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Lava Domes Modeled as Brittle Shells that Enclose
Pressurized Magma, with Application
to Mount St. Helens

R.M. IVERSON

Abstract

Lava domes can be modeled mathematically as brittle shells that enclose pressurized
magma. This chapter describes a static, brittle-shell model that is conceptually distinct from
previous models of lava domes. The governing equations of the brittle-shell model embody
several simplifying assumptions, none of which restricts the rheology of lava-dome consti-
tuents. The single morphologic assumption is that lava domes are axially symmetric. The
most important mechanical assumption is that, in domes which are growing slowly and en-
dogenously, stresses are in quasi-static equilibrium. This equilibrium may be disrupted by
extrusions or explosions, which reflect transient adjustments that lead to a new equilibrium
of the dome. The mechanical parameters included in the model are the thickness and tensile
strength of the dome’s outer shell and the unit weight and excess pressure of the enclosed
magma and gas. These four parameters combine to form a single dimensionless number, D,
which completely governs the equilibrium dome shape. The value of D is about one for the
Mount St. Helens dome. Morphologic measurements on the Mount St. Helens dome show
that its growth has been nearly self-similar since May 1981, and field observations show that
failure of the dome’s outer shell, accompanied by extrusions, has been an important growth
process (Swanson and Holcomb, this Vol.). Theoretical predictions based on the brittle-shell
model are consistent with both of these phenomena.

1 Introduction — The Conceptual Model

A lava dome is a steep-sided, rounded extrusion that forms a dome-shaped or
bulbous mass of congealed lava above and around a volcanic vent (Bates and
Jackson 1980). Quantifying and testing hypotheses about the physical pro-
cesses that control the shape and growth of lava domes can improve under-
standing of eruptive mechanisms and hazards at volcanoes where domes exist.

This chapter describes formulation and testing of quantitative predictions
based on the hypothesis that lava domes are essentially two-component
systems in static or quasi-static mechanical equilibrium. One component of
the system is an internal body of ductile magma, and the other component is
an external shell or carapace of solid, brittle rock (Fig. 1). When forces in the
two components of the system are balanced in static equilibrium, the system
resides in a state of minimum free energy. Nonequilibrium states of the system,
which occur during eruptive lava-dome growth, are transient phenomena that
restore the system to a new state of equilibrium. Lava-dome growth conse-
quently is regarded as a succession of static or quasi-static equilibrium states,
which are punctuated by intermittent eruptions.
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Fig. 1. Conceptual model of a lava dome viewed in cross-section. The parameters that play
a role in the brittle-shell dome model are identified

Another component that might be considered part of the lava-dome system
is a skirt or apron of talus around the dome (Fig. 1). Here the talus is assumed
to be mechanically decoupled from the dome system. Thus, the talus can con-
tribute to the external morphology of the dome, but it cannot contribute
strength that affects the equilibrium of the dome. Although this assumption
is not completely realistic, its use nevertheless appears warranted, owing both
to its role in simplifying predictions and to the observation that talus surfaces
generally slope at the angle of repose. Thus, any outward force that steepens
the talus slopes will cause them to fail, and they will provide relatively little
support for the growing dome carapace.

It also seems reasonable to assume that the dome’s solid carapace and in-
ternal magma each are isothermal and homogeneous, and that the dome is ax-
ially symmetric. These assumptions are reasonable not because they are likely
to apply exactly to lava domes, but because they lead to simple, unambiguous
predictions that can be readily compared and contrasted to the behavior of
lava domes.

Under the assumptions described above, the problem of predicting
equilibrium dome configurations requires that only four physical parameters
be considered. These are the tensile strength of the dome’s solid carapace, o;
the thickness of the carapace, # the unit weight of the fluid magma, y; and
the pressure head, /#( = pressure/y) of the magma at the apex of the dome
(Fig. 1). The analysis that follows this discussion shows that these four param-
eters combine to form a single dimensionless number, D, that governs
equilibrium dome configurations.

None of the parameters that combine to form D embodies assumptions
about rheology. The ductile magma within the dome can be linearly or
nonlinearly viscous, and the solid rock carapace can be elastic or plastic, as
long as the stress state departs insignificantly from equilibrium. Assumptions
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about rheology are unnecessary because the problem of finding equilibrium
dome configurations is statically determinate.

Equilibrium is regarded as a critical limiting state, and its role might be
clarified by a simple thought experiment. At equilibrium the dome carapace
is uniformly stressed; its strength just suffices to contain the magma pressure
exerted from within. In other words, if o, ¢, and y are, for the moment, as-
sumed to be constants, then an increase in 4 will be accommodated either by
a change in equilibrium dome shape or by a non-equilibrium response such as
tensile failure of the dome carapace, which would be accompanied by an extru-
sion or explosion. An extrusion or explosion changes the magma pressure
and/or the properties of the dome carapace, resulting in a new state of
equilibrium. Alternatively, quasi-equilibrium dome growth can occur con-
tinuously and endogenously if, for example, the thickness and/or strength of
the solid carapace increases with time. The rafe at which endogenous dome
growth or eruptions occur depends on the dome-rock rheology and the subter-
ranean magma pressure and supply rate, which are analyzed in an accompany-
ing chapter (Denlinger 1987, and this Vol.).

Before considering the brittle-shell analysis in detail, it is worthwhile to
note that the rheology of lava-dome constituents probably varies more or less
continuously with distance from the center of the dome. Near the center, the
magma may exist at temperatures high enough to ensure fully fluid behavior;
complete stress relaxation probably occurs in tens of seconds (cf. Goetze 1971),
and the magma probably flows in response to any deviatoric stress. Toward the
dome exterior, the dome rock becomes progressively cooler and more solid. At
the exterior surface it has considerable rigidity, and it can support some
deviatoric stress almost indefinitely. The brittle-shell model idealizes this con-
tinuously varying system by treating it as a two-layer system. This idealization,
although imperfect, can provide insights to dome behavior that are not provid-
ed by models that idealize lava domes as homogeneous, single-phase fluids or
solids (e.g., Huppert et al. 1982).

2 Analysis

The analysis described here follows and builds upon the analysis of drop-
shaped fluid storage tanks described by Fliigge (1967, p. 1—45), and the reader
is referred to Fliigge’s exhaustive treatment for further details. Drop-shaped
storage tanks provide a close mechanical analog to the brittle-shell concept of
lava domes, because in each case the tensile strength of an exterior carapace
or shell constrains the shape of the pressurized fluid mass within.

Referring to the curvilinear, orthogonal coordinate system imposed on the
curved shell segment pictured in Fig. 2, consider the system of stresses and
stress resultants (which are forces per unit length of the surface upon which
they act) in the shell. Normal- and shear-stress resultants that act in the plane
of the shell are designated by N, and stress resultants that act transverse to the
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Fig. 2. A segment of
the curved shell of a
lava dome, showing the
coordinate system and
stress components

plane of the shell are designated by Q. The first subscript of each resultant in
Fig. 2 designates the coordinate direction of the normal to the plane upon
which it acts, and the second subscript designates its direction of action. In ad-
dition to the stress resultants N and Q, there is a stress, p, that acts through
the centroid of the shell. This stress is caused by internal magma pressure and
by the weight of the rock in the shell.

As described in detail by Fliigge (1967), a remarkable simplification of the
stress system shown in Fig. 2 is possible if some tenable assumptions are made.
Assuming that no moment flexes the shell out of its equilibrium curvature, the
stress resultants Ny, and N, must vary slightly with w just so as to preserve
equilibrium. Similarly, assuming that no moment twists the shell, N, and N,,
must also vary with w just so as to preserve equilibrium. These assumptions
appear reasonable, given that internal magma pressure is the only “external”
force available to flex or twist the shell. At equilibrium, internal magma
pressure varies linearly with depth and imposes no loads that distort the shell.
The assumption of insignificant bending and twisting moments therefore ap-
pears good, and it is reasonable to neglect such moments.

A further simplification of the stress system shown in Fig. 2 arises from
consideration of the moment equilibrium of surfaces in the x-y plane. First,
there is equilibrium of such surfaces with respect to torsion about the w-axis
only if Ny, = Ny,. Second, equilibrium of such surfaces with respect to tor-
sion about the y-axis exists only if Q,, = 0, and equilibrium with respect to
torsion about the x-axis exists only if Q,, =0. This means that only the
resultants designated by N and the stresses designated by p affect the balance
of forces in the shell, and the analysis reduces to that of “membrane” forces
(Fligge 1967).

In an analysis of membrane forces, the shell is replaced, in effect, by an in-
finitesimally thick membrane. Despite the fact that the shell has a finite
thickness, ¢ (Figs. 1 and 2), it can be modeled as a membrane (Fig. 3) with little
loss in accuracy.

For convenience, now consider angular coordinates of the membrane,
designated ¢ in the meridional direction and @ in the parallel direction (Fig.
3). The radial coordinate of the membrane, 7, varies as some unknown function
of ¢ and 0, and finding this function is the essence of the problem.
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Fig. 3. The membrane
model of the dome
shell, showing the coor-
dinate system and stress
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Balancing the force components in the membrane leads to force-
equilibrium equations for the ¢, 6, and r directions. For the meridional (¢)

direction, equilibrium is expressed by

aN,

o
— (PN )+ 7 —22 —r Nyg cOS @+ pyyrr
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and in the parallel (#) direction, by

N,
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0 0
—(rN,g)+r
8¢( 00) T

and in the radial (r) direction, by

N,, N,
Nog  Noo_ ),
ry r

(1a)

(1b)

(1c)

For the somewhat lengthy derivation of Egs. (1), the reader is referred to
Fliigge (1967). Definitions of the variables in these equations are illustrated in

Fig. 3.
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Because the dome is axially symmetric, all derivatives with respect to the
parallel coordinate, ¢, must vanish. Equations (1a) and (1b) thus reduce to

d

55 (rNyg)—riNggcos @+pyerry =0 ; (2a)
d

@ (rNyg)+ri Nygcos @ +pggrry =0, (2b)

where Eq. (2b) contains only the shear-stress resultant (N,4) and is indepen-
dent of Eqgs. (2a) and (1¢), which specify the normal-stress resultants (V,,
and Ng). Thus, Eq. (2b) is not needed to obtain the r(¢) or ¢ (r) solution.

The external load imposed on the membrane by the magma pressure acts
normal to the membrane surface, because the liquid magma supports no shear
stress. Moreover, the membrane approximation assumes that the body force
caused by the weight of the rigid shell is negligible compared to the external
(magma) load and its attendant reaction stresses. The stress p consequently has
no component in the ¢- or f-directions, and is given simply by

P=Dr=%Y2, (3)

where y is the magma’s unit weight, and z is a vertical coordinate with its origin
(z = 0) at a height & above the apex of the dome. The coordinate z is reckoned
positive downward (Fig. 1).

For an equilibrium shell of constant strength, o, and thickness, ¢, the stress
resultants N,, and Ny, must by definition each equal ¢¢. Using this fact and
Eq. (3), Eq. (1¢) reduces to

ot(1/ry+1/r) = yz ; C))
and Eq. (2a) reduces to a simple geometric relation:
ot(dr/dg-r cosg)=0 . 5)

Equations (4) and (5) contain only the variables ¢, r, and z. However, they also
contain the geometric parameters r; and r,, which need to be eliminated
before solutions can be obtained.

The parameter r; is eliminated by expressing it in terms of the geometry of
Fig. 3:

ry=r/sing , ©)
and r, is eliminated by expressing it in terms of Eq. (5):

1 d¢ d .
= - = . 7
5 (cos ¢) -3 (sin ¢) @)



Lava Domes Modeled as Brittle Shells 53

Substituting Eqs. (6) and (7) into Eq. (4) yields a differential equation that
governs the shape of a meridian on the dome surface:

dGsing) sing _ yz ®8)
dr r ot

This equation, however, contains both ¢ and z as undetermined functions of
r. Thus, another differential equation, which is deduced from the geometry of
Fig. 3, provides closure to Eq. (8) by relating ¢, z, and r along a meridian:

tan ¢ = dz/dr . : 9)

Simultaneous solution of Eqgs. (8) and (9) therefore yields ¢ and z as functions
of r along a meridian; this relation completely determines the shape of the
dome. The nonlinear system of Eqs. (8) and (9) is not tractable analytically,
but is readily solved by elementary numerical methods.

To maximize the applicability of numerical solutions, it is useful to nor-
malize or “scale” Eqgs. (8) and (9) so that all their variables are dimensionless.
To normalize the equations three dimensionless variables are introduced:

g=r/\/£t; é=z/\/;€; n=sing . (10a,b,¢)
b4 b4

Substituting Eqgs. (10) into Eq. (8) then yields

dn_g 1, (11)

’

de Q

and substituting Egs. (10) into Eq. (9) yields

¢ _ 7 (12)

do Vi-4%’

so that there is a nonlinearly coupled pair of first-order, ordinary differential
equations (11 and 12) to solve for the dependent variables # and ¢&.

Note that the parameter Vo t/y appears prominently as the natural length
scale in Egs. (10), (11), and (12). Scaled against this reference length, points
on the dome surface have the coordinates (g, &), where o is the normalized
radial distance from the dome axis and ¢ is the normalized vertical distance
below an origin that lies a distance # above the dome apex (Fig. 1). The dis-
tance A also can be scaled relative to the reference length Vat/y, yielding
the dimensionless number

D= \/gf/h . (13)
Y
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This dimensionless number incorporates all the physical parameters that affect
the shape of the dome, and it therefore governs the mathematical solution
completely. That is, the solutions of Eqs. (11) and (12) comprise an orderly
family, the members of which are distinguished only by their value of D.

The boundary conditions used to solve Eqgs. (11) and (12) are found at the
dome apex, where r = 0 and, in terms of the normalized variables, ¢ = 0. The
boundary conditions are

ne=0)=0; f(g=0)=h/\/%=1/D. ' (14a,b)

The first of these conditions is derived from the requirement that the dome-
surface slope must be zero at the dome apex, and the second is derived from
the requirement that, by definition, z = 4 at the apex (Fig. 1).

Solving the system (11, 12, 14a,b) numerically requires relatively simple
but rather unique tactics. The uniqueness arises out of difficulty in beginning
the computation stably and out of a necessity to switch computational
algorithms depending on whether sin ¢ or cos ¢ is in the neighborhood of
zero. For details of these tactics, the reader is referred to the discussion by
Fliigge (1967). It is easy to implement Fliigge’s suggestions computationally
and to solve the system of equations by using a numerical integration pro-
cedure. A user-friendly BASIC program called “Halfdome” (Appendix 1)
solves the equations using a Runge-Kutta algorithm (Kreyszig 1979, p. 797) and
plots the cross-sectional shape of half of an axially symmetric lava dome.

3 Solutions

Figure 4 shows a series of solutions generated by using “Halfdome”. The solu-
tions illustrate how the equilibrium shape and relative size of the dome change
as a function of D, and additional solutions show the same trend over a much
wider range of D. The talus aprons shown on the solutions in Fig. 4 adjoin the
dome surface arbitrarily at the point where the slope angle is 55°, but the talus
aprons themselves slope at an arbitrary angle of 35°. These angles are ad-
justable parameters that do not affect the solution of the equilibrium equa-
tions in “Halfdome” (Appendix 1).

4 Discussion

The model results described above constitute an hypothesis aimed at explain-
ing the morphology and style of growth of lava domes. Here this hypothesis
is compared with other quantitative hypotheses for lava-dome growth and with
data collected at Mount St. Helens.



Lava Domes Modeled as Brittle Shells 55

Fig. 4. A family of lava-dome cross-sec-
tional profiles computed using “Halfdome”.
Profiles are shown for different values of .D.
The shaded part of each profile represents
the dome shell and interior, and the un-
shaded part represents the bordering talus
apron. The talus apron adjoins the shell at
an arbitrary angle of 55° but slopes at an
angle of 35°

4.1 Comparison with Other Hypotheses

Two quantitative hypotheses for the mechanical controls of lava-dome growth
and morphology have been advanced previously. The first of these, by Huppert
et al. (1982), postulates that lava domes behave like a pile of linearly viscous
fluid. Fluid is continuously injected through the base of the pile to maintain
the rotund shape of the lava dome. Thus, the lava dome cannot achieve a state
of static equilibrium. It must constantly expand volumetrically; otherwise it
sags into a flatter and flatter viscous pile. Measurable sagging of this type oc-
curs between eruptions on the Mount St. Helens dome (D. A. Swanson, U.S.
Geological Survey, personal communication), but the dome does not continue
to sag indefinitely.

Another important feature of the Huppert et al. (1982) linear-viscous
model is that fluid pressures within the dome are hydrostatic; there can be no
buildup of excess pressure that could potentially cause an explosion, and there
is no means of generating localized extrusions.

The key parameter in the linear-viscous model is the fluid or lava viscosity,
which determines the shape of the lava dome and its rate of spreading. In order
to achieve reasonable fits to the observed lava-dome shape at the Soufriere of
St. Vincent volcano, Huppert et al. (1982) needed to use a lava viscosity of
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2x10'2 poise, which is several orders of magnitude larger than typical mea-
sured lava viscosities. Huppert et al. attributed their discrepant theoretical
viscosity to the presence of a high-viscosity “skin” they observed on the outer
surface of the dome but could not simulate with their uniform-viscosity
model. The skin constrained the flow of the magma within the dome to such
an extent that it effectively dominated the dome behavior.

A second hypothesis for the controls of lava-dome growth and morphology
has been advocated by Blake (1987, and this Vol.), who models a dome as a
pile of Bingham (viscoplastic) material. This material has a finite shear
strength as well as viscosity, and Blake’s model consequently appears to be
more realistic than the linear-viscous model. However, it uses two key concepts
that are identical to those of the linear-viscous model: (1) that the dome is a
pile of homogeneous material, with properties in the outer shell that are iden-
tical to those in the dome interior; and (2) that fluid pressure in the dome is
hydrostatic. The Bingham model is appealing in its ability to represent static,
equilibrium dome states (this is rendered possible by the yield strength in the
model), but the model admits strength only in shear, and not in tension. Blake
obtained estimates of lava-dome yield strengths by using an equilibrium rela-
tionship between dome height, radius, density, and yield strength that he de-
rived from small-scale model experiments using kaolin slurries. The relation-
ship shows that the dome height is always proportional to the square root of
its radius if the dome is composed of Bingham material. Such domes must
therefore become relatively flatter as they enlarge. Moreover, a plot of dome
height as a function of the square root of its radius must be a straight line that
intersects the origin. The Bingham hypothesis consequently can be tested with
height-radius data obtained during growth of a dome (cf. Fig. 9).

The major conceptual contrast between the model proposed here and the
viscous and viscoplastic models is that the brittle-shell model treats the outer,
cooled carapace of a lava dome as a material that is distinct from the ductile
magma within the dome. Because the dome carapace is assumed to be under
uniform tension, a magma (or gas) pressure in excess of hydrostatic pressure
exists within the dome. This excess pressure balances the tensile stress in the
carapace. Higher excess pressures require greater curvature, strength, or
thickness of the carapace in order to balance the stresses. Consequently, if all
other factors are constant, domes that are more nearly spherical can contain
greater excess pressures and thus would be more prone to explosive failure than
would relatively flatter domes. Quiescent failures (extrusions) would be more
likely in flatter domes that have less surface curvature. Thus, the brittle-shell
model is fundamentally different from previous models: it supposes a distinct
mechanical behavior of the carapace, and it provides an explicit mechanism
(tensile failure of the carapace) for eruptive dome growth, including both ex-
plosions and extrusions.
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Fig. 5A, B. Comparison of computed and measured topographic profiles of the Mount St.
Helens lava dome. A Three profiles measured from a photogrammetric topographic map
made from air photos taken on November 4, 1981. The three profiles are all roughly east-
west, having azimuths of 73°, 91°, and 116° from due north, and each passes through the
apex of the dome. The location of the upper margin of the talus apron is very difficult or
impossible to distinguish in the field and is not useful as a modeling constraint. B The mean
of the three measured profiles compared with a profile computed using “Halfdome”. A D
value of 1 and talus slopes of 36° were used in the computation

4.2 Comparison with Morphologic Data from Mount St. Helens

One means of testing model predictions with field data is to compare
calculated dome profiles with those measured at Mount St. Helens (e.g., Swan-
son et al. 1987; Swanson and Holcomb 1987, and this Vol.). Such comparisons
show excellent correspondence between predicted and measured cross-sec-
tional profiles, particularly if the value of the single model parameter, D, is
selected to maximize the goodness of fit (e.g., Fig. 5). However, it is important
that the value of D is not selected through an exercise in unrestrained curve
fitting. Table 1 shows that plausible values of D for the Mount St. Helens
dome are of the order of one. The use of a D value of one to fit the curve of
Fig. 5 is therefore physically reasonable.

As shown in Fig. 5, the correspondence between predicted and measured
dome profiles is improved if several of the irregular, measured profiles are aver-
aged to obtain a mean profile. For Mount St. Helens these mean profiles are
best obtained by averaging several east-west profiles, because north-south pro-
files are asymmetrical owing to a pronounced south to north slope of the crater
floor.

The close agreement between predicted and measured topographic profiles
is perhaps surprising, in light of the complexity of dome growth as docu-
mented by Swanson et al. (1987). This documentation shows that the dome has
grown partly by endogenous growth and partly by localized extrusions. Local
extrusions impose local loads on the dome surface, which might be expected
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Table 1. Plausible values of D and its constituent parameters for
the Mount St. Helens dome

o (Pa)? ¢t (m)® y (N/m?)¢ h (m) D
1x107 10 26000 62 1
1x107 20 26000 44 2
1x107 30 26000 27 4
1x108 10 26000 20 1
1x108 20 26000 14 2
1x108 30 26000 11 3
1x108 10 26000 39 0.5
1x108 20 26000 55 0.5
1x10° 30 26000 68 0.5

3 Estimates of the tensile strength of dome-carapace rock are bas-
ed on typical crustal rock tensile strengths tabulated by Jaeger and
Cook (1979, p. 190 —191). Such tensile strengths vary by about one
order of magnitude.

b Estimates of the dome carapace thickness are based on
preliminary analyses of magnetic data for the Mount St. Helens
dome (personal communication, D. Dzurisin and R.P. Denlinger,
U.S. Geological Survey).

¢ The estimate of dome-rock unit weight is based on hundreds of
measurements of Mount St. Helens dacite erupted in 1980 (per-
sonal communication, R.P. Hoblitt, U.S. Geological Survey).

to cause asymmetrical dome growth. However, the rock added to the dome sur-
face during extrusions probably has about the same density as the magma in-
side the dome, and if the dome shell acts as a membrane, it should comply to
the new load over a period of time so as to preserve the equilibrium dome con-
figuration. Furthermore, the thickened dome shell that results from an extru-
sion will strengthen that part of the dome so that subsequent extrusions will
tend to occur elsewhere. (This type of behavior has been documented at Mount
St. Helens.) Thus, in an average sense, the equilibrium shape of the dome can
be maintained even under the influence of local extrusions.

4.3 Comparison with Dome-Growth Data from Mount St. Helens

The brittle-shell model does not include explicit time dependence, and conse-
quently it cannot predict rates of dome growth without independent
knowledge of the rate of change of the parameters that compose D. Similar
independent knowledge (of the rate of magma entry, for example) is necessary
for any model to predict rates of dome growth. However, even without this in-
dependent knowledge, the brittle-shell model can predict how the dome shape
and volume change during growth. That is, it can predict scenarios for how
the ratios of dome height to volume, diameter to volume, and height to
diameter change as the dome grows. These predictions can be compared with
detailed data collected over a 6-year period at Mount St. Helens.
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A complication in making theoretical predictions of height-volume and
similar relations is that it is not known a priori which physical parameters
change and which, if any, stay nearly the same during dome growth. That is,
among the parameters that compose D (ie., g, ¢, 7, and #), one or more must
change for dome growth to occur. For fixed values of these parameters, the
dome can exist in only one equilibrium size and shape.

The simplest scenario for dome growth is that it occurs through compen-
sating increases in g, ¢, y, and A, which cause D to remain roughly constant.
Dome growth then occurs as self-similar expansion, and the dome shape re-
mains roughly the same. During this self-similar growth, ¢ and h are perhaps
the parameters most likely to change, whereas o and y are more likely to remain
almost constant.

Swanson and Holcomb (1987, and this Vol.) report that growth of the
dacite dome at Mount St. Helens was approximately self-similar after May
1981. They measured dome heights and diameters on a series of detailed topo-
graphic maps and calculated volumes from digitized versions of the maps. The
base of the dome was fixed at 1914 m elevation for all measurements and
calculations. Swanson and Holcomb’s best-fit, nonlinear regression equation
for the height-volume data is

V =657700e%%H  (+2=097) , (15)

where V is the volume of the dome measured in cubic meters, and H is the
height of the dome measured in meters. Their best-fit, nonlinear regression for
the diameter-volume data is

V=0003d3** (r*=099), (16)

where d is the diameter of the dome base measured in meters. Plots of these
equations, along with the field data and theoretical predictions, are shown in
Figs. 6 and 7.

Swanson and Holcomb (this Vol.) describe the errors implicit in the data
plotted in Figs. 6 and 7. The errors in computed dome volumes arise principal-
ly from imperfect digital representation of the irregular dome surface, and may
be as large as 10%. These errors must be borne in mind when deciding how
many refinements of theory are justified in pursuing a good fit to the data.

The theoretical predictions of dome height-volume and diameter-volume
relations shown in Figs. 6 and 7 are based on several scenarios for self-similar
growth. Different scenarios employ different values of D and/or different
assumptions about the extent of the talus apron that mantles the lower parts
of the dome. For each scenario, however, the basic strategies used to calculate
the theoretical dome volume are the same.

Two methods exist for calculating the theoretical volume enclosed by the
brittle dome carapace. The first method relies on “Halfdome” and uses
numerical integration to compute the volume above any selected horizontal
plane that transects the dome (Appendix 1). The second method is useful only
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for determining the fotal volume enclosed by the carapace. This method ex-
ploits the balance of forces that act on the base of the carapace, which has a
radius R, (Fig. 8). The magma pressure on the base is equal to (h+H)y,
where 4 is the pressure head at the apex of the dome and H is the height of
the apex above the base (Fig. 8). Multiplying this magma pressure by the area
of the base, nRzz, gives an expression for the total vertical force on the base.
An additional expression for the total vertical force is given by the product of
the dome volume, ¥, and the unit weight of the dome, y. Equating these two
expressions for the vertical force and dividing each by y gives an equation by
which to find the dome volume enclosed by the brittle carapace:

V=nR>2(H+h) . a7

This equation, which fortuitously has the same, simple form as the equation
for a right, circular cylinder, provides a means for checking the accuracy of the
numerical calculation of the dome’s volume. However, if a talus apron is to be
included in the calculation of the total dome volume, Eq. (17) serves no useful
purpose.

To include bordering talus in the volume calculation, the volume of the
part of the dome above the talus apron and having thickness H, (Fig. 8) is ob-



Lava Domes Modeled as Brittle Shells

Fig. 7. Lava dome
volume as a function
of the base diameter.
Data points are from
measurements of the
Mount St. Helens
dome by Swanson and
Holcomb (this Vol.),
and the dashed line is
the empirical, power-
law curve that best fits
the data. The solid
lines represent
theoretical results for
five self-similar dome
growth scenarios. (Two
scenarios produce near-
ly identical curves.) The
theoretical curves were
obtained from
numerical simulations
using “Halfdome”
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tained from numerical integration using “Halfdome” Designate this volume
V. Below H; the volume of the dome is approximated as that of a right conic
frustrum. The sloping surface of the conic frustrum is the surface of the talus
apron, and the volume of the frustrum is given by (Tuma 1979, p. 27)
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_ T[Hz

v, (RZ2+RR,+R? , (18)

where V) is the volume of the part of the dome below the upper margin of the
talus, H, is the height of the talus apron above the dome base (i.e., the height
of the frustrum), R, is the radius of the dome at height H,, and R is the
radius of the dome base (Fig. 8). If the surface of the talus apron slopes at a
uniform angle g, then H,, R, and R, are related by the simple geometric equa-
tion

H,=(R-R)tanp . (19)

The total volume of the dome plus talus apron is found by adding Eq. (18) to
V), making use of Eq. (19) if desired:

n(R—R))tanf

V=V+V,=V;+ (R:2+RR,;+R?Y . (20)

Inserting appropriate values for the geometric parameters in Eq. (20)
allows theoretical predictions of dome height-volume and diameter-volume
relations to be compared with field data. Each point on the theoretical curves
of Figs. 6 and 7 was obtained by extracting the necessary values from
numerical simulation results generated using “Halfdome”. For the curves that
include talus aprons in the computed dome volumes, the angle of the talus
slopes was fixed at 36°. On the basis of several measurements made on each
of seven topographic maps of the Mount St. Helens dome (R. T. Holcomb and
D. A. Swanson, U.S. Geological Survey, unpublished data), 36°+5° is a rea-
sonable estimate of the mean talus slope angle.

Figures 6 and 7 show that the best match of the theoretical curves to the
field data is generated if the D value is about one and the 36° talus apron is
included in the dome volume. This scenario does not provide the best match
to both the volume-height and volume-diameter data, but it provides the best
comproprise in simultanously fitting both types of data. The deviation of the
best-fit theoretical curves from most of the field data is negligible if the
possibility of 10% error in the data is taken into account.

For dome diameters less than about 750 m, however, the deviation of the
theoretical curves from the diameter-volume data is systematic and significant
(Fig. 7). In such instances the theory overestimates the volume of the dome.
This systematic deviation reflects at least two phenomena. First, during early
stages of growth of the Mount St. Helens dome, the dome was somewhat more
asymmetrical than during later stages (Swanson and Holcomb, this Vol.). The
theory uses the mean dome diameter as the basis for volume calculations, and
consequently it systematically overestimates the volume when the dome is sig-
nificantly asymmetrical. Second, the dome did not grow in a self-similar
fashion until its mean diameter reached nearly 600 m (Swanson and Holcomb,
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this Vol.). Thus, the self-similar growth curves cannot be expected to predict
the data for smaller domes with great accuracy.

Another means of assessing self-similar growth predictions entails plotting
dome height as a function of the square root of its radius. This permits a
straightforward comparison of the Bingham and brittle-shell hypotheses.
Predictions based on the brittle-shell theory are plotted on Fig. 9, along with
the pertinent data. The Bingham-model prediction described by Blake (1987,
and this Vol.) plots as a straight line that passes through the origin of Fig. 9.
The slope of the line is determined by the yield strength and density of the
dome’s lava. Neither the Bingham nor the brittle-shell theory fits all the data,
but the inaccuracy of the brittle-shell theory is negligible except for cases in
which the dome was less than 150 m in height. For these cases growth of the
dome was not self-similar.

Some alternative hypotheses for lava-dome growth make use of the brittle-
shell model but not of the self-similar growth concept. Instead, such hypothe-
ses suppose that D changes during dome growth. A scenario of this type that
seems quite plausible is one in which the thickness of the dome carapace, ¢,
increases during growth, while the other parameters that contribute to D re-
main more or less constant. In this case the basic dome-shape equation (17)
can be scaled against the value of A, which is assumed constant, and Eq. (17)
can be reduced to a dimensionless form:

2
V_ [RD)]

5= e [H(D)/h+1] . 1)
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Here, R, and H are both functions of D that need to be obtained from
numerical solutions using “Halfdome”. The disadvantage of this type of hy-
pothesis is that it involves more than one free parameter. That is, it allows the
dome shape to change as the dome enlarges, with no independent constraints
imposed by physical data. Thus, in the absence of additional information,
matching the theory to the data becomes a relatively unrestrained exercise in
curve-fitting. It therefore yields a rather small increment of physical insight,
and the topic is not pursued here.

5 Conclusions and Unresolved Questions

This chapter describes a brittle-shell model for lava domes that is conceptually
simple, quantitatively explicit, and computationally economical. The model
results constitute a testable hypothesis for the mechanical controls of lava-
dome morphology and growth.

The brittle-shell model differs significantly from previous mechanical
models of lava domes. The primary difference is the presumption that the solid
rock composing the outer carapace of the dome has mechanical properties that
differ markedly from those of the molten rock within the dome. The important
properties of the outer carapace are its tensile strength and thickness, whereas
the important properties of the molten interior are its pressurization and
weight. A single dimensionless number, D, represents the combined effect of
these four properties, and its value determines the shape of the dome. Talus
slopes that mantle the lower parts of the dome are assumed to contribute only
cosmetically, and not mechanically, to its shape.

An important feature of the brittle-shell model is that it provides concep-
tually for a means of eruptive lava-dome growth. The dome can grow through
tensile failure of its outer shell. Alternatively, endogenous dome growth can
occur if changes in the dome-shell thickness or strength keep pace with
pressurization in the feeding conduit, which causes intrusion of new magma
into the dome interior.

The brittle-shell model also adequately matches morphologic data obtain-
ed for the growing Mount St. Helens dome. Plots of dome volume as a func-
tion of its diameter and height and of height as a function of radius reflect
the shape of the dome and how it might change during growth. The match be-
tween theoretical predictions and the data is best if a scenario of self-similar-
dome growth is assumed with D always equal to about one. A D value of the
order of one is commensurable with estimates of the strength, shell thickness,
unit weight, and pressurization of the Mount St. Helens dome. Moreover, a D
value of one produces a good match of theoretical and measured topographic
profiles for the Mount St. Helens dome.

A more rigorous test of the brittle-shell hypothesis would require indepen-
dent measurement of each of the parameters that contribute to .D. The most
poorly constrained parameters appear to be the thickness of the solid dome
carapace and the pressure of the fluid phase within the dome. Future research
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that included drilling into the dome’s interior therefore could provide valuable
data to test the applicability of the brittle-shell hypothesis.

Other future research could be directed toward making the brittle-shell
model more realistic by allowing for tensile stress and strength heterogeneities
in the mathematical formulation. Moreover, research on the rate-dependent
processes by which the dome shell may fracture and grow expands the
ramifications of the model and addresses the processes that act during disequi-
librium states. Such research is described by Denlinger (this Vol.).
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Appendix 1: Computer Program Halfdome

The computer program “Halfdome” takes about a minute to compute and plot
a solution of the system (11, 12, 14a,b) if an IBM XT '-type personal com-
puter with CGA graphics is used and the program is accessed through the hard
disk. An option when using “Halfdome” is to include a bordering talus apron
adjacent to the side of the dome. The presence of the talus apron does not af-
fect the procedure for solving the equations; the talus only contributes
cosmetically to the shape of the dome,

A file output by “Halfdome”, which has a default name of “Dome.dat”,
lists the cumulative volume computed as the numerical integration proceeds
from the apex to the base of the dome carapace. The partial dome volume ly-
ing above a horizontal plane that transects the carapace at an arbitrary eleva-
tion may therefore be read directly from “Dome.dat”. The final entry in
“Dome.dat” is the total volume enclosed by the dome carapace.

10 REM*************************************************************************
20 REM HALFDOME. Bas

30 REM (R.M. Iverson 7/6/87)

40 REM*************************************************************************
50 REM This program computes the profile of half of a lava dome by numerical

60 REM solution of two simultaneous, nonlinear, ordinary differential

65 REM equations that have their basis in the following physical assumptions:
70 REM 1. At any moment in time, the dome is in static mechanical equilibrium.
80 REM 2. The dome consists of a pressurized magma body enclosed by a carapace

90 REM of solid rock. The carapace is assumed to be of uniform thickness
100 REM and tensile strength. The carapce, in turn, is surrounded along its
110 REM lower margins by an apron of talus that is assumed to be in plastic

120 REM equilibrium. Thus the talus contributes no strength to help support
130 REM the dome.

140 REM 3. The physical parameters that determine the shape of the dome are

150 REM the magma pressure (expressed as head) at the apex of the dome,

! The use of brand and trade names in this chapter is for identification purposes only and
does not constitute endorsement by the U.S. Geological Survey.
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REM the magma density (expressed as unit weight), which is assumed to be
REM constant, the tensile strength of the solid rock carapace,

REM and the thickness of the carapace. These parameters are combined
REM into one dimensionless parameter, D, that characterizes the forces
REM that determine the shape of the dome. D is the only free parameter
REM that affects the numerical solution of the governing equations.

REM************************************************************************
REM

REM To run the program, enter the BASIC interpreter program, type load

REM "Halfdome", and then type run. The program will first prompt for the
REM name of a file into which numeric output data are placed, and then will
REM prompt for the desired value of D, for the desired angle of the

REM bordering talus slope, and for a scale factor that determines the size
REM of the graphic output on the monitor screen.

REM
REM************************************************************************
REM

REM DEFINITION OF VARIABLES:

REM D - A dimensionless number that incorpcrates the effects of magma pres-
REM sure and density, and of dome-carapace thickness and tensile strength.
REM Rho - A dimensionless horizontal coordinate of a point on the dome

REM surface. The origin for Rho is at the axis of the dome.

REM Xi - A dimensionless vertical coordinate of a point on the dome surface.
REM The origin for Xi is at a distance h above the dome apex, where

REM h is the pressure head at the apex.

REM Eta - A number equal to the sine of the dome-surface slope.

REM Mu - A number equal to the cosine of the dome-surface slope.

REM COUNT - A counter to keep track of which of three segments of the

REM dome profile is being calculated.

REM N and NN - Jterative indices for loop procedures.

REM STP - Size of the space step used in the numerical solution

REM SCALE - A number which gives the linear scale of the solution plotted
REM on the graphics monitor. The number is relative only and has no

REM particular physical meaning or importance.

REM RHOPLOT - Value of rho scaled appropriately for graphic plotting.

REM XIPLOT - Value of XI scaled appropriately for graphic plotting.

REM OLDRHO - Value of Rho saved from previous numerical step

REM OLDXI - Value of XI saved from previous numerical step

REM ORHOPLO - Value of OLDRHO scaled for graphics use

REM OXIPLO - Value of OLDXI scaled for graphics use

REM TALUSLOPE - User-specified slope angle (in degrees) of the talus apron
REM surrounding the base of the dome

REM RHOTALUS - Value of RHO where the talus apron adjoins the dome

REM XITALUS — Value of XI. where the talus apron adjoins the dome

REM RHOTALUSPLO - Value of RHOTALUS scaled for graphics use
REM XITALUSPLO - Value of XITALUS scaled for graphics use
REM TALUSADJOIN - Slope angle (in degrees) at the spot on the dome where
REM the adjoining talus lope contacts the dome. If no talus slope is
REM specified, then this parameter defines the slope of the dome at the
REM point where the dome contacts the horizontal dome base.
REM TALUSAPRON - If this parameter = 0, then no talus slope is specified
REM to apron the dome. If this parameter = 1, then a talus apron exists
REM TESTANGLE - This angle is used to test the calculated dome slope
REM against the angle specified for TALUSADJOIN
REM VOLSUM - Cumulative sum of the dome volume above current Xi
REM* % kkkhkkkhkkhhkhkkhkhhhhhkhkkkkhkhkhkkhhhhkhhkhrrhhrhhhhhkhrhhkrhhkkrrhhhhhhkihkk
REM
REM****%* BEGIN EXECUTABLE PART OF PROGRAM**Xxkkkkkkhkhhkhkkkhkhkkhhhkhhkhhhkkkhkkk
REM
REMAXkhkhhkhhkhhkhhhhhhhhhhhhkhkhhhkhkhhkh kA XA XA KRR A kAR R AR AR AR AR AR AR Rk Ak
REM PROMPT USER FOR NAME OF NUMERIC OUTPUT FILE
CLS:PRINT:PRINT: PRINT"DOME PROFILE PROGRAM"
PRINT:INPUT"Enter filename for numeric output (Default = Dome.dat)";NF$
IF NF$="" THEN NF$="DOME.DAT"
OPEN NF$ FOR OUTPUT AS 1
REM SPECIFY N AND C AS INTEGER~VARIABLE MARKERS
DEFINT N,C
REM PROMPT FOR THE VALUE OF THE PARAMETER D (=a/h)
PRINT:PRINT "The D parameter should be0.5 < D <20"
INPUT "Enter the value of the parameter D";D
REM PROMPT FOR USER SELECTION (YES OR NO} OF TALUS APRON AROUND DOME
PRINT % v
PRINT "Is a talus apron around the dome desired? Enter 0 (zero) if
INPUT "no apron is desired and 1 if it is desired"; TALUSAPRON
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840 REM PROMPT FOR USER SELECTION OF TALUSADJOIN ANGLE

850 PRINT:PRINT "If no talus apron was specified, now enter as TALUSADJOIN"
860 PRINT "the angle of the dome surface where it contacts the dome base."
870 PRINT "Otherwise, TALUSADJOIN specifies the slope angle (in degrees)"
880 PRINT "of the point on the dome where talus adjoins the dome surface.”

890 INPUT “Enter TALUSADJOIN value in degrees (between 15&90)";TALUSADJOIN
900 REM PROMPT USER FOR THE ANGLE OF THE TALUS SLOPE, IF SLOPE IS SPECIFIED
910 PRINT:PRINT "The TALUSLOPE parameter specifies the angle of the talus"
920 PRINT "apron adjoining the dome, ranging from 15 to 90 degrees"

930 INPUT "Enter TALUSLOPE value in degrees (Default is 35)";TALUSLOPE

940 REM SET DEFAULT VALUES OF PARAMETERS

950 IF TALUSLOPE=0 THEN TALUSLOPE=35

960 IF TALUSADJOIN=0, THEN TALUSADJOIN=35

970 TALUSLOPE=TALUSLOPE*, 0174533

980 TALUSADJOIN=TALUSADJOIN*.0174533

990 IF D=0 THEN D=4

1000 REM SPECIFY THE SIZE OF THE SPACE STEP FOR THE NUMERICAL SOLUTION

1010 STP=.01

1020 REM PROMPT FOR THE "SCALE" FACTOR TO DETERMINE THE SIZE OF THE PLOT

1030 PRINT:PRINT "The scale of the plotted ouput is set by specifying SCALE"
1040 PRINT "The default value of SCALE is 50"

1050 INPUT "Enter the value of SCALE"; SCALE

1060 IF SCALE=0, THEN SCALE=50

1070 REM FIX VALUES OF Rho, Eta, Xi, AND Volsum AT THE APEX OF THE DOME

1080 RHO=0

1090 ETA=0

1100 VOLSUM=0

1110 XI=1/D

1120 REM PRINT HEADINGS AND THE DATA VALUES FOR THE DOME APEX TO OUTPUT FILE
1130 PRINT#1, "Rho Xi Eta Volume Sum"

1140 PRINT #1, RHO,XI,ETA,VOLSUM
1150 REM CLEAR THE MONITOR AND PREPARE FOR GRAPHICS OUTPUT

1160 cLs

1170 SCREEN 2

1180 KEY OFF

1190 REM DRAW A VERTICAL LINE OF LENGTH h/a (=1/D) ATOP THE DOME APEX

1200 RHOPLOT=0

1210 XIPLOT=XI*SCALE+20

1220 LINE(0,20) - (RHOPLOT, XIPLOT)

1230 REM RETAIN THE CURRENT RHO VALUE FOR FUTURE USE

1240 OLDRHO=RHO

1250 REM*********************************************************************
1260 REM

1270 REMk***k**kkxk** BEGIN COMPUTATION OF DOME PROFILE #**k#kkkkkkhhdddhhdddii
1280 REM (THIS ROUTINE IS USED TWICE TO COMPUTE THE FLATTER PARTS OF THE
1290 REM DOME PROFILE. Rho IS THE INDEPENDENT VARIABLE IN THIS CALCULATION)
1300 REM¥*Xkkkkdkdkdkhkdhhhhhkhkhikhhkhhkhhihkihdhkdidkdkdkdkkkkikkkkddkdkkdkkddkkkkikdkikikkdkxk
1310 REM

1320 COUNT=0

1330 REM ANALYTICALLY CALCULATE THE VALUE OF Eta ONE STEP FROM THE ORIGIN
1340 RHO=RHO+STP

1350 ETA=.5 * (1/D) * RHO

1360 REM BEGIN LOOP TO CALCULATE THE REST OF THE DOME PROFILE, STEPPING
1370 REM OUTWARD AND DOWNWARD FROM THE APEX OF THE DOME

1380 FOR N = 1 TO 500

1390 IF COUNT=1,THEN IF N=1, THEN GOTO 1530

1400 OLDXI=XI

1410 IF COUNT=0, THEN XI=XI+STP*(ETA/SQR(1-ETA*ETA))

1420 IF COUNT=1, THEN XI=XI-STP* (ETA/SQR(1~ETA*ETA))

1430 VOLSUM=VOLSUM + (XI~OLDXI)+*3.14159% ((RHO+OLDRHO)/2)"2

1440 REM PRINT CURRENT VALUES OF RHO, XI, ETA, AND VOLSUM TO OUTPUT FILE
1450 PRINT #1, RHO,XI,ETA,VOLSUM

1460 REM PLOT A LINE CONNECTING TWO ADJACENT POINTS ON THE DOME PROFILE
1470 ORHOPIO=2.02*OLDRHO*SCALE

1480 OXIPLO=OLDXI*SCALE+20

1490 RHOPLOT=2. 02 *RHO*SCALE

1500 XIPLOT=XI*SCALE+20

1510 LINE (ORHOPLO, OXIPLO) ~ (RHOPLOT, XIPLOT)

1520 REM USE RUNGE-KUTTA ALGORITHM TO CALCULATE Eta FOR THE NEXT STEP

1530 AN=STP* (XI-ETA/RHO)

1540 BN=STP* (XI~ (ETA+AN/2) / (RHO+STP/2))

1550 CN=STP* (XI~ (ETA+BN/2)/ (RHO+STP/2))

1560 DN=STP#* (XI~ (ETA+CN) / (RHO+STP) )

1570 ETA=ETA+ (1/6) * (AN+2* (BN+CN) +DN)
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1580 REM STORE AND INCREMENT THE VALUE OF Rho

1590 OLDRHO=RHO

1600 RHO=RHO+STP

1610 REM TEST SLOPE ANGLE FOR MATCH WITH TALUSLOPE ANGLE

1620 TESTANGLE = ETA - SIN(TALUSADJOIN)

1630 IF COUNT=0, THEN IF ETA>.25, THEN IF ABS(TESTANGLE)<=.01, THEN GOTO 1650
1640 GOTC 1700

1650 RHOTALUS=RHO

1660 XITALUS=XI

1670 REM IF THERE IS NO TALUS APRON AND THE BASE SLOPE IS REACHED, GOTO END
1680 IF TALUSAPRON=0, THEN GOTO 2370

1690 REM TEST FOR 50~DEGREE SLOPE TO ENACT ALGORITHM SWITCH

1700 IF ETA>=,776, THEN GOTO 1830

1710 IF COUNT=1, THEN IF ETA<.01, THEN COUNT=2

1720 IF COUNT=2, THEN GOTO 2370

1730 NEXT N

1740 IF COUNT=2 GOTO 1080
1750 IF N=500, THEN STOP

1760 REM*%kkkhkkkhkhkhhhhkkhkhhhhkkhhhhhhhhhhhkhkhhhhhhkhhkhhkhkhhhhhhhkhhhhkhkhhhhhddh
1770 REM

1780 REM BEGIN CALCULATION OF THE STEEP PART OF THE DOME PROFILE,

1790 REM SWITCHING TO AN ALGORITHM USING Xi AS THE INDEPENDENT VARIABLE

1800 REM AND INTRODUCING Mu AS A DEPENDENT VARIABLE

1810 REM

1820 REM**kkkkhkkhhkhkhkhhhhkhkhdkhhhkhkhkhkhkhhkhhhhhkhhhhhkhkhhhkhhhkhhhkhhkhhhhhhhdkhdh
1830 MU=SQR (1~ETA*ETA)

1840 OLDRHO=RHO

1850 OLDXI=XI

1860 REM BEGIN LOOP TO CALCULATE THE STEEP PART OF THE DOME PROFILE

1870 FOR NN = 1 TO 500

1880 REM USE RUNGE-KUTTA ALGORITHM TO CALCULATE Mu FOR THE NEXT STEP

1890 AN=STP* ( (SQR (1-MU*MU) /RHO) -XI)

1900 BN=STP* ( (SQR(1~ (MU+.5%AN) * (MU+.5*AN) ) /RHO) - (XI+.5*STP) )

1910 CN=STP* ( (SQR (1~ (MU+.5%BN) * (MU+.5*BN) ) /RHO) - (XI+.5*STP) )

1920 DN=STP* ( (SQR{1~(MU+.5%CN) * (MU+.5%CN) ) /RHO) - (XI+STP) )

1930 MU=MU+ (1/6) * (AN+2* (BN+CN) +DN)

1940 REM CALCULATE Rho FOR THIS STEP

1950 RHO=RHO+STP#* (MU/SQR ( 1~MU*MU) )

1960 REM CALCULATE Eta

1970 ETA=SQR (1-MU*MU)

1980 REM**kkkhkkhhkhhkhkhhkhkkkhhhhhhhhkhhhhhhhhhhhkhhkhhhhhhhhhhhhhhhkhhhhhhhhkhdk
1990 REM THE NEXT NINE LINES LOCATE THE POSITION OF THE TOP OF THE TALUS SLOPE
1995 REM*%kkkkkkhkkhhkhhkhhkhhhhkhhkhkhkhhhkhhkhhkkhhhkhkkhhhhhhkhkhhhkhhkhhkhkkhkkkkhhrhhkk
2000 REM TEST FOR SLOPE ANGLE MATCH WITH TALUSADJOIN ANGLE

2010 IF RHO<=OLDRHO, THEN GOTO 2100

2020 TESTANGLE=ETA-SIN (TALUSADJOIN)

2030 IF ABS(TESTANGLE)<=.01, THEN GOTO 2050

2040 GOTO 2100

2050 RHOTALUS=RHO

2060 XITALUS=XI

2070 IF TALUSAPRON=0, THEN GOTO 2370

2080 REM#**kkkhkkkhhhhkkhkkhkhkhhkkhhkhkhhhhkhhhhhkhkhhkhhkhhkkhkhikhhhhkhkhkhdkhkkhhhhhkhkkkkkk
2090 REM INCREMENT THE VALUE OF Xi

2100 XI = XI + STP

2110 VOLSUM = VOLSUM + (XI-OLDXI)*3.14159% ((RHO+OLDRHO)/2)"2

2120 REM PRINT NEW VALUES OF Rho, Xi, Eta, AND Volsum

2130 PRINT #1, RHO,XI,ETA,VOLSUM

2140 REM PLOT Rho AND Xi

2150 ORHOPLO=2 .02 *RHO*SCALE

2160 OXIPLO=OLDXI*SCALE+20

2170 RHOPLOT=2 . 02 *RHO*SCALE

2180 XIPLOT=XI*SCALE+20

2190 LINE (ORHOPLO, 0XIPLO) - (RHOPLOT, XIPLOT)

2200 REM STORE THE CURRENT VALUES OF Rho AND Xi FOR LATER USE

2210 OLDRHO=RHO

2220 OLDXI=XI

2230 REM TEST FOR 140-DEGREE SLOPE TO ENACT ALGORITHM SWITCH

2240 IF NN=500, THEN STOP

2250 IF MU<=-.766, THEN GOTO 2280

2260 NEXT NN

2270 REM EXIT THIS ROUTINE AND RESUME CALCULATION WITH Rho INDEP. VAR.

2280  STP=-STP

2290  COUNT=1

2300 GOTO 1380
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2310 REM*%kkkkhkhdkhhhhdhdkhhdhhhhhhdhdhdhhhhhhhdkhhhdhhhdhdhhhdhhdkhhhhhkhdkhkhhdhdhdkhhhhdn

2320 REM

2330 REM#***k*kk#%xki4*x PERFORM CALCULATIONS TO FINISH THE PLOT *#akkkkkkkkkdkxk
2340 REM BY ADDING THE TAIUS SLOPE AND DOME BASE

2350 REMAKAhAhkdhhkhhdkhh Rk h ok ko ko ke kAN ke ko kAR ARk ke Ak h ko k ok kk Ak kA d kA ko ko

2360 REM CALCULATE LOCATIONS OF TOP AND BASE OF THE MARGINAL TALUS SLOPE
2370  RHOTALUSPLO=RHOTALUS*2.02*SCALE

2380 XITALUSPLO=XITALUS*SCALE+20

2390  XPLOT = (XIPLOT-XITALUSPLO)/(TAN(TALUSLOPE)/2.02)+RHOTALUSPLO
2400 REM DRAW LINES TO DEMARCATE THE MARGINAL TALUS SLOPE

2410  LINE(RHOTALUSPLO,XITALUSPLO) - (XPLOT, XIPLOT)

2420  LINE(XPLOT,XIPLOT)-(0,XIPLOT)
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