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Differential Equations Governing Slip-Induced Pore- 
Pressure Fluctuations in a Water-Saturated 

Granular Medium 1 

R i c h a r d  M .  I v e r s o n  2 

Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, 
surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure 
fluctuations that accompany and influence such sliding is derived here by both inductive and de- 
ductive methods'. The inductive derivation shows how the governing differential equations represent 
the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally" 
by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result 
from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The 
model consists of two linear differential equations and five initial and boundary conditions that 
govern solid displacements and pore-water pressures. Solid displacements and water pressures are 
strongly coupled, in part through a boundary condition that ensures mass consereation during 
irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this 
deformation and the pore-pressure field may yield complex system responses. The dual derivations 
of the model help explicate key assumptions. For example, the model requires that the dimensionless 
parameter B, defined here through normalization of Biot's equations, is much larger than one. This 
indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A 
tabulation of physical and kinematic variables for the rod-array experiments of lverson and LaHusen 
and for various geologic phenomena shows that the model assumptions commonly are satisfied. A 
subsequent paper will describe model tests against experimental data. 

KEY WORDS: landslide, fault, mixture theory, mathematical model, pore pressure, dynamic 
poroelasticity. 

INTRODUCTION 

Dynamic pore-pressure fluctuations accompany rapid frictional slip in water- 
saturated granular media (Iverson and LaHusen, 1989; Eckersley, 1990, Ochiai 
et  a l . ,  1991). By mediating effective stresses at grain contacts, the fluctuations 
can influence slip dynamics, perhaps leading to unstable or chaotic motion. 
Iverson and LaHusen (1989) measured such fluctuations in an array of cylin- 
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drical fiberglass rods sheared steadily along a discrete, horizontal slip surface 
and in laboratory landslides comprising 40 m 3 of poorly sorted, sandy soil. This 
paper describes a physically based mathematical model that accurately predicts 
the magnitude, frequency spectrum, propagation speed, and attenuation of the 
fluctuations for conditions that match those of the rod-army experiments. A 
subsequent paper will describe normalization and numerical solution of the model 
equations as well as model tests against experimental data. 

To reveal the connection between the forces that produce pore-pressure 
fluctuations and the mathematics that produce the model equations, two deri- 
vations are presented. The first derivation emphasizes the forces in the rod-array 
experiments of Iverson and LaHusen (1989). Although this inductive derivation 
employs general physical principles, such as Newton's laws of motion, and 
holds the advantage of being simple, concise, and closely linked to the exper- 
imental design, it also relies on ad hoc assumptions that may not widely apply. 
It lacks a formal connection to a broader theoretical framework. In contrast, the 
second derivation employs mathematical deduction to extract the model equa- 
tions from the theoretical framework established by Biot (1956). It shows that 
Blot's formulation of Lagrange's equations can be applied to macroscopic, fric- 
tional slip as well as to more traditional, infinitesimal wave propagation prob- 
lems. This deductive derivation holds the advantage of both formalism and rigor, 
but does so at the expense of mathematical detail that can obfuscate the physics. 
Importantly, however, it helps quantify the conditions under which the model 
assumptions apply. A tabulation of representative parameter values provides a 
basis for assessing model applicability to the rod-array experiments of Iverson 
and LaHusen (1989) and to geological phenomena such as landsliding and fault- 
ing. 

INDUCTIVE DERIVATION 

Consider a close-packed army of solid rods, each of which is approximately 
circular in cross-section and has mass density Ps and mean diameter 6 (Fig. 1). 
The length of each rod and the breadth and width of the array are much larger 
than ~, so the array approximates one that is two-dimensional and infinite. The 
positions of all rods within the array are fixed with respect to one another, 
except along a horizontal slip surface that transects the array. A Cartesian co- 
ordinate system is fixed with respect to the part of the array below the slip 
surface. Relative to this coordinate system, the upper part of the array slides 
over the lower part with a constant horizontal velocity Ux. The vertical velocity 
component of the sliding rods Uy is free to fluctuate. Gravity acts in the negative 
y direction. 

A Newtonian fluid of constant mass density of and viscosity Ix fills the 
interstitial spaces between the rods in the array and along the slip surface. This 
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Fig. 1. Schematic vertical cross-section and coordinate 
system for a region near the slip surface of the water- 
saturated, sliding army of nearly cylindrical rods used in 
the experiments of Iverson and LaHusen (1989). The hor- 
izontal component of velocity ux is constant but the vertical 
component py is a function of time. 

pore fluid can flow through slit-like spaces between the rods, because the rods 
are imperfectly circular in cross-section and contact one another discontinuously. 
In a typical prototype, the pore fluid would be liquid water and the rods would 
be rock fragments, mineral grains, or soil aggregates. 

The objective is to calculate both the transient fluid pressure field and the 
trajectory of  the rods as they move along the slip surface. For sufficiently small 
sliding rates (small ~x), the fluid pressure field deviates insignificantly from 
hydrostatic, the rod layers adjacent to the slip surface remain in contact, and 
the sliding rods' trajectories are simply determined by the geometry of the slip 
surface. For sufficiently large sliding rates, the rods' trajectories may be influ- 
enced by the nonhydrostatic fluid pressure field that develops as a consequence 
of  rod motion, and the sliding rods may intermittently lose contact with the 
underlying rods. Evaluation of  the coupling between rod motion and fluid pres- 
sures provides a measure of  sliding rates that are " smal l "  and " la rge . "  

Motion  o f  Solids 

To determine the macroscopic trajectory of  the sliding array o f  rods, I 
ignore its elastic deformation, an effect I will consider later. I then need only 
to calculate the vertical coordinate of  the axis o f  a single sliding rod Uy as a 
function o f  time, because the sliding array translates irrotationally, and its hor- 
izontal velocity ~x is fixed. The coordinate, Uy identifies the axis of  a sliding 
rod immediately above the slip surface and is measured with respect to an origin 
located on the axis o f  an arbitrary rod adjacent to and beneath the slip surface 
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(Fig. 1). Thus, for example,  i f  the slip surface is dilated and the rod array is at 
rest, Uy = 6. 

Consider  a unit cell of  the rod array that extends vertically from the slip 
surface to the upper margin of  the array (Fig. 2). The cell has width 6 and 
length L, where L is measured along the rods'  axes. The cell height is (M - 
1) (x/3/2) 6 + 6, where M is the number of  rods stacked atop the slip surface. 
For  large values of  M, (M - 1) (x/'3/2) 6 + 6 = (xf3/2) 6M, with an approx- 
imation error of  about 1% for M = 10. Adopting this approximation, a simple 
geometric analysis shows that the mass of  solids in the unit cell,  m, is given by 

m = ~ Os62ML(1 - n) (1) 

where n is the porosity of  the array. The geometry of  a densely packed array 

of  perfectly cylindrical  rods yields n = 1 - a-/[2nf3 + (4 - 2~/3)/M], which 
reduces to n = 1 - 7r/2xf3 as M ~ o o .  These formulas yield n ~ 0.1069 for 
M = 10 and n ~ 0.0931 for M ~ c o .  For  the densely packed array of  imper- 
fectly cylindrical rods, I use the approximation n = 0.1. 

-T- 
Fig. 2. Schematic cut-away view of a unit cell of 
the sliding rod array for a case with seven rod lay- 
ers atop the slip surface. The distance from the 
center of a layer of rods to the center of an adjacent 
layer is (,,/3/2) 5. In the mathematical model L 
>>tS. 
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Temporarily ignoring constraints due to the geometry of the slip surface, 
Newton's second law governs the vertical motion of solids in the unit cell as it 
undergoes steady horizontal sliding: 

d2uy 
m ~ = ZF (2) 

where t is time and ~F is the sum of all forces acting on the solids in the y 
direction. One such force is that due to gravitational acceleration, Fg. Another 
such force is that due to the instantaneous fluid pressure field, Fp. This force 
includes a hydrostatic (buoyancy) component and a non-equilibrium component 
that exists only if a non-hydrostatic fluid pressure gradient is present. Other 
forces that might be significant are those due to rod-to-rod friction and collisions 
along the slip surface. The frictional force can be evaluated easily, but it does 
not affect vertical motion because the constant horizontal velocity ~'x is main- 
tained by an external ~brce. Collisional forces in this two-phase system may be 
quite complex and may involve both elastic and inelastic components (cf. Davis, 
1986). However, only the elastic rebound of rods affects their vertical motion 
if ux is fixed, and, as a first approximation, I assume that this rebound is neg- 
ligible. Acceleration of the solid rods through the adjacent fluid is also subject 
to the virtual- or added-mass effect described by Batchelor (1967) and Blot 
(1956). Here ! assume this effect is negligible; I assess this assumption in the 
deductive derivation to follow. 

Explicit expressions for the gravity force and net fluid-pressure force acting 
on the solids in the unit cell are 

Fg = - m g  (3) 

f ,y-~/2+(43/2)~ Op dy 
Fp = OYmg _ 6L 

lOs J y  = l~y -- 6$ / 2 Oy 

=lO mg- L p - p ( . , - U 2 , 0  (4) 
lOs 

in which g is the magnitude of gravitational acceleration, and (lOf/lOs) mg is the 
hydrostatic or buoyancy component of the fluid-pressure force. The nonhydro- 
static or non-equilibrium component of the fluid-pressure force is a function of 
both position and time, and it is given by the second term on the right-hand 
side of (4). This term represents the net force due to the difference in the non- 
equilibrium pore pressure p between the top and bottom of the unit cell (Fig. 
2). The non-equilibrium fluid-pressure force is analogous to the so-called 
seepage force in quasistatic porous media (e.g., Iverson and Major, 1986), and 
it acts in a direction opposite to that of the non-equilibrium fluid pressure gra- 
dient. 
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Combination of (2), (3), and (4) yields an equation governing the vertical 
motion of the rod array 

d2UYdt 2 ( _ _ O f )  g - -m6L [ ( 6/2 
- -  1 - o ~  p u y -  

+ -~ M6, t - p(uy - 6/2 ,  t) (5) 

Appropriate initial conditions to be used in solving (5) specify that the slip 
surface is dilated and the vertical velocity of the rods is zero: 

uy(O) = ~ (6) 

duy 
py(O) = ~ (0) = 0 (7) 

These conditions apply at time t = 0, when sliding begins, but they must be 
modified periodically to obtain solutions for steady sliding, because the vertical 
motion during sliding is controlled, in part, by geometrical constraints that are 
not represented in (5). 

Motion of  Fluid 

The pore-fluid pressure and flow fields depend on the vertical motion of 
the solid rods. Conceptually, I separate the fluid behavior into two parts: that 
which occurs in the irreversibly deforming space between the layers of rods that 
bound the slip surface, and that which occurs in the elastically deforming array 
of rods that translates intact. I model the fluid behavior in the translating array 
of rods as that in a homogeneous, isotropic, Darcian porous medium; I implicitly 
average the fluid flow and pressure fields over representative elementary volumes 
(Bear, 1972) that contain a number of rods and pores. I address this Darcian 
behavior first. 

As the rod array moves, viscous drag causes the pore fluid to move with 
it, but the fluid also tends to move independently owing to its inertia and to 
boundary forcing caused by displacement of fluid along the slip surface. Because 
Ux is constant and the array is isotropic, the horizontal component of Darcian 
fluid motion in the array is steady and is driven only by the horizontal component 
of the gradient ofp.  Thus steady, horizontal, Darcian fluid motion is independent 
of transient, vertical, Darcian fluid motion, and horizontal flow does not affect 
vertical forces. Vertical fluid flow, however, is closely coupled to the vertical 
motion of the rod array, and I find it advantageous to evaluate this vertical fluid 
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motion with respect to coordinates that translate with the array. I consequently 
define the moving vertical coordinate 

Ym = Y - -  Uy -]- 6 /2  (8) 

so that Ym = 0 is always satisfied at the base of the sliding array. If the fluid 
were static, p would equal 0 everywhere, even in this moving coordinate system. 

When py ~ 0, fluid must move and the fluid pressure distribution in the 
array cannot be hydrostatic. The disequilibrium fluid pressure p propagates by 
two means: a fast mode similar to elastic compressional waves and a slow mode 
similar to quasistatic pore-pressure diffusion. Both modes of propagation are 
coupled to elastic deformation of the array, and both are dissipative. Analyses 
of this two-mode pressure-wave propagation have followed Biot (1956) and have 
examined a variety of limiting cases, based on the assumption of infinitesimal 
solid and fluid displacements in a fixed frame of reference (e.g., Garg et al., 
1974; Chandler and Johnson, 1981; Johnson and Plona, 1982). In the system I 
consider here, displacements are macroscopic rather than infinitesimal, and the 
frame of reference moves with the rod array. Consequently, to minimize math- 
ematical manipulation, I use an ad hoc rather than formal approach. 

The basic postulate of the ad hoc approach is that pore-pressure fluctuations 
due to elastic waves are inconsequential compared to pressure fluctuations as- 
sociated with fluid flow and pore-pressure diffusion. Although Blot's (1956) 
theory shows that slow, diffusive ("type II") modes attenuate much more 
strongly than do fast, elastic (' 'type I" )  modes in instances of small deformation, 
I postulate that diffusion is more important in the sliding-array problem because 
it is associated with sustained fluid pressure imbalances that couple with the 
macroscopic motion of the rod array. The small speed and great attenuation of 
the diffusive mode are, in fact, precisely the properties that allow pressure 
imbalances to be sustained. (Infinitely fast modes with zero attenuation, as would 
occur in a perfectly rigid medium, would permit no pressure imbalances.) A 
corollary of this postulate is that, in the moving coordinate system, inertial 
effects in the pore fluid can be ignored. The deductive derivation addresses this 
simplification in terms of the Biot (1956) theory and shows that it is rigorously 
justified only if the value of a dimensionless parameter B = (tznZ6/kpapx) is 
much greater than i and if ps(1 - n) >> of(n). (Here k is the hydraulic 
permeability of the solid porous medium and Pa is the dynamic added-mass 
density of both phases). 

A second postulate, which extends the first, is that propagation of the slow, 
diffusive mode can be represented adequately with a zero-frequency approxi- 
mation. In the limit of zero-frequency boundary forcing, the diffusive mode is 
governed by a simple, homogeneous diffusion equation, in which the dependent 
variable is the non-equilibrium pore pressure (Chandler and Johnson, 1981). 
The deductive formulation shows that the zero-frequency approximation is apt 
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to be quite good for frequencies less than about 1000 Hz for cases in which the 
mass densities, porosities, and compressibilities of the solid and fluid constitu- 
ents are similar to those of water-saturated soil or fragmented rock. Here I simply 
adopt the appropriate pore-pressure diffusion equation, although its validity rests 
upon the analysis of the deductive formulation and, ultimately, upon experi- 
mental test. 

In the moving coordinate system the pore-pressure diffusion equation is 

Op k Kb + G (9) 
Ot Ix -3 ay 2 

in which Kb and G are the drained elastic bulk modulus and shear modulus of 
the porous medium. Thus I assume that elastic strain of the porous medium 
influences the bulk (Darcian) motion of the fluid but not the bulk (translational) 
motion of the solid. Except for the use of a moving coordinate system, (9) is 
identical to the "weak-frame approximation" obtained by Chandler and Johnson 
(1981) as a special case of the Biot (1956) theory. 

Initial and boundary conditions to be used in solving (9) must account for 
the flux of fluid at the slip surface as well as within the rod array. When the 
system is at rest, the fluid pressure is hydrostatic, so the initial condition specifies 
zero nonequilibrium pressure: 

p(y,, ,  0) = 0 (10) 

The boundary condition at the top of the moving array of rods, far from the slip 
surface, specifies that the fluid pressure remains hydrostatic: 

P T M t ' t  = 0 ( l l )  

The boundary condition along the slip surface derives from conservation 
of fluid and solid mass, which must be satisfied as the array of rods displaces 
fluid (cf. Deresiewicz and Skalak, 1963; Berryman and Thigpen, 1985). Con- 
sider the fluid volume, 0, in a single deforming pore along the slip surface (Fig. 
1). If Q is the mass flux of fluid out of the top of the pore and into the porous 
medium, it must obey 

1 ldO 
- - -  Q = - - -  ( 1 2 )  

pf 2 d t  

The 1/2 appears in this equation because I assume that half the fluid efflux from 
the pore will be upward and half will be downward, and Q accounts for only 
the upward flux. It is convenient to divide Q by the cross-sectional area of the 
pore, yielding the quantity q = Q/(bL) and the equation 
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q 1 dO 

of - 26L dt (13) 

Next I postulate that fluid flow out of the deforming pore and into the adjacent 
porous medium obeys Darcy's law, giving 

k Op (14) 
q = - o f #  Oy m 

Note that Darcy's law must be written with reference to the moving coordinate 
Ym. This is consistent with the diffusion Eq. (9) and with the theory of Biot 
(1956). Combining (13) and (14) gives 

Op ~ l dO 
- ( 1 5 )  

Oy m k 26L dt 

This is a boundary condition on p at the base of the moving array of rods, but 
its utility is limited because it is expressed in terms of 0. From the geometry of 
Fig. 1 it is easy to deduce the relationship between uy and 0: 

0 = L 6/~/y -- ~ 3 2 (16) 

which leads to 

do d.y 
- -  = 6 L -  (17) 
dt dt 

Substituting (17) into (15) then yields 

019 t£dUy 
- -  ( o ,  0 - ( 1 8 )  
Oym 2k dt 

which is the desired form of the boundary condition at the base of the moving 
rod array, where Ym = O. 

Thus, the mathematical model consists of two differential Eqs. (5) and (9) 
with the two unknowns p and Uy, as well as the five initial and boundary con- 
ditions (6), (7), (10), (11), and (18). Note that (5) is coupled to (9) via the non- 
equilibrium pressure-force term, whereas (9) is coupled to (5) via the boundary 
condition (18) and the definition of the moving coordinate Ym given by (8). 
Consequently, the system of equations must be solved simultaneously, as will 
be detailed in a subsequent paper. 

DEDUCTIVE DERIVATION 

Blot's (1956) dynamic mixture theory provides a framework for assessing 
the conditions under which the ad hoc mathematical model is valid. Biot focused 
on wave propagation in fluid-saturated, linearly elastic porous media, but he 
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began his analysis by formulating general equations of motion that require nei- 
ther linearly elastic behavior nor infinitesimal displacements. These equations 
can be specialized for one-dimensional motion without loss of physical gener- 
ality, as long as the porous medium is isotropic. The one-dimensional equations 
for motion in the y direction are (Biot, 1956, Eq. 6.5) 

02 /~n 2 0 
Ot -'-7 ( P l l / J Y  - -  PaUy) "~- T ~ (Uy - Uy) = L (19a) 

0 2 tzn z 0 
Ot 2 (OaUy -- Pz2Uy) k Ot (uy - Uy) = Fy (19h) 

where Uy is the solid displacement and U s is the fluid displacement; Oa, On, 022 
are mass-density coefficients, andfy and Fy represent all surface and body forces 
acting on the solid and fluid phases, respectively, per unit volume of the mixture. 

Equations (19a) and (19b) reflect two types of coupling between the motion 
of the porous solid and pore fluid. The second term on the left-hand side of 
both (19a) and (19b) represents coupling due to the viscous drag force caused 
by the velocity difference between the two phases, a(uy - Uy)/Ot. This is the 
only dissipative force in Biot's formulation, and its form derives directly from 
his assumption that fluid flow is Darcian. The first, or acceleration, terms on 
the left-hand side of these equations represent the second type of coupling. This 
"inertia coupling" is not straightforward, as indicated by the presence of the 
phenomenological mass-density coefficients, 01~,/322, Pa' Biot defined the coef- 
ficients as On = P~ + Pa and/322 = P2 -I- /ga, where P~ is the mass of the solid 
phase per unit volume of mixture (0~ = p, - np,) and P2 is the mass of the 
fluid phase per unit volume of the mixture (02 = n@. The coefficient Pa is an 
apparent added-mass density of each phase due to the relative acceleration of 
the two phases. It accounts, for example, for the fact that the porous solid 
effectively has more inertia if it contains a finite mass of pore fluid. Thus coupled 
solid-fluid motion occurs even if the fluid is inviscid and there is no energy 
dissipation when one phase accelerates relative to the other. 

Values of the added-mass density Pa are somewhat enigmatic, but are not 
impossible to estimate. For an isolated solid sphere accelerating in an ideal 
fluid, Batchelor (1967, p. 453 ft.) has calculated that 0a = (1/2)of, and Berryman 
(1980) has used this result to deduce, for a porous medium composed of a 
packed array of spheres, that pa = [(1 - n)/2]of. In view of the analyses of 
Batchelor and Berryman, it is evident that the value of Pa is smaller than that 
of Of but of the same order of magnitude. For example, using Batchelor' s (1967, 
pp. 403-407) result for the added-mass density of a cylindrical rod accelerating 
in an ideal fluid, Pa = /Of, and applying Berryman's (1980) formula to a packed 
array of cylindrical rods, leads to the result that oa = (1 - n) offor the geometry 
of the porous medium of Fig. 2. Consequently, I conclude that the value of Pa 
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is somewhat smaller than but of the order of 1000 kg/m 3 both in the rod-army 
experiments of Iverson and LaHusen (1989) and in problems of water interaction 
with porous earth materials. Computational experiments by Yavari and Bedford 
(1990) support the generality of this conclusion. 

I assess the relative importance of the dynamic terms in (19a) and (19b) 
by recasting and normalizing the equations. Introducing the relative displace- 
ment of the fluid with respect to the solid, Ur = Uy - uy, and noting Biot's 
definitions of Pll and P22, I rewrite (19a) and (19b) as 

0 2 ~n 2 0 
Ot---5 (plUy - paU,.) - T O t  (Ur) = fy (20a) 

0 2 ~.n 2 
at 2 (P2Uy ow PaUr) "aw T (Ur) = Fy (20b) 

I then normalize the displacements with respect to the characteristic length ~5, 
the time with respect to the characteristic time 6/vx, the densities with respect 
to the added-mass density pa, and the applied forces per unit volume with respect 

2 to o.g.  I accomplish this by multiplying each term in (20a) and (20b) by 6/vxo. ,  
which yields 

in which 

02 Pl * - U* - B - 

Ot,2 Uy + U*r + B Ot* v~ Fy 

(21a) 

(21b) 

p.n2~ 
B = - (22) 

kpavx 

In these equ,tions the asterisks denote normalized quantities. 
The value of the dimensionless number B determines the relative impor- 

tance of the viscous and inertial coupling terms involving the first and second 
time derivatives of U~ in (21a) and (21b). Values of B depend on the sliding 
velocity Px (or characteristic forcing frequency ux/~) and on material properties. 
For some representative geological materials and sliding velocities and for the 
conditions of the experiments of Iverson and LaHusen (1989), Table 1 lists 
typical values of the parameters included in B as well as the values of B that 
result. The tabulated values show that for many materials and sliding rates, and 
certainly for the conditions of the rod-a~ay experiments of Iverson and LaHusen 
(1989), B >> 1, indicating that viscous coupling dominates inertial coupling. 
Consequently I neglect the term 02U~/Ot .2 in (21a and b), with the recognition 
that this disregards added-mass effects that may be important at high sliding 
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rates and forcing frequencies (above about 1000 Hz in the rod-array experi- 
ments). 

* and * The relative importance of  the acceleration terms that involve Uy Uy 
in (21a) and (21b) is more difficult to assess, because they do not involve the 
same dependent variable. However,  conservation of  mass dictates that Uy, Uy, 
and U* typically are o f  the same order o f  magnitude, because solid displace- 
ments must be accompanied by compensating fluid displacements. The values 

* and * of  the dimensionless coefficients pl/pa and P2/P~ that precede Uy Uy are 
not typically of  the same order of  magnitude, however. Table 2 shows that the 
value of  Pl/Pa typically exceeds that of  p2/Pa by about an order of  magnitude. 
On these grounds I neglect the acceleration term (02/Ot .2) (P2/P~) U*, so that 
the equation of  motion for the fluid phase (21b) reduces to a quasistatic form. 
Consequently, the only acceleration term retained in (21a) and (21b) is that for 
the solid phase. This simplification is justified by scaling relationships, but not 
strongly so. Thus, it constitutes an hypothesis that must be tested against ex- 
perimental data. 

Fluid Motion and Pore-Pressure Diffusion 

Adopting the simplifications described above and reverting to dimensional 
quantities [i.e., multiplying each term in (21b) by (pau~/~)], Eq. (21b) assumes 
the quasistatic form 

#n 2 OUr - n  (Op, + ofg) = - n  0t7 (23) 
k O t - F y =  k a y  ay 

The motive force on the fluid per unit volume of  mixture Fy is simply equal to 
-nOpJOy + pfg) or to -n(Op/Oy), in which pf is the total pore pressure and 

p is the nonhydrostatic component of  the pore pressure (cf. Biot, 1956). The 
fluid velocity relative to the solid is related to the fluid volumetric specific 
discharge relative to the solid qr by (Bear, 1972, p. 209) 

Table 2. Calculation of Normalized Mass-Density Coefficients for Some Typical Materials " 

Material n P.,-(kg/m3) Pf(kg/m3) P.(kg/m3) P,/P. P2/P,, 

Intact rock 0.1 2700 1000 450 ~' 5.4 0.22 
Fragmented rock, 

sand, gravel 0.3 2700 1000 350 t' 5.4 0.85 
Fiberglass rod 

array 0.1 2300 1000 900" 2.3 0.11 
i 

~By definition, o~ = p~(1 - n); P2 = pf(n). 
~Calculated using Berryman's (1980) formula for an assembly of spheres: p, = [(1 - n)/2] Os. 
"Calculated Oa = (1 - n)p I- for an assembly of cylindrical rods. 
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OUr __ qr (24) 
Ot n 

and substitution of (24) into (23) yields the conventional form of Darcy's law 

/cOp 
qr = (25) ~ay 

If a lineady elastic solid rheology is assumed, Darcy's law can be combined 
with mass-conservation and poroelastic constitutive equations to obtain various 
coupled and uncoupled diffusion equations, which describe the quasistatic dis- 
tributions of pore pressure and solid stress that result from transient pore-pressure 
fluctuations (Biot, 1941; Rice and Cleary, 1976; Roeloffs, 1988). Such diffusion 
equations represent a special case of Biot's (1956) dynamic theory (Chandler 
and Johnson, 1981; Johnson and Plona, 1982). The extent of solid-fluid coupling 
in these equations depends on loading conditions, domain geometry, and the 
relative compressibilities of the individual phases and the bulk mixture. Here I 
simplify the coupling problem by assuming that the bulk composite is much 
more compressible than are the solid and fluid constituents. Table 1 lists elastic 
moduli (i.e., reciprocal compressibilities) for the fiberglass rod array of Iverson 
and LaHusen (1989) and for typical geologic media. The tabulated data show 
that the incompressible-constituent assumption is appropriate for modeling the 
rod-array experiments and for geologic materials in which the solid phase is 
fractured or disaggregated into soil grains or rock fragments. 

Employing the incompressible-constituent assumption and restricting atten- 
tion to one-dimensional motion of both phases, conservation of mass for the 
fluid phase yields (cf. Bear, 1972, p. 205) 

Oqr (9 On 
- -  + + - -  = 0 ( 2 6 )  
Oy ~y (nuy) Ot 

in which Vy is the y component of the solid phase velocity. In this equation the 
second term results from the fact that qr is evaluated with respect to the moving 
solids, so that qr = qy - nVy, where qy is the specific discharge with respect to 
fixed, Eulerian coordinates. Concurrently, conservation of mass for the solid 
phase is described by 

0 0(1 - n) 
Oy [(1 - n)Vy] + Ot 0 (27) 

in which the argument of the space derivative can be thought of as the specific 
discharge of the solid phase (Bear, 1972, p. 208). Addition of (26) and (27) 
yields a simple balance between the one-dimensional divergences of the fluid 
specific discharge and solid-phase velocity 
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Oqr OVy 
- ( 2 8 )  ay ay 

A second equation for the divergence of the fluid specific discharge results 
from differentiation of Darcy's law (25) 

Oqr __ k 0219 
Oy # Oy 2 (29) 

and combination of (28) and (29) yields 

Ovy k OZp 

Oy t~ OY 2 (30) 

To express (30) in terms of p alone requires a relationship between the 
solid-phase velocity divergence and non-equilibrium pore pressure. This can be 
obtained by considering the constitutive relationship between effective stress and 
elastic strain, which is assumed to be small and governed by Hooke's law. The 
Hookean (linear elastic) constitutive relationship for a fluid-saturated, isotropic 
porous medium is (cf. Rice and Cleary, 1976; Iverson and Reid, 1992) 

l + v  v 
6-iJ - -  E o~ - ~ a;k6ij (31) 

where e 0 denotes a component of the Eulerian small-strain tensor, o~ denotes a 
component of effective stress, E is Young's modulus, v is Poisson's ratio, and 
6sj is the Kronecker delta. To obtain an equation specialized for one-dimensional 
extension or compression confined to the y direction, I consider the case in 
which the only nonvanishing component of strain is eyy and in which a "  = 

t t a= 4 : 0  are reaction stresses that result from an imposed stress ayy. In this case 
I obtain from Hooke's law (31) 

12 ( ) 
6yy - -  E ayy + 1 - v ayy (32) 

Employing standard relationships between elastic moduli (Fung, 1965, pp. 129- 
130), (32) reduces to a simple expression relating the longitudinal strain to the 
imposed stress in terms of the elastic bulk modulus Kb and shear modulus G 

ayy = (Kb + 4G)eyy (33) 

If  the solid and fluid constituents of the porous medium are effectively incom- 
pressible, as I assume here, then the standard definition of effective stress in a 
fluid-saturated elastic medium (Nur and Byerlee, 1971) reduces to 

a[j = a o + pt60 = a o + ( p  - pfgy)6ij (34) 
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in which a 0 is the total stress. This equation shows that the total pore pressure, 
including the hydrostatic pressure, influences the effective stress if body forces 
are included in the formulation. For the one-dimensional case I consider here, 
(34) reduces to 

ffyy gyy + P ofgY (35) 

To obtain the desired relationship between the solid velocity divergence 
and p, I first consider the material time derivative of the effective stress (35), 

Dayy Op + PY Op OOyy Oflyy 
Dt - Ot Oy + -~t "~ py Oy Vypfg (36) 

For the sliding rod-array problem, in which the only time-dependent loading is 
due to changes in pore pressure and elevation of the solids, the last three terms 
on the right-hand side of (36) sum to zero. This can be recognized by considering 
a case in which the solid translates vertically through the fluid without generating 
a non-equilibrium pore pressure (e.g., a case in which the fluid has zero viscosity 
or the porous medium has infinite permeability). Then p = 0 everywhere, but 
changes in total stress ayy occur because changes in static fluid pressure on the 
solid result from the solid translation. Concurrently, translation does not influ- 
ence the effective stress (Dayy/Dt = 0), because changes in total stress and 
hydrostatic pore pressure cancel one another. Thus the last three terms in (36) 
sum to zero--a result unaffected by the presence of nonzero p, as long as there 
is no other time-dependent loading. Thus (36) reduces to 

Oayy _ Op Op 
Dt Ot + Fy Oy (37) 

Substitution of (33) into (37) results in 

-- -~  "-I- Py (38) 
Dt Kb + 4G 

The material time derivative of the Eulerian strain in (38) equals the divergence 
of the solid velocity Vy (Mase, 1970, p. 113) 

D6yy 06.yy O~.yy Oily 
- - -  + Vy - (39) 

Dt c3t Oy c3y 

Combination of (39), (38), and (30) results in an equation for p alone 

Op + Vy Op k kb --{- 
Ot Oy t~ ~G --Oy 2 = 0 (40) 

Equation (40) is an advective-diffusion equation for the non-equilibrium pore 



Pore-Pressure Fluctuations 1043 

pressure, in which k/# [Kb + (4/3)G1 plays the role of a pore-pressure diffu- 
sivity. Except for inclusion of the advection term, Uy(Op/Oy), (40) is identical 
to the pore-pressure diffusion equation obtained by Chandler and Johnson (1981), 
who assessed the zero-frequency limit of the Biot (1956) wave-propagation 
theory. Chandler and Johnson (198l) obtained their equation by considering the 
appropriate reduction of the Blot theory for cases in which the solid and fluid 
constituents are effectively incompressible, as I have assumed here. They also 
incorporated Biot's assumption that the solid displacements as well as strains 
are small, that is, that rigid-bedy translation is inconsequential. If translation is 
significant, a pore-pressure advection term such as that in (40) is required. 

In a coordinate system that translates with velocity ~y, (40) reduces to 
a standard diffusion equation (cf. Ogata, 1970). Thus I employ the moving 
coordinate Ym defined in (8) and note that .Uy = OUy/Ot -= O(y - y,,)/Ot = 
-OyJOt to obtain from (40): 

at Ix aye, = 0 (41) 

This matches the diffusion equation adopted in the inductive derivation. 

Solid Motion 

The scaling relationships used to obtain (41) indicate that the largest ac- 
celeration term in the coupled equations of motion (21a and b) is that for the 
solid phase, 02/Ot .2 [(PJPa) u*]. Thus, retaining this term in (21a), assuming 
that B >> 1, and reverting to dimensional quantities, the solid equation of 
motion becomes 

a2 (a% ) 
at-- 5 (p,Uy) txnak OtO (Ur) = fy = (1 -- n) \-~y o,g (42) 

The force on the solid per unit volume of mixture, fy, is given by the product 
of the solid volume fraction 1 - n with the total stress gradient (O@Oy is the 
only nonvanishing component of the total stress gradient) and gravitational body 
force. Thus £ is precisely analogous to Fy that acts on the fluid phase (cf. 23). 
Solving the effective-stress Eq. (35) for the total stress Oyy, then differentiating 
with respect to y, and substituting the resulting expression into (42) yields 

o2 (oo;, e ) at 2 (plUy) /xn 2 O - -  k Ot (Ur) = (1 - n) \ Oy Psg - -  Oy + Pig (43) 

I now assume that the longitudinal strain is an insignificant part of the solid 
motion, that is, that macroscopic rigid-body translation far exceeds displace- 
ments associated with internal strain. Thus I take eyy = 0, which implies, by 
(33), that, Cryy = 0 in (43). I also employ (23) to substitute -n(Op/Oy) for the 
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second term on the left-hand side of (43) and the definition pl = (1 - n)p s to 
reformulate the first term on the left-hand side. Making these substitutions in 
(43) and canceling the redundant term n (Op/Oy) from each side of the resulting 
equation yields 

0 2 Op 
0 7  [(1 - n)psUy] = - (1  - n)(ps - py)g 3y (44) 

Since I regarded the solid as effectively rigid in deriving (44), the partial time 
derivative can be replaced by a total time derivative, (1 - n)ps can be moved 
outside the differential, and the equation can be integrated easily over finite 
intervals of the space coordinates x, y, and z. Integrating (44) over the intervals 
x = 0 t o x  = 6, z = 0 t o z  = L, andy  = u y -  6/2 t o y  = U y -  6/2 + (x/3/  

2)1146, and dividing each term by (x/3/2)32ML(1 - n)ps yields 

dt 2 - - 1 - ~ g -  ~ 6Mo,(1  - n) 

,5 t) p(Uy - • [p(Uy-6/2 +--~-Mr, - 5/2 ,  t)] (45) 

which matches (5) obtained in the inductive derivation. 
Thus the differential equations that govern coupled solid-fluid motion, (41) 

and (45), deduced from the general theory of Biot (1956) by making specific, 
quantitative assumptions, match the corresponding equations obtained using an 
inductive approach. The initial and boundary conditions, (6), (7), (10), (11), 
and (18), complete the specification of the mathematical model. 

SUMMARY AND CONCLUSIONS 

A mathematical model of the origin and propagation of dynamic pore- 
pressure fluctuations in a rapidly sliding, water-saturated granular medium can 
be derived by either an inductive or deductive method. The inductive method 
constructs governing equations through an analysis of the mechanics of the 
sliding array of cylindrical fiberglass rods studied experimentally by Iverson and 
LaHusen (1989). The deductive method extracts the same equations mathemat- 
ically from the mixture theory originally developed by Biot (1956) to investigate 
poroelastic wave propagation. The deductive derivation supplements the induc- 
tive derivation by quantifying conditions that must be satisfied to assure the 
validity of the governing equations. 

The governing equations require that seven principal conditions be satisfied: 
1. Horizontal motion of the sliding rod army is steady. Transient motion 

is exclusively vertical, in the y direction. 
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2. Internal deformation (strain) of the rod array is infinitesimal and linearly 
elastic, and eyy is the only nonzero strain component. 

3. Vertical translation of the rod array greatly exceeds displacements due 
to internal strain of the army. 

4. Fluid flow through the rod array is Darcian. 
5. The rod array is much more compressible than are either the solid rods 

themselves or the pore fluid. Thus compression occurs almost exclusively by 
pore-space reduction. 

6. The dimensionless number B = (Izn2~/kOaPx) is much larger than one, 
implying that solid-fluid coupling forces are dominated by viscous rather than 
inertial effects. This restriction allows neglect of added-mass effects on accel- 
eration of the solid and fluid phases. It places an upper bound on the sliding 
velocity or forcing frequency for which the model is valid. In the case of the 
fiberglass rod experiments reported by Iverson and LaHusen (1989), and for 
many landslide problems, it limits the strict applicability of the model to sliding 
rates less than about 10 m/s. 

7. Fluid-inertia effects are negligible compared to solid-inertia effects, so 
that the only acceleration term retained in the equations of motion is that for 
the solid array. This assumption is applicable if Pl >> P2, where 0~ = &(1 - 
n) and 02 = of(n). This condition is satisfied, but only marginally, in the fiber- 
glass rod experiments and in many geophysical problems. Consequently, this 
condition is probably the most restrictive of any implicit in the mathematical 
model. Its effect on model predictions must be examined in light of experimental 
tests. 

The basal boundary condition used to solve the pore-fluid equation of mo- 
tion has been derived only for the specific conditions of the rod-army experi- 
ments of Iverson and LaHusen (1989). More general boundary conditions need 
to be developed for application to typical geophysical phenomena. 
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APPENDIX: SYMBOL DEFINITIONS AND DIMENSIONS 

B: dimensionless number obtained from normalization of Biot's equa- 
tions. 

E: Young's modulus of elasticity [M/LT2]. 
F: Force acting on solids in unit cell [ML/T2]. 

Fg: Gravity force acting on solids in unit cell [ML/T21 . 
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qr: 
Q: 

t: 

%: 

G: 
G: 
G: 
vy: 

x, y: 

Ym: 

eij: 

tz: 
p: 

Pa: 

Fp: Nonequilibrium pore-pressure force acting on solids in unit cell 
[ML/T2]. 

fy: Force per unit volume of mixture acting on solid phase [M/L2T2]. 
Fy: Force per unit volume of mixture acting on fluid phase [M/fiT2]. 
g: Magnitude of gravitational acceleration [L/T2]. 
G: Shear modulus of elasticity [M/LT2]. 

i, j: Dummy indices (subscripts) that represent Cartesian coordinate di- 
rections [L]. 

k: Hydraulic permeability of porous medium [L2]. 

Kb: Bulk modulus of elasticity [M/LT2]. 
L: Length of unit cell of rod array [L]. 

m: Mass of solids in unit cell [M]. 

M: Number of rods stacked atop the slip surface in unit cell (dimension- 
less). 

n: Porosity (dimensionless). 

p: Nonequilibrium pore pressure [M/LT2]. 
Pc: Total pore pressure [M/LT2]. 
q: Mass efflux of fluid out of a pore at the slip surface, per unit area 

[M/L2T]. 
Volumetric fluid specific discharge relative to the solid [L/T]. 
Mass efflux of fluid out of a pore at the slip surface [M/T]. 
Time [T]. 

Solid-phase displacement [L]. 

Fluid-phase displacement [L]. 

Relative displacement of solid and fluid phases ILl. 

Horizontal component of solid velocity [L/T]. 
Vertical component of solid velocity [L/T]. 
Cartesian coordinates in horizontal and vertical directions [L]. 

Vertical coordinate that translates with the moving solid array [L]. 

Rod diameter [L]. 

Kronecker delta (=  1 when i = j; = 0 when i ~ j )  (dimensionless). 

Component of elastic strain (dimensionless). 

Fluid viscosity [M/LT]. 
Poisson's ratio of elasticity (dimensionless). 

Added-mass density due to inertia coupling of solid and fluid motion 
[U/t3]. 

pf: Fluid mass density [M/D]. 
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Ps: Solid mass density [M/L3]. 
0t: Mass of  solid per unit volume of  mixture [M/L3]. 
P2: Mass of  fluid per unit volume of  mixture [M/L3]. 

P11: Defined as Pl + Pa [M/L3]. 
P22: Defined as 02 + Pa [M/L3]. 
aa: Total stress [M/LT2]. 
a/~: Effective stress [M/LT2]. 

0: Fluid volume in a pore along the slip surface [L3]. 

*: Superscript denotes normalized (dimensionless) quantity. 
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