and the typical unit of measure, the pixel, typically has no inherent meaning for the socioeconomi c 

driving forces of LULC change. Although these socioeconomic driving forces are typically not 

directly measurable from remote-sensing platforms, LULC modelers do often develop proxy data-

sets from remote-sensing data that represent observable effects of social driving forces. Whether it 

is through the development of proxy datasets or through more direct links b etween remote-sensing 

data and th e social sciences, it will be diffi cult for LULC modelers to move away from empirically 

based modeling systems to true process-based models without developing cost-effective, synoptic 

socioeconomic datasets that represent the social aspects of LULC change.

LULC modelers must continue to move from being p assive users of remote-sensing data to vital 

team members for planning remote-sensing missions. The temporal, spatial, spectral, and radiometric 

resol utions of sensors directly a ffect our ability to map LULC change and monitor LULC processes. 

Spatial resolution of  data alone has a very large impact on LULC-modeling processes and results 

(Silva and Clarke, 2002), with the driving forces of LULC change extremely dependent on scale. A 

model such as the aforementioned SLEUTH is extremely dependent on the availability of high -quality 

historical data on urban growth, bu t ev en SLEUTH users note the diffi culty in accurate ext raction 

of urban features from Landsat and other remote-sensing data sources (Claggett et al., 2004;  Silva 

and Clarke, 2002). LULC modelers must stay enga ged with the remote-sensing community to ensure 

availability of consistent, suitable remotely sensed data for analyzing LULC and LULC processes. 
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