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Groundwater Seepage Vectors and the Potential for 
Hillslope Failure and Debris Flow Mobilization 
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U.S. Geological Survey, David A. Johnston Cascades Volcano Observatory, Vancouver, Washington 

Insight for understanding the effect of groundwater flow on the potential for hillslope failure and 
liquefaction is provided by a novel limit-equilibrium analysis of infinite slopes with steady, uniform 
Darcian seepage of arbitrary magnitude and direction. Normalization of the limit-equilibrium solution 
shows that three dimensionless parameters govern completely the Coulomb failure potential of saturated, 
cohesionless, infinite homogeneous hillslopes: (1) the ratio of seepage force magnitude to gravitational 
body force magnitude; (2) the angle 0- •p, where 0 is the surface slope angle and •p is the angle of 
internal friction of the soil; and (3) the angle • + •p, where • is the angle of the seepage vector measured 
with respect to an outward-directed surface-normal vector. An additional dimensionless parameter af- 
fects the solution if soil cohesion is included in the analysis. Representation of the normalized solution as 
a single family of curves shows that minimum slope stability universally occurs when the seepage 
direction is given by • = 90 ø - •p. It also shows that for some upward seepage conditions, slope stability 
is limited by static liquefaction rather than by Coulomb failure. Close association between these liquefac- 
tion conditions and certain Coulomb failure conditions indicates that slope failure in such instances 
could be responsible for nearly spontaneous mobilization of destructive flowing soil masses on hillslopes. 

INTRODUCTION 

The important influence of groundwater seepage on the ef- 
fective stress state and stability of soil masses has long been 
recognized. Two simple examples of the effect of steady 
groundwater seepage on the stability of a static semi-infinite 
soil mass bounded by a free surface are almost universally 
presented in soil mechanics texts [e.g., Lambe and Whitman, 
1979, p. 263-264, 352-354]: (1) a cohesionless saturated soil 
mass will statically liquefy to a quick condition if it is subject 
to an upward seepage force equal in magnitude to the sub- 
merged unit weight of the soil, and (2) the maximum stable 
angle of a sloping mass of water-saturated cohesionless soil is 
equal to the internal friction angle of the soil if seepage is 
absent, but it is equal to about half this angle if uniform 
slope-parallel seepage occurs. These maxims are true regard- 
less of the magnitudes of the pore water pressures involved. 
Such simple examples of steady seepage effects are very useful 
because they convey clearly the influence of groundwater flow 
on the potential for slope instability. These simple examples 
are not, however, representative of most field situations 
[Patton and Hendron, 1974; Hodge and Freeze, 1977], and 
they exclude many important combinations of soil stress states 
and seepage paths. 

More realistic steady seepage conditions are commonly in- 
vestigated by manually or computationally constructing a 
flow net [e.g., Lambe and Whitman, 1979, pp. 266-280]. The 
flow net is used to deduce the distribution of seepage forces or 
pore pressures in the soil mass, and this distribution can then 
be employed in a slope-stability analysis. The flow net method 
may be quite accurate, but it is typically problem-specific. It 
does not clarify the general physical significance of steady 
seepage effects on the potential for slope instability. 

In this paper we derive a simple but general analytical solu- 
tion for the limiting stable slope angle of a semi-infinite, ho- 
mogeneous, isotropic cohesionless soil mass subject to steady, 
uniform Darcian seepage. A normalized solution is developed 
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for any combination of seepage rate and direction, soil bulk 
density, pore fluid density, slope angle, and soil friction angle. 
The results apply to all possible modes of Coulomb failure or 
liquefaction of static saturated soil masses. The results can be 
extended to include the effects of soil cohesion, but they do 
not account for unsteady groundwater flow or soil consoli- 
dation. In effect, the results provide a complete and unam- 
biguous answer to the question, If all else is constant, what is 
the effect of a steady seepage vector (i.e., its magnitude and 
direction) on the potential for slope failure and liquefaction? 

We believe these results provide considerable insight for 
understanding the physical effects of groundwater flow on the 
potential for slope instability and debris flow mobilization. 
Furthermore, the analytical results can guide interpretation of 
field data and numerical modeling results. Examples of simple 
applications are included at the end of the paper. 

ANALYSIS OF COULOMB FAILURE 

To give the slope failure analysis a sound theoretical basis 
we will start from fundamental stress-equilibrium principles 
and then simplify to equations of limiting equilibrium. Consid- 
er a differential volume element of rigid, homogeneous, iso- 
tropic, isothermal soil that is subject to body forces caused by 
gravity and a steady, uniform Darcian flow field. Static equi- 
librium of the solid constituents of the soil element requires 
that [Iverson, 1986a, equations 2 and 5'1 

V. T = (p,- P w)g + f (1) 

in which T is the effective stress tensor (with normal stress 
defined as positive in compression); Pt and Pw are the total soil 
bulk density and pore water density, respectively; g is the 
gravitational acceleration vector; and f is the seepage-force 
vector. The seepage force experienced by the solid constituents 
of the soil element is proportional to the specific discharge 
(volumetric flux per unit area) of groundwater flowing through 
the element [e.g., Bear, 1972, p. 184-186]. This can be easily 
seen from an inverted form of Darcy's law 

f = (q/K)p,•g = - p,•gVh (2) 

in which g is the magnitude of g, h is the total hydraulic head 
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Fig. 1. Differential element in a saturated semi-infinite soil mass 
with uniform seepage of arbitrary magnitude and direction. 

of the pore water, q is the specific discharge vector, and K is 
the hydraulic conductivity, which is a scalar quantity for iso- 
tropic soil. Consideration of the seepage force acting through 
a soil element appears to us to be the most illuminating way 
to consider groundwater influences on effective stresses in 
soils. The seepage force definition accounts implicitly for the 
mechanical energy or head losses implied by Darcy's law for 
isothermal flow, and it is intimately linked to the Darcian 
assumptions of element-averaged groundwater discharge and 
hydraulic conductivity. 

If the differential soil element is assumed further to lie 

within a semi-infinite mass of identical soil that is bounded by 
a stress-free surface, and if the only forces affecting the soil are 
those due to the steady homogeneous vector fields that repre- 
sent gravitational acceleration and Darcian seepage, then 
stress gradients do not exist in planes parallel to the stress-free 
boundary. Thus stresses vary in only the y direction if the 
global, orthogonal coordinate system of Figure 1 is adopted. 
Seepage components perpendicular to the vertical x-y plane of 
Figure 1 exert no forces that can interact with gravitational 
forces to influence slope stability. Seepage will therefore be 
treated as though it were confined exclusively to the x-y plane 
(Figure 1), with no resulting loss of physical generality. The 
vector equations (1) and (2) can then be combined and re- 
duced to two scalar equations for the sole nonvanishing gradi- 
ents of hydraulic head and stress 

dtr/dy = Yb cos 0- (t?h/•y)yw (3a) 

dr/dy = ?b sin 0 - (3b) 

where a is effective normal stress in the y direction; r is shear 
stress in the x direction on planes normal to y; 
Vw = Pwg; and 0 is the slope angle of the soil surface, which is 
measured clockwise from the horizontal and assumed to lie in 

the range 0 < 0 < 90 ø. (The angle 0, of course, would be mea- 
sured counterclockwise if the observer were looking outward 
from the plane of Figure 1.) Equations (3) can be recast in 
terms of pore water pressure gradients and the total unit 
weight of the soil (appendix), but the notion of a seepage force 
vector proves useful in the following analysis, so the forms of 
(3) will be retained. 

The condition of limiting equilibrium or incipient frictional 
failure for a cohesionless soil is approximated well by the 
Coulomb equation [Lambe and Whitman, 1979, p. 139] 

tan & (4) 

in which & is the static angle of internal soil friction. For a soil 
element subject to the one-dimensional stress field and uni- 
form Darcian flow field represented by (3), (4) is satisfied 

everywhere in the element if it is satisfied anywhere in the 
element. In other words, the element will in theory fail simul- 
taneously throughout its thickness. No information is there- 
fore lost from (4) if it is differentiated with respect to y 

dz/dy = (da/dy) tan •b (5) 

Equation (3) can then be substituted into (5) to give 

tan •b = •' sin 0- 
•, cos 0- y,•(Oh/Oy) 

(6) 

which applies under conditions of limiting equilibrium or in- 
cipient yield. 

Equation (6) can be expressed in a more convenient form by 
defining an angular direction and magnitude of the hydraulic 
gradient vector. As is shown in Figure 2, the angular direction 
2 of the hydraulic gradient or seepage vector is measured 
clockwise relative to an outward-directed vector that is 

normal to the ground surface. (Again, this angle would be 
measured counterclockwise if the observer were looking out- 
ward from the plane of the page.) The magnitude of the hy- 
draulic gradient or seepage vector i is equal to the magnitude 
of the change in head per unit length along a flow line. There- 
fore i is equal to the magnitude of specific discharge divided 
by the hydraulic conductivity. It follows directly from the defi- 
nition of 2 in Figure 2 that 

•h/•x = -i sin 2 (7a) 

c•h/c•y = i cos 2 (7b) 

Employing (7), (6) can be expressed in the convenient form 

[(Y,/Yw)- 1] sin 0 + i sin 2 
tan 4• = (8) 

[(•,/•,•)- 1] cos 0- i cos 2 

in which •, is the total saturated unit weight of the soil. 
Equation (8) is an implicit solution for the limiting stable 

slope angle 0 of a semi-infinite mass of cohesionless soil sub- 
ject to seepage in the direction 2 and driven by a gradient of 
magnitude i. A plot of the solution of (8) for a typical sandy 
soil, with •b = 30 ø, •t/•,• = 2, and selected values of i is shown 
in Figure 3. The curves of Figure 3 are plotted for only those 
combinations of 0, 2, and i that appear to be most plausible in 
nature. The curves are not shown where unlikely combi- 
nations of 0, 2, and i occur, for example, where 2 < 0 ø (imply- 
ing an uphill seepage component), 0 > 60 ø (implying an unre- 
alistically steep slope), or i> 1 (implying an unusually large 
hydraulic gradient). Curves of the type shown in Figure 3 
provide a guide for estimating the role of groundwater flow in 
provoking slope failure in specific situations. 

A universally applicable family of Coulomb failure curves 
similar to those shown in Figure 3 can be obtained from a 
normalized version of (8). The normalized equation is ob- 
tained by expressing tan 4• in (8) as sin 4•/cos 4• and cross- 

Fig. 2. Definition of the seepage vector magnitude and direction. 
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Fig. 3. Plot of limiting stable slope angle 0 as a function of seep- 
age direction • for different seepage magnitudes for a typical sandy 
soil (•b = 30 ø, 7,/7w = 2). 

multiplying the numerators and denominators of the resulting 
equation. This yields, after some algebraic manipulation 

sin 4• cos 0- sin 0 cos 4• iv,• 

sin 4• cos ;• + sin 2 cos •b 
(9) 

Trigonometric identities tabulated by Dwight [1961, equations 
401.01 and 401.02] are then employed to reduce (9) to 

- sin (0 - 4•)/sin (4 + 4•) = z (10) 

in which 

z = i7,,/(7,- 7,,) (11) 

Therefore z presents the ratio of seepage force magnitude to 
the submerged unit weight of the soil, a quantity that is clearly 
of fundamental importance. The arguments of the sine func- 
tions in equation (10) are also of fundamental importance: 
they are the "natural" normalized angles that dictate the limits 
of stability of ideal, cohesionless saturated slopes with uniform 
Darcian seepage. 

A plot of the solution of (10) for parameter values that 
reflect any physically realizable Coulomb failure condition for 
ideal, cohesionless saturated slopes is depicted by the family of 
curves in Figure 4. The minima of all curves occur where 
2 = 90 ø - 4•, indicating that this seepage direction universally 
yields minimum slope stability. Conversely, seepage in the di- 
rection 9• = 270 ø - •b gives maximum slope stability, and seep- 
age in the direction ,• = 180 ø- •b has no effect on stability, 
regardless of the value of z. Some portions of the curves 
shown in Figure 4 would be rather unlikely to occur in nature, 
but they are included for conceptual completeness., A movable 
discontinuity would exist in all curves on the line where 0 - 0, 
because Coulomb failure would there be impossible. A bound 
for the failure curves is provided by lines that represent the 
condition of z - 1 and 0 - -;L This is the condition of static 

soil liquefaction caused by upward groundwater flow, which 
will be discussed in detail in the next section. 

ditional mathematical complexity and less physical clarity. 
The effect of cohesion is to shift the Coulomb failure curves of 

Figure 4 upward by an amount c(cos ck)/Yc(Vt- Vw), in which c 
is the cohesion of the soil and Yc is a critical soil depth re- 
quired for failure to occur. The liquefaction line of Figure 4 
loses its physical significance when cohesion is present, how- 
ever, because soil with true cohesion cannot lose its strength 
completely as a result of any seepage condition. For the 
common case in steep, soil-mantled terrain, in which 0 • 4• 
and a slope is marginally stabilized by a small amount of root 
strength or cohesion, Figure 4 implies that seepage directed 
horizontally is most conducive to failure. 

ANALYSIS OF STATIC LIQUEFACTION 

A static, saturated cohesionless soil mass will liquefy if it 
experiences a uniform seepage force that has an upward verti- 
cal component with a magnitude equal to the submerged unit 
weight of the soil. In this event the soil becomes strengthless 
and will deform by flowing rather than by frictional slipping. 
In terms of the variables of (10) and the geometry of Figure 2, 
the static liquefaction condition is expressed as 

z = cos + + (0 - = x (x2) 

For z = 1, (12) is satisfied only if 2 = -0, which represents 
vertically upward seepage. If z is larger than 1, however, (12) 
may be satisfied for other seepage directions with upward 
components. These seepage directions are identified by solving 
(12) for all combinations of 4, 0, and z; a plot of this solution 
is presented in Figure 5. 

Figure 5 illustrates several important points about liquefac- 
tion of static, cohesionless soils on hillslopes. First, the seepage 
direction can differ significantly from vertically upward, yet 
static liquefaction can occur with hydraulic gradients not 
much larger than the normalized critical gradient for upward 
flow, z = 1. For example, seepage that deviates 30 ø from verti- 
cally upward can cause static liquefaction if z = 1.15. If the 
seepage direction deviates further from the vertical than 60 ø , 
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Fig. 4. Universal plot of the normalized limiting stable slope 
angle as a function of the normalized seepage direction for different 
values of the normalized seepage magnitude z. Liquefaction preempts 
Coulomb failure in the zones outside the liquefaction lines. 
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Fig. $. Values oœ z required to cause static liqueœaction oœ cohesion- 
less slopes with seepage direction •. and slope angle 0. 

however, normalized hydraulic gradients larger than 2 are 
necessary to cause liquefaction, and liquefaction is impossible 
if no upward component of seepage exists. From this trend 
and from the trends for Coulomb failure shown in Figure 4, it 
appears probable that for many seepage conditions, liquefac- 
tion failure will be preempted by Coulomb failure. That is, if 
seepage conditions were gradually changed through time so 
that the potential for slope instability were gradually in- 
creased, Coulomb failure would precede static liquefaction of 
the slope. In other instances the converse might be true. In the 
following section we discuss some typical patterns of seepage 
in hillslopes and the likelihood of these two modes of failure. 

DISCUSSION 

The direction of groundwater seepage paths within a satu- 
rated slope may vary greatly [Patton and Hendron, 1974; 
Hod•e and Freeze, 1977; Rulon et al., 1985]. Aside from lateral 
and basal hydrogeologic boundaries, the only significant con- 
trols of steady seepage paths are the spatial distribution of 
topographic potential and soil anisotropy and heterogeneity 
[cf. Toth, 1963;Freeze and Witherspoon, 1967]. Typical exam- 
ples of how topographic potential and soil heterogeneities can 
influence seepage paths in saturated soil-mantled slopes are 
illustrated by the steady state model results shown in Figures 
6 and 7. Figure 6 depicts a flow net that represents a numeri- 
cal solution of the Laplace equation for flow within a satu- 
rated, sloping soil mass that has a hummocky surface. This 
flow net is intended to represent wet-season groundwater con- 
ditions in a persistently unstable, soil-mantled hillslope in 

I / 
/ i \ 

Fig. 6. Numerically computed flow net for steady hillslope seep- 
age influenced by hummocky topography. Hillslope soil prism has a 
mean length-to-thickness ratio of 8. Sinusoidal hummocks have a 
wavelength-to-amplitude ratio of 20 and wavelength-to-prism-length 
ratio of 1/8. 

Highly permeable 
conduit 

Fig. 7. Hele-Shaw analog results for steady hillslope seepage in- 
fluenced by a highly permeable conduit (modified from Pierson 
[1983]). Simulated hydraulic conductivity of the conduit is ab6ut 280 
times that of the surrounding material. Some flow lines ficticiously 
appear to converge owing to the finite line thickness. 

which •b = 20 ø [Iverson, 1986b; R. M. Iverson and J. J. Major, 
unpublished manuscript, 1986]. The flow net shows the strong 
asymmetrical influence of topography on seepage directions 
near the hummocky ground surface. Figure 7 depicts a flow 
net similar to that constructed by Pierson [1983] on the basis 
of Hele-Shaw analog model results. This flow net represents 
seepage in a steep slope that contains a highly permeable 
subsurface conduit. The two-dimensional flow and effective- 

stress fields implied by each of these two flow nets are more 
complex than can be rigorously represented by our analytical 
results. However, our theory leads us to infer that the weakest 
regions in each of the model slopes probably occur where the 
seepage direction is close to horizontal. This inference con- 
trasts markedly with the intuitive interpretation that the 
weakest regions coincide with the highest water table eleva- 
tions or with zones of groundwater upflow. 

According to Figure 4, the seepage direction most con- 
ducive to Coulomb failure is one that makes an acute angle 
outward from the surface of the slope. Physically, this is the 
direction that most effectively reduces the slope-normal fric- 
tional force while simultaneously enhancing the slope-parallel 
driving force. In contrast, the seepage direction most effective 
for liquefying the slope is one that is oriented vertically 
upward (Figure 5). The disparity between the seepage direc- 
tions most favorable for Coulomb failure and liquefaction in- 
dicates that in most situations one mode of failure will have 

precedence over the other. 
To summarize the diverse slope failure possibilities, Figures 

4 and 5 can be superposed to define discrete domains 
characterized by preferred slope failure modes. For hydraulic 
gradients that give z < 1, Coulomb failure is the only possible 
mode of slope failure (Figure 4). Many Coulomb failure sce- 
narios are possible, and they constitute the most likely failure 
mode with typical seepage conditions. Furthermore, compari- 
son of Figures 4 and 5 shows that for seepage directed so that 
90 ø < ,• < 270 ø, the value of z required for Coulomb failure is 
universally less than the value required for liquefaction of the 
same slope. Therefore Coulomb failure would preempt 
liquefaction in such cases. For seepage directed so that ,• = 
-0, the failure lines of Figures 4 and 5 coincide, and Coulomb 
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Fig. 8. Distribution of domains that show preferred slope failure 
mode. The hydraulic gradient is assumed to be large enough to pro- 
voke failure, except where slopes are unconditionally stable. 

failure and liquefaction occur simultaneously when z = 1. Fi- 
nally, Figures 4 and 5 show that liquefaction is the preferred 
mode of slope failure in the unlikely circumstance of uphill 
seepage such that z > 1, and either ,• + •b < 90 ø and 0 < -• 
or ,• + •b > 270 ø and 0 > -4. Domains showing all these fail- 
ure situations are plotted on Figure 8 along with domains that 
are unconditionally stable or unstable with respect to Cou- 
lomb failure. As is shown in Figure 8, liquefaction is possible 
in a small part of the unconditionally stable domain if z is 
larger than the values shown in the corresponding domain of 
Figure 5. 

The failure domains of Figure 8 illustrate intriguing pos- 
sibilities for the initiation of flowing mass movements. In such 
mass movements (e.g., debris flows), some mechanism such as 
transient liquefaction is required to explain the transformation 
of an initially sliding mass into a rapidly deforming flow 
[Johnson, 1984]. The infinitesimal separation of the liquefac- 
tion domains and the Coulomb failure domains of Figure 8 
demonstrates that there is a rather slight distinction between 
Coulomb slip and liquefaction in some failure cases, particu- 
larly where there are both a significant upward seepage com- 
ponent and a slope angle nearly equal to •b. Coulomb shear 
failure of a loose soil in these cases could cause transient 

liquefaction when the soil contracts and interstitial water is 
forced upward [Sassa, 1984]. Less obvious, perhaps, is the 
possibility that even a dense soil could liquefy during shear 
failure if dynamic, shear-induced, pore-pressure perturbations 
were large enough to cause the effective-stress state to tran- 
siently shift from a Coulomb failure domain to a liquefaction 
domain of Figure 8. The preponderance of natural debris 
flows that are mobilized in saturated hillslope soil depressions 
on slopes greater than 30 ø [e.g., Innes, 1983; Johnson, 1984] 
lends credence to this idea; convergence of groundwater flow 
paths in such depressions could produce outward hydraulic 
gradients during storms, and with 0 • •b, soil slips initiated in 
such depressions might transiently liquefy. 

NUMERICAL EXAMPLE 

A hypothetical example is presented here as an aid to inter- 
preting Figures 3-5 and 8. Consider a straight, long valley- 

side slope that makes an angle of 25 ø with the horizontal 
(Figure 9). Assume the soil of the slope is saturated, homoge- 
neous, and cohesionless and has a friction angle •b = 30 ø and 
normalized total unit weight 7,/7w-- 2. Figures 3 and 4 show 
that minimum stability of the slope occurs when •, -- 60 ø, that 
is, when seepage is directed outward from the slope at an 
angle 5 ø above the horizontal. The slope would undergo Cou- 
lomb failure if the hydraulic gradient were about 0.1 in this 
direction (Figures 3 and 4). Such a condition is quite plausible, 
but for purposes of illustration, a different case is considered 
here. If seepage paths make an angle of 30 ø with the vertical in 
the potential slope failure zone, as is shown in Figure 9, then 
)•=5 ø , ;•+•b=35 ø , and 0-•b=-5 ø . Figure 5 shows that 
the slope would liquefy in this situation if the hydraulic gradi- 
ent, i (= z in this case), were about 1.15. Figures 3 and 4 show 
that Coulomb failure would occur with a gradient of only 
about 0.15 in this direction. Thus Coulomb failure takes pre- 
cedence over liquefaction (compare Figure 8). If, however, soil 
particle rearrangement during Coulomb failure produced a 
transient, additional, local hydraulic gradient of 1 in the 2 
direction, the failing mass would liquefy into a flowing mass. 

CONCLUSION 

The analysis presented here clarifies some physical effects of 
groundwater seepage on the potential for slope instability. Al- 
though the analysis does not account for complicating circum- 
stances such as soil inhomogeneity or anisotropy or for non- 
uniformity or temporal variability of the groundwater flow 
field, the simplicity and generality of the results offer signifi- 
cant insight. The results appear useful particularly in concep- 
tualizing the effects of seepage on slope stability and in inter- 
preting field data and modeling results in a physical context. 

A key theme of the analysis presented here is that the seep- 
age force vector, which represents a body force proportional 
to the hydraulic potential gradient, is responsible for destabil- 
izing hillslopes. We believe the consideration of seepage forces 
elucidates the physics of the problem more than does the 
sometimes misleading notion that high pore pressures cause 
slope instability. 

A principal result of the analysis is that if all other factors 
are constant, minimum slope stability occurs when seepage is 
directed such that • = 90 ø- •b. On steep landslide-prone 
slopes, where the slope angle commonly differs little from •p, 
this result implies that horizontal seepage, as might occur 
above poorly permeable strata [Rulon et al., 1985], produces 
minimal slope stability. Another result is that when a verti- 

potential 
failure 

o 

i 
ß 

iß 

Fig. 9. Hypothetical hillslope showing schematic seepage paths and 
site of potential slope failure. 
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cally upward seepage component exists, Coulomb failure ma 
occur under conditions dose to those required for stati 
liquefaction. Failure in such instances could catalyze debris 
flow mobilization. 

APPENDIX 

To express (3) in terms of pore water pressure gradients it is 
useful to express the total hydraulic head as the sum of the 
pressure head and gravitational head 

h= p/Tw + E 

in which p is pore water pressure, and E is elevation above an 
arbitrary horizontal datum. This expression for h neglects 
other possible contributions to the total hydraulic head, such 
as those produced by osmosis. Differentiating this expression 
with respect to the coordinates x and y then gives 

Oh 0 p + _ 
Oy Oy Oy 7• c3y 

Oh 

•x t•x + Ox 7• 

cos 0 

- sin 0 

Substituting these expressions into (3) yields the stress equilib- 
rium equations in terms of the pore pressure gradients and 
total unit weight of the soil 

da/dy = 7, cos 0 - Op/Oy 

d'r/dy = 7, sin 0 -- Op/Ox 

NOTATION 

c soil cohesion, M/LT 2. 
E elevation above arbitrary horizontal datum, L. 
f seepage force per unit volume, M/L2T 2. 
g gravitational acceleration, L/T 2. 
g magnitude of gravitational acceleration, L/T 2. 
h total hydraulic head of pore water, L. 
i magnitude of hydraulic gradient vector (dimensionless). 

K hydraulic conductivity, L/T. 
p pore-water pressure, M/LT 2. 
q specific discharge, L/T. 
T effective stress tensor, M/LT 2. 

x, y orthogonal coordinate directions, L. 
Yc value of y at which failure occurs if nonzero cohesion 

is present, L. 
z ratio of seepage force magnitude to submerged unit 

weight of soil (dimensionless). 
7b bouyant unit weight of soil, M/L2T 2. 
7t total unit weight of soil, M/L2T 2. 

7• unit weight of water, M/L2T 2. 
0 surface slope angle. 
;[ angle of seepage vector measured clockwise from 

outward directed surface-normal vector. 

Pt total soil bulk density, M/L 3. 
p• pore water density, M/L 3. 
a effective normal stress, M/LT 2. 
r shear stress, M/LT 2. 
•b internal friction angle of soil. 
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