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[1] Scaling considerations indicate that miniature experiments can be used to test models
of granular avalanches in which the effects of intergranular fluid and cohesion are
negligible. To test predictions of a granular avalanche model described in a companion
paper, we performed bench top experiments involving avalanches of dry sand across
irregular basal topography that mimicked the complexity of natural terrain. The
experiments employed a novel method of laser-assisted cartography to map the three-
dimensional morphology of rapidly moving avalanches, thereby providing high-resolution
data for comparison with model output. Model input consisted of two material properties
(angles of internal and basal Coulomb friction of the sand), which were measured in
independent tests, and of initial and boundary conditions that characterized the geometry
of the experimental apparatus. Experimental results demonstrate that the model accurately
predicts not only the gross behavior but also many details of avalanche motion, from
initiation to deposition. We attribute this accuracy to a mathematical and computational
formulation that conserves mass and momentum in three-dimensional physical space and
satisfies the Coulomb equation in three-dimensional stress space. Our results support
the hypothesis that a Coulomb proportionality between shear and normal stresses applies
in moderately rapid granular flows and that complicated constitutive postulates are
unnecessary if momentum conservation is strictly enforced in continuum avalanche
models. Furthermore, predictions of our Coulomb continuum model contrast with those of
a Coulomb point mass model, illustrating the importance of multidimensional modeling
and model testing. INDEX TERMS: 3210 Mathematical Geophysics: Modeling; 1824 Hydrology:

Geomorphology (1625); 1815 Hydrology: Erosion and sedimentation; 8020 Structural Geology: Mechanics;

8168 Tectonophysics: Stresses—general; KEYWORDS: avalanche, granular, experiments, landslide, model,

three-dimensional
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1. Introduction

[2] Diverse mass movement phenomena, including rock
avalanches, snow avalanches, debris flows, and pyroclastic
flows, involve rapid downslope motion of deforming
masses of solid grains and intergranular fluid. Ideal granular
avalanches represent a limiting case, in which intergranular
fluid and cohesion play negligible mechanical roles [e.g.,
Savage and Hutter, 1989, 1991]. Testing the ability of
mathematical models to predict the behavior of ideal gran-
ular avalanches that move cross irregular topographic sur-
faces is a critical step toward understanding and predicting
the behavior of rapid mass movements on the irregular
surfaces of Earth and other planets.
[3] Although development of granular avalanche models

is typically motivated by field applications, field data
generally provide inconclusive model tests. Collection of
detailed real-time data on full-scale natural avalanches is

notoriously difficult and dangerous, and geological recon-
structions of the behavior of bygone avalanches are too
poorly constrained to provide decisive tests [e.g., Voight et
al., 1983]. Moreover, the variable influences of intergranu-
lar fluid and cohesion, unresolved geological heterogene-
ities, and uncontrolled initial and boundary conditions lead
to considerable ambiguity about model performance be-
cause such influences bedevil efforts to distinguish whether
prediction errors result from uncertain model input or from
erroneous model formulation. Therefore geophysical appli-
cations of granular avalanche models should be preceded by
tightly controlled laboratory experiments that provide un-
ambiguous model tests [Iverson, 2003].
[4] In this paper we describe the design, execution, and

results of novel laboratory experiments that tested predic-
tions of a granular avalanche model presented in a com-
panion paper [Denlinger and Iverson, 2004]. The central
postulate of the model is that granular avalanches behave as
isochoric flows of finite volumes of continuous media, in
which mass and momentum are conserved and shear and
normal stresses on internal and bounding surfaces obey the
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Coulomb [1776] friction equation. To characterize the
avalanche material, the model utilizes only two parameters:
the quasi-static angles of internal friction and basal friction
of the granular aggregate. Independent measurements of
these parameters were part of our experiment protocol.
Therefore our model predictions entailed no calibration,
and our avalanche experiments provided stringent model
tests.
[5] The avalanche experiments also served a purpose

beyond model testing. Design of the experiments motivated
a scaling analysis that helped clarify causes of scale-depen-
dent behavior of geophysical avalanches. In addition, the
need for high-resolution data motivated development of a
new and economical method of laser-assisted analog car-
tography, which facilitated precise determination of the
rapidly changing topography of avalanching masses. Sim-
ilar methodology may prove useful not only in future
avalanche experiments but also in other geomorphological
experiments that require high-resolution mapping of topo-
graphic change.

2. Scaling and Experiment Design

[6] Scaling is a critical issue in the design of laboratory
experiments intended to shed light on geophysical phenom-
ena. The scaling analysis summarized below explains our
rationale for employing miniature experiments with sand-air
mixtures to test our granular avalanche model. On the other
hand, the analysis also demonstrates that miniature experi-
ments are unlikely to mimic some avalanche behavior that is
possible at geophysical scales.
[7] Two scaling issues are especially pertinent: (1) Given

that most granular avalanches involve some interaction of
grains with fluid (e.g., air or water) and perhaps involve
some intergranular cohesion, under what conditions are
fluid and cohesion effects negligible? (2) Can the behavior
of granular avalanches (with and without fluid and cohesion
effects) be expected to vary with scale? We address these
issues by deriving scaling parameters for an avalanche in
which intergranular fluid properties and cohesion have
arbitrary magnitudes. Evaluation of these parameters for
diverse avalanche scenarios provides a basis for assessing
the importance of fluid effects, cohesion effects, and the
influence of avalanche scale.
[8] To identify relevant scaling parameters, we use the

method of dimensional analysis, which assumes minimal a
priori knowledge of avalanche dynamics. For the sake of
brevity and clarity we restrict our analysis to a two-dimen-
sional, fluid-filled granular avalanche descending a rigid,

uniform slope, and we assume that the avalanche bulk
density r is essentially uniform and that effects of the
ambient fluid surrounding the avalanche are negligible
(Figure 1). We also assume that the properties of the
avalanche material do not change in transit (i.e., that grain
fracture and comminution do not occur).
[9] The first step in dimensional analysis involves posit-

ing a list of variables likely to influence the macroscopic
dynamics of the avalanche as a whole, thereby ignoring
some grain-scale variables considered by Savage [1984] and
Iverson [1997]. Table 1 defines and categorizes a list of
17 pertinent variables, 13 of which are parameters that
describe avalanche physical properties, 2 of which are
lengths (H and L) that describe the avalanche size and
shape, and 2 of which grossly characterize the dynamic
response of the avalanche. These dynamic variables (the
downslope avalanche velocity u and the typical avalanche
stress t) are posited to be functions of the other 15 variables,
as represented symbolically by

u; tð Þ ¼ f g; L;H ; d; r; rs; rf ;D; m;fint;fbed; c;E; e; q
� �

: ð1Þ

Two additional independent variables that are likely
important are not listed explicitly in equation (1) because
they are specified implicitly through combinations of other
variables: The intrinsic hydraulic permeability of the
granular aggregate k is specified by k = mD/E, and the
porosity of the granular aggregate n is specified by n = (r �
rs)/(rf � rs).
[10] The second key step in our dimensional analysis

involves selection of fundamental scales for mass, length,
and time. In the case of fluid-filled granular avalanches, this
selection is complicated by the existence of two important
macroscopic length scales, H and L [cf. Savage and Hutter,
1989]. We address this complication below, but we first
present a straightforward dimensional analysis that uses a
single length scale, H. We consequently choose the mass
scale as rH3 and the timescale as

ffiffiffiffiffiffiffiffiffi
H=g

p
because gravity

and its effect on avalanche weight are the fundamental
phenomena responsible for avalanche motion. By using
these three scales and applying the Buckingham � theorem
and standard methods of dimensional analysis [e.g., Logan,

Figure 1. Schematic illustrating geometric quantities that
characterize the cross-sectional geometry of a simplified
two-dimensional granular avalanche descending a uniform
slope. Vertical exaggeration is roughly 10 times.

Table 1. Variables Used in Dimensional Analysis of Avalanche

Motion

Variable Definition Dimensions Units

c intergranular cohesion M/LT2 Pa
D hydraulic diffusivity of grain-fluid mixture L2/T m2 s�1

e restitution coefficient of colliding grains
E bulk compressive stiffness of granular mixture M/LT2 Pa
g magnitude of gravitational acceleration L/T2 m s�2

H avalanche thickness L m
L avalanche length L m
u magnitude of avalanche velocity (speed) L/T m s�1

d typical grain diameter L m
q bed slope degrees
m dynamic viscosity of intergranular fluid M/LT Pa s
r bulk density of granular mixture M/L3 kg m�3

rs bulk density of solid grains M/L3 kg m�3

rf bulk density of intergranular fluid M/L3 kg m�3

t magnitude of avalanche stress M/LT2 Pa
fint internal friction angle of granular mass degrees
fbed basal friction angle of grains contacting bed degrees

F01015 IVERSON ET AL.: GRANULAR AVALANCHES ACROSS IRREGULAR TERRAIN, 2

2 of 16

F01015



1987], equation (1) can be reduced to a functional relation-
ship involving 14 dimensionless variables:

uffiffiffiffiffiffiffi
gH

p ;
t

rgH

� �
¼

f
L

H
;
d
H
;
rs
r
;
rf
r
;

D

H3=2g1=2
;

m
rH3=2g1=2

;
c

rgH
;
E

rgH
;fint;fbed; e; q

� �
:

ð2Þ

The dependent variables on the left-hand side of equation (2)
are broadly indicative of avalanche dynamics and are readily
identified as a normalized velocity or Froude number, u/ffiffiffiffiffiffiffi
gH

p
, and a normalized stress, t/rgH. According to equation

(2), dynamic similarity should prevail in any two avalanches
that each have the same values of all the independent
variables on the right-hand side of the equation.
[11] The variables on the right-hand side of equation (2)

can be grouped into categories with differing implications
for similitude and scale modeling. The simplest category
comprises the last four variables in equation (2), which are
intrinsically dimensionless and are therefore expected to
have identical effects at all scales. (For example, the friction
angles fint and fbed characterize flow resistance that has the
same effect on avalanches of any size.) A second category
includes the first four variables on the right-hand side of
equation (2), which are either simple density ratios or
simple length ratios. The density ratios indicate no intrinsic
scale dependence, and the length ratios indicate no scale
dependence if geometric similarity is maintained (i.e., if L/H
and d/H are held constant). Identification of dynamic scale
effects therefore focuses on the remaining four variables on
the right-hand side of equation (2). Retaining only these
variables reduces equation (2) to a listing of dynamic
scaling parameters:

uffiffiffiffiffiffiffi
gH

p ;
t

rgH

� �
¼ fscale

D

H3=2g1=2
;

m
rH3=2g1=2

;
c

rgH
;
E

rgH

� �
: ð3Þ

Although equation (3) has clear relevance, the utility of the
relationship can be enhanced by recognizing that the Froude
velocity scaling u �

ffiffiffiffiffiffiffi
gH

p
is less important in granular

avalanches than is the free-fall velocity scaling u �
ffiffiffiffiffiffi
gL

p

because the potential for free fall rather than the potential
for wave translation generally governs motion on avalanche
slopes, where inclinations commonly exceed 30� [Savage
and Hutter, 1989; Iverson, 1997]. As a consequence, it is
helpful to substitute the length scale L for the length scale H
wherever the velocity scale

ffiffiffiffiffiffiffi
gH

p
occurs in equation (3). In

addition, it is instructive to highlight the dependence of the
hydraulic diffusivity D on the fluid viscosity m by making
the substitution D = kE/m and to use the reciprocal of the
second parameter on the right-hand side of equation (3).
With these modifications, equation (3) becomes

uffiffiffiffiffiffi
gL

p ;
t

rgH

� �
¼ fscale NP;NR; c*;E*ð Þ; ð4aÞ

where

NP ¼
ffiffiffiffiffiffiffiffi
L=g

p
mH2=kE

; NR ¼ rH
ffiffiffiffiffiffi
gL

p
m

; c* ¼ c

rgH
; E* ¼ E

rgH
: ð4bÞ

The four scaling parameters listed in equation (4b) include
two derived by Iverson and Denlinger [2001] by different
means, and all have straightforward implications. The first
parameter NP can be viewed as a timescale ratio, in whichffiffiffiffiffiffiffiffi
L=g

p
is the timescale for avalanche motion and mH2/kE is

the timescale for diffusion of disequilibrium pore fluid
pressure. Small values of NP indicate a strong propensity for
pore fluid pressure to influence avalanche motion. The
second scaling parameter NR is a type of Reynolds number,
in which

ffiffiffiffiffiffi
gL

p
plays the role of the characteristic velocity.

Small values of NR indicate a strong propensity for fluid
viscosity to influence avalanche motion. The third scaling
parameter c* is the intergranular cohesion normalized by the
characteristic stress rgH, and the fourth scaling parameter
E* is the bulk stiffness (reciprocal of compressibility)
normalized by the same stress. Small values of c* indicate
little propensity for cohesion to affect avalanche motion,
whereas small values of E* indicate that bulk compression
may significantly influence motion. Ideal granular ava-
lanches may be defined as those in which effects of fluid
pressure, viscosity, intergranular cohesion, and bulk com-
pression are negligible; these conditions are satisfied when
NR, NP, and E* have large values (in principle, approaching
1) and c* has a small value (in principle, approaching
zero).

2.1. Fluid Effects

[12] The parameters NR and NP provide a gauge of
scale-dependent effects of pore fluid on avalanche motion.
Figure 2 illustrates how values of these parameters vary as
a function of fluid viscosity, avalanche permeability, and
avalanche size (as measured by the characteristic thickness
H). As avalanche size decreases, NR values decrease, and
the importance of viscous shear resistance (relative to
inertia of the avalanche mixture) consequently increases.
However, even miniature avalanches with H � 0.01 m are
unlikely to exhibit significant viscous resistance if the pore
fluid is air because NR values exceed 106 in this instance
(Figure 2). If the pore fluid is water, the situation is more
ambiguous, and if the pore fluid is a muddy slurry (as in a
debris flow), viscous effects may be quite significant at
miniature scales (H � 0.01 m) but less significant at large
scales (H � 10 m).
[13] As avalanche size decreases, values of NP increase

(opposite to the trend of NR). Values of NP exceed 105 if the
avalanche thickness is small (H � 0.01 m), if the pore fluid
is air, and if the granular aggregate is clean sand (Figure 2).
Under these conditions, dissipation of nonequilibrium pore
fluid pressures occurs very rapidly in comparison to the
duration of avalanche motion, and pore pressure effects are
likely to be negligible. Thus on the basis of NP scaling and
NR scaling, small avalanches of dry clean sand in air satisfy
the criteria for ‘‘ideal granular avalanches.’’ The situation is
less clear-cut with respect to large geophysical avalanches
in which the pore fluid is air. If the avalanche thickness H
reaches 10–100 m, NR becomes very large but NP decreases
to �1. Thus in such avalanches, nonequilibrium pore fluid
pressure may persist once it is generated, and avalanche
friction may be greatly reduced as a consequence [Shreve,
1968].
[14] The fact that NR and NP exhibit opposite trends as

functions of avalanche size poses severe scaling problems if
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the pore fluid is at least as viscous as water. Figure 2 shows
that viscous effects (as measured by NR) are probably
negligible in large geophysical avalanches containing water,
whereas pore pressure effects (as measured by NP) can be
very significant. Nearly the opposite behavior is probable if
water is present in a miniature, laboratory-scale avalanche,
which is likely to exhibit significant viscous effects and
little pore pressure effect. As a consequence, although
‘‘ideal granular avalanches’’ with negligible fluid effects
are appropriate subjects for experimentation at miniature
laboratory scales, experiments at much larger scales are
necessary to investigate the dynamics of geophysical ava-

lanches or flows with significant fluid effects [cf. Iverson,
1997; Iverson and Denlinger, 2001].

2.2. Solid Effects

[15] The parameters c* and E* provide a gauge of scale-
dependent effects of grain interactions on avalanche motion,
and Figure 3 illustrates how values of these parameters vary
as functions of avalanche size, cohesive strength, and
compressive stiffness. As indicated by Figure 3a, E* � 1
generally applies in miniature, laboratory-scale avalanches
of sand as well as in most geophysical avalanches. Thus
scaling of compressive stiffness is not a major issue. On the

Figure 2. Graphs of the Reynolds number NR and timescale ratio NP as functions of avalanche size (as
measured by thicknessH) for values of fluid viscosity typical of air (m=0.00002 Pa s), water (m=0.001 Pa s),
and mud slurry (m = 0.1 Pa s) and values of hydraulic permeability typical of clean sand (k = 10�10 m2) and
poorly sorted debris with a muddy matrix (k = 10�14 m2 ). To generate these graphs, fixed values were
assumed for three other quantities: the length-scale ratio H/L = 100 (typical of most avalanches), the
compressive stiffness E = 107 Pa (typical of loose granular soils), and the bulk density r = 1500 kg m�3

(typical of loose granular soils) [cf. Iverson and Denlinger, 2001; Iverson and Vallance, 2001].

Figure 3. Graphs of the normalized stiffness E* and normalized cohesion c* as functions of avalanche
size (as measured by thickness H) for values of cohesion c and compressive stiffness E typical of soils
and fragmented rocks.
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other hand, Figure 3b indicates that cohesive forces can
potentially have a much greater effect in miniature ava-
lanches than in full-scale avalanches, which generally have
c* 	 1. Cohesive forces are undesirable in small-scale
experiments intended to investigate ideal granular ava-
lanches, and assessment of the origins and magnitudes of
possible cohesive forces is therefore important.
[16] Cohesion is a somewhat imprecise term encompass-

ing a variety of phenomena (other than gravity) that cause
attraction of adjacent grains. In soils the most important
cohesive forces derive from electrostatic effects, chemical
bonding, and surface tension due to water menisci [Mitchell,
1976, p. 187–189]. In clay-rich soils, these forces can
produce cohesions as large as tens of kPa, as depicted by
the upper line in Figure 3b. On the other hand, dry granular
soils and fragmented rocks are generally assumed to have
negligible cohesion. Although this assumption is probably
appropriate at large scales, even moderate cohesion can
contaminate results of small-scale experiments intended to
investigate ideal granular avalanches. Such cohesion is
evident, for example, where electrostatic attraction causes
grains of dust to adhere to vertical surfaces. Experience with
dry granular materials flowing in chutes shows that elec-
trostatic effects can cause irreproducible experimental
results but that such effects can be minimized by using
grains much larger than dust particles, by controlling
environmental conditions such as relative humidity, and
by grounding all surfaces in an attempt to equalize electrical
potentials [cf. Louge and Keast, 2001].
[17] Measurements with an electrostatic voltmeter (Trek

Inc. model 523-1-CE) (throughout, the use of trade names
in this paper is for identification purposes only and does not
constitute endorsement by the U.S. Geological Survey or
the U.S. Government) indicate that static electrical poten-
tials of various materials and surfaces in our laboratory
commonly range from tens to thousands of volts relative to
a local Earth-grounded state. Stationary sand exhibits little
tendency to retain static charges (potentials are generally
smaller than ±40 volts), but sand moving rapidly across our

flume bed can generate persistent potentials of thousands of
volts if no steps are taken to minimize this phenomenon.
[18] Estimates of tensile cohesion c (in Pa) due to

electrostatic attraction can be obtained from a specialized
form of Coulomb’s law, c = 4.4 
 10�6 (V/d)2, where V is
the magnitude of the electrical potential (in volts) across two
surfaces separated by a distance d (in mm) [Mitchell, 1976,
p. 188]. According to this equation, two surfaces separated
by 1 mm and maintaining a potential of 5000 V will exhibit
an attraction c � 100 Pa. Figure 3a indicates that cohesion
of this magnitude is probably irrelevant in a field-scale
avalanche with H > 1 m but may be large enough to
significantly affect a miniature avalanche with H � 0.01 m.
Therefore, although electrostatic effects are commonly
neglected in granular avalanche experiments, it is wise to
take all feasible precautions against development and/or
persistence of electrostatic charges. Our precautions
(described in section 3.2) included the use of an ion emission
hood to neutralize static charges and the application of an
antistatic agent on static-prone surfaces of our experimental
apparatus.

3. Experimental Methods and Materials

[19] We used two types of flume experiments to test
model predictions. We replicated each type of experiment
several times and found that, provided we followed a strict
protocol for minimizing electrostatic effects, data from
replicate experiments were indistinguishable within the
resolution of our measurements.

3.1. Flume Configuration

[20] The scaling considerations described in section 2
indicate that ideal granular avalanches can be investigated
using miniature experiments, and we consequently con-
ducted experiments in a bench top flume 0.2 m wide and
�1 m long (Figure 4). Sections of the flume upslope and
downslope from the avalanche descent path were un-
changed from a configuration used in previous avalanche

Figure 4. Oblique photographs of the miniature flume used in the avalanche experiments. (a) Entire
apparatus (�1 m in length), with lasers mounted in the superstructure on the left, a white light diffuser (to
aid photography) mounted on the right, and an ion emission hood (to neutralize electrostatic charges)
mounted on the wall behind the flume. (b) Flume bed topography illuminated by superposed laser
contours. Topography is in the ‘‘inverted’’ configuration of experiment B. White sand is loaded behind
the flume head gate.
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experiments without irregular topography [Denlinger and
Iverson, 2001]. To add topography, the steep part of the
flume (with slope averaging 31.6�) was fitted with a
custom-formed urethane insert that provided an irregular
basal surface. Rotation of the insert by 180� enabled
experimentation with two distinct topographic configura-
tions. Although these topographies exhibited many of the
complexities of natural avalanche slopes, they were not
intended to emulate any particular slope. Rather, they were
designed to provide thorough tests of model predictions by
promoting complicated and diverse avalanche behavior,
including extending and compressing flow, divergence and
convergence of flow around islands, superelevation of flow
around curves, and stranding of static material.
[21] The head of the flume was fitted with a vertical glass

head gate for suddenly releasing a static granular mass and
initiating an avalanche (Figure 4b). The planar, sloping
basal surface behind the head gate was lined with Formica,
which also lined a planar, horizontal runout surface at the
base of the flume. The vertical sidewalls of the flume were
constructed of acrylic and aluminum. Both the head gate (in
its closed position) and flume sidewalls formed rigid
boundaries, across which no flux of grains occurred.
Whereas many previous experiments have used en masse
releases of granular avalanches with specified initial geom-

etries [e.g., Hutter and Koch, 1991; Wieland et al., 1999],
our flume head gate had a restricted (and adjustable)
aperture that caused some static sand to remain stranded
upslope when the gate was opened [cf. Denlinger and
Iverson, 2004]. As a consequence, the avalanche source
area developed self-formed boundaries upslope of the head
gate, analogous to the self-formed boundaries of natural
avalanches and experimental avalanches with erodible beds
[e.g., McDonald and Anderson, 1996]. The evolving tran-
sition between static and dynamic states in the sand upslope
of the head gate served to severely test our model predic-
tions because our theory and numerical methods were
optimized for computing avalanche dynamics, not static
stresses in stationary sand [Denlinger and Iverson, 2004].

3.2. Material Properties and Protocols

[22] The granular materials used in our experiments were
two quartz sands with properties summarized in Table 2. We
employed these sands owing to their homogeneity, relatively
high density, and relatively inert chemical and electrical
state (and because preliminary tests with several candidate
materials showed that homogeneous quartz sands provided
the best reproducibility of friction angle measurements).
Prior to use we oven-dried and sieved the sands so as to
retain only grains with diameters nominally ranging from
0.5 to 1 mm in the case of sand A and from 0.25 to 0.5 mm
in the case of sand B. Another difference between the two
sands involved grain roughness. Sand A consisted of
angular, high-sphericity grains, whereas sand B consisted
of well-rounded, moderately spherical grains (Figure 5).
[23] Quasi-static measurements of the friction angles of

the two sands were made using a tilt table apparatus,
pictured in Figure 6. The apparatus was fitted with three
test platens, one of which was composed of urethane
identical to that of the irregularly sloping bed of the flume.
Another platen was composed of Formica identical to that
of the planar bed surfaces behind the head gate and at the
base of the flume, and the third platen was lined with very
coarse sandpaper that inhibited basal slip. The procedure in
each friction angle measurement consisted of first placing
on each test platen horizontal tabular prisms of sand 240 mm
long and 85 mm wide. For both sands the prism thickness
was 6 mm on the sandpaper platen, whereas the prism
thickness on the urethane and Formica platens was 1 mm

Table 2. Summary of Experiment Conditions and Sand

Propertiesa

Conditions/Properties Experiment A Experiment B

Orientation of flume topography ‘‘regular’’ ‘‘inverted’’
Aperture width of flume head gate, cm 12 4
Ambient relative humidity, % 36 66
Ambient temperature, �C 21 17
Shape of sand grains angular rounded
Diameter of sand grains, mm 0.5–1 0.25–0.5
Sand volume, cm3 308 308
Sand mass, g 388.2 476.5
Sand bulk density, g cm�3 1.26 1.55
Basal friction angle, sand on

Formica, fbed, deg
23.47 ± 0.35 25.60 ± 0.77

Basal friction angle, sand on
urethane, fbed, deg

19.85 ± 1.11 22.45 ± 0.66

Internal friction angle of sand, fint, deg 43.99 ± 0.29 39.39 ± 0.23
aFriction angles represent the mean ±1 standard deviation obtained from

10 tilt table measurements.

Figure 5. Photomicrographs of the two quartz sands used in flume experiments. (a) Angular grains,
0.5–1 mm diameter. (b) Rounded grains, 0.25–0.5 mm diameter.
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in the case of sand A and 2 mm in the case of sand B. A
motor-driven worm gear was used to slowly increase the
inclination of the tilt table until widespread slippage of one
or more of the sand prisms was observed. Tilting was then
stopped, and the angle at which slippage occurred was
measured with a digital inclinometer (with precision
±0.1�). Tilting was then continued until slippage of all three
prisms was complete. Observations confirmed that sand
slipped preferentially along the urethane and Formica test
platens (thereby providing data on fbed) but sheared inter-
nally above the sandpaper surface (thereby providing data
on fint). Table 2 summarizes results of the friction angle
measurements as well as other experimental variables.
[24] To reduce data contamination due to electrostatic

effects, we conducted all friction angle measurements and
avalanche experiments under an ion emission hood (Elec-
trostatics model HM-8000) to neutralize surface charges,
and we conducted all friction angle measurements immedi-
ately prior to avalanche experiments and under a limited
range of relative humidities (30–70%). We also found that
reproducibility was best if we applied an antistatic aerosol
(Staticguard) to the urethane test platen and flume bed a day
or two prior to conducting experiments, and this application
was adopted as part of our standard protocol.
[25] The protocol for avalanche experiments included

several steps in addition to the antistatic precautions de-
scribed above. In each experiment, 308 cm3 of sand was
placed behind the flume head gate by slowly pouring it from
a graduated cylinder. The sand volume before and after
pouring remained essentially constant, and no attempt was
made to modify the packing of the sand behind the head
gate. We therefore assumed that the sand retained a loose
packing and bulk density similar to that inferred from
weighing the sand-filled cylinder (Table 2). The surface of
the sand behind the head gate was manually graded to form
a right triangular prism with a horizontal upper surface and
with the following dimensions: 4.35 cm vertical height
(against the head gate), 7.07 cm horizontal length, and
20 cm horizontal width. The head gate aperture varied from
12 to 4 cm between experiments (Table 2), and in each

experiment the gate was opened almost instantaneously by a
spring-loaded release mechanism, which also activated an
electronic analog timer that displayed the time elapsed since
gate opening commenced.

3.3. Digital Photography and Laser Cartography

[26] The basic data acquired in our avalanche experi-
ments consisted of sequential snapshots of the avalanche
geometry recorded in vertical photographs obtained with an
Olympus E-100 RS digital camera mounted �2 m above the
flume. In these 1.4 megapixel photographs the spatial
resolution was �0.46 mm on the flume bed, the nominal
exposure time was 0.025 s, and the nominal interval
between successive frames was 0.2 s. Precise time stamping
of each photo frame with a resolution of 0.01 s was
accomplished by including the electronic analog timer in
the field of view of the camera.
[27] The rapidly changing three-dimensional geometry of

avalanching masses was mapped using a novel cartographic
technique, in which horizontal sheets of light from
52 refracted laser beams were used to superpose topographic
contours at 5 mm intervals on the flume bed and moving
avalanche surfaces. (This technique was a more precise
hybrid of laser sheet and shadow bar techniques described
previously by McDonald and Anderson [1996], Denlinger
and Iverson [2001], and Pouliquen and Forterre [2002].) To
produce contours, the 52 laser modules were mounted in a
specially fabricated superstructure that enabled precise
adjustment of the elevation and orientation of individual
laser beams (Figure 4). Each beam was passed through a
vertically oriented cylindrical lens (i.e., a 4 mm diameter
glass rod) that refracted the beam into a horizontal sheet.
Illuminated contours appeared where the laser sheets inter-
sected the flume bed or avalanche surface. Table 3 summa-
rizes the technical specifications of the lasers.
[28] Sequences of rectified vertical digital photographs

were used to record each experiment. Rectification was
necessary to correct for the effects of lens-dependent
distortion and foreshortening that are inherent features of
two-dimensional photographs of three-dimensional objects.
Our rectification procedure employed a reference photo-
graph of the bare flume bed and standard image-editing
software. The reference photograph was digitally dissected
into small quadrilateral blocks, which were reassembled to
fit on an undistorted square grid by digitally ‘‘stretching’’
the blocks to relocate the vertices of each quadrilateral.
Relocation coordinates necessary to fit the bare bed
photograph to a regular grid were recorded within the
image-editing software, and the same corrections were
then applied to each photograph of the avalanche. This

Figure 6. Photograph of the tilt table apparatus used to
make friction angle measurements. White sand is loaded on
the three test platens. A digital inclinometer rests on the
table top.

Table 3. Properties of Laser Diode Modules

Property Value or Class

Diode composition AlGaInP (aluminum gallium
indium phosphate)

Operating voltage, V DC 3–6
Operating power, mW �2 (class IIIa laser)
Wavelength, nm 560 ± 10
Aperture diameter, mm 3
Divergence, mrd <2
Optics aspherical plastic collimating lens
Case material copper
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method of rectification produced nearly acceptable ortho-
photographs, but it did not correct for parallax errors that
were most pronounced where large sand depths occurred
near the edges of a photograph. The largest of these
parallax errors produced fictitious longitudinal displace-
ments of �6.5 mm where sand was piled vertically against
the flume head gate and fictitious lateral displacements of
�3 mm where sand was piled vertically against the flume
sidewalls behind the head gate. These errors were removed
during data processing by employing sand thicknesses that

conformed with the known geometry of the static sand
behind the head gate.

3.4. Data Processing

[29] Additional data processing was necessary to produce
a series of avalanche isopach maps suitable for comparison
with numerical predictions of the vertical avalanche thick-
ness h(x, y, t), where x and y are planimetric map coordi-
nates and where t is time. First, the planimetric positions of
each topographic contour on the rectified photographs were

Figure 7. Sequence of vertical orthophotographs depicting avalanche experiment A. Timestamps
express the time elapsed since the opening of the head gate at t = 0. Figure 7j shows the avalanche deposit
after all motion has ceased. Table 2 summarizes properties of the avalanche sand (white) and flume bed
(dark blue). Table 3 summarizes properties of the lasers used to project topographic contours (pink) at
5 mm intervals.
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digitized at an interval equivalent to �3 mm on the flume
bed. The three-dimensional coordinates of the digitized
contours were then interpolated using a Kriging algorithm
to produce mathematical surfaces representing the bare
flume bed and avalanche surfaces. The flume bed surface
was then subtracted from the avalanche surface to obtain
h(x, y), and this quantity was contoured to yield an isopach
map. The net result of these procedures was the production
of avalanche isopach maps with calculated horizontal errors
smaller than 3 mm longitudinally and 1.5 mm laterally and
with calculated vertical errors smaller than 0.5 mm.

4. Results

[30] Figures 7 and 8 depict key frames in the sequences of
rectified vertical photographs of each avalanche experiment,

and Figures 9 and 10 depict isopach maps that compare the
results of the avalanche experiments with predictions of our
computational model [Denlinger and Iverson, 2004]. The
experimental data plotted in Figures 9 and 10 are also
available in tabular form1.

4.1. Observations of Avalanche Behavior

[31] Inspection of the photographs in Figures 7 and
8 reveals some important features of avalanche behavior.
Most conspicuous is a great variation of avalanche width and
cross section in both time and space, which gives the
avalanches a strongly three-dimensional character. However,

Figure 8. Same as Figure 7, but for experiment B.

1 Auxiliary material is available at ftp://ftp.agu.org/apend/jf/
2003JF000084.
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despite this variation and variations in sand properties,
the maximum speeds and runout distances of the two
avalanches are similar. The observed maximum speeds
(u � 1 m s�1), taken in combination with the observed
avalanche lengths (L � 0.5 m), yield a nondimensional
avalanche speed u/

ffiffiffiffiffiffi
gL

p
� 0.4–0.5 in each experiment. This

nondimensional speed implies a maximum speed of 40–
50 m s�1 in a dynamically similar geophysical avalanche

with L= 1 km. Such speeds appear to be relatively common in
natural rock and snow avalanches [Voight, 1978], indicating
that the gross dynamic behavior of the experimental ava-
lanches is indeed similar to that of geophysical prototypes.
[32] Perhaps the biggest mechanical difference between

natural avalanches and the experimental avalanches
depicted in Figures 7 and 8 results from the regulated
release of sand from the flume head gate. The release is

Figure 9. Isopach maps of vertical avalanche thickness h, comparing data and model predictions for
experiment A. Isopachs are plotted on a topographic base with a contour interval of 5 mm.
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probably more gradual, and perhaps more complicated, than
a typical natural avalanche release, but these aspects of the
experimental release facilitate model testing. When the head
gate opens, sand initially collapses off a vertical free face
and then begins to evacuate an amphitheater-shaped depres-
sion that forms upslope of the head gate (e.g., Figures 7a
and 8a). The margin of the growing depression propagates
upslope and laterally at a finite speed, and a distinct
boundary separates the moving sand in the depression from
the adjacent stationary sand. Eventually, the growing de-
pression intersects the upper margin of the sand prism, but

thereafter, sand continues to collapse laterally into a wid-
ening chasm, which develops a distinct V shape in both
cross section and plan view. The nearly planar facets that
bound the V notch continue to retreat laterally while
maintaining a surface slope of �30�, intermediate between
the sands’ angles of basal and internal friction. In experi-
ment A (with a 12-cm-wide head gate) the V notch
ultimately enlarges to form a trapezoidal notch (e.g.,
Figure 7g). At the conclusion of each experiment the static
sand left stranded upslope of the head gate retains the
nearly planar facets that bounded the growing notch.

Figure 10. Same as Figure 9, but for experiment B.
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[33] In each experiment, some additional stranding of sand
results from the presence of a slight topographic step, or lip,
immediately beneath the aperture of the head gate. This
upslope-facing step is formed by the upper edge of the
urethane insert that provides three-dimensional bed topog-
raphy. The step is�0.2 mm in height normal to the bed and is
too subtle to be depicted by the 5 mm contours in Figures 7
and 8. However, the step is represented mathematically in
the bed configurations used in our computational model
[Denlinger and Iverson, 2004].
[34] Comparison of Figures 7 and 8 indicates that the

deposits at the foot of the two avalanche slopes have strong
similarities but also clear differences that reflect differences
in sand properties, bed topography, and avalanche dynam-
ics. The distal margins of both deposits are emplaced almost
entirely by the leading edges of the avalanches, and the
trailing sand shows little tendency to override the distal
deposits or push them forward (corroborating observations
of Davies and McSaveney [1999]). The distal margin of the
deposit in experiment B is relatively diffuse, a consequence
of a relatively strong tendency for the spherical sand in this
avalanche to saltate.
[35] In each experiment a migrating shock front separates

the already emplaced static sand in the deposit from the
rapidly flowing sand that impinges on the rear of the deposit
[cf. McDonald and Anderson, 1996; Gray et al., 2003].
The shock front is particularly visible in Figures 8e–8i,
where it appears as a light-toned band that lacks superposed
contour lines owing to its upstream-facing aspect. The final,
static deposits of each avalanche consist of two parts: a
distal lobe with a relatively flat surface, emplaced en masse
during the initial surge prior to shock development, and a
relatively steep proximal ‘‘talus slope’’ accreted at the shock
front. In each deposit, subtle lateral wings form late in the
depositional process by deflection of some sand that
impinges against the growing talus slope. In Figure 7
(experiment A) the distal lobe, proximal talus slope, and
lateral wings of the deposit are quite symmetrical axially,
reflecting the dominance of downslope momentum as
sand descends the lower part of the slope. In Figure 8
(experiment B), all features of the deposit are less symmet-
rical, reflecting diversion of the avalanche into two distinct
sand streams by topography near the base of the slope. The
deposit of experiment B also features two overlapping talus
cones and a medial ridge that form by interaction of these
streams.

4.2. Quantitative Model Tests

[36] Figures 9 and 10 depict isopach maps that compare
the results of the avalanche experiments with predictions of
our computational model [Denlinger and Iverson, 2004]. In
model predictions, any sand thickness h � 0 is feasible
owing to the continuum representation of h, but thicknesses
smaller than �0.5 mm have little physical meaning in the
context of our experiments, wherein 0.5 mm is the diameter
of a typical sand grain. Therefore as a basis for comparison
with experimental data, model predictions shown in
Figures 9 and 10 place avalanche margins where the pre-
dicted vertical sand thickness satisfies h(x, y, t) = 0.5 mm,
and smaller thicknesses are omitted. In experiments,
localized regions where the spatially averaged avalanche
thickness is less than one grain diameter can occur due to

saltation of dispersed grains (e.g., as is visible to the right of
the main avalanche path in Figures 7b–7f). However, our
mathematical model does not represent the physics of
saltation, and we therefore omit regions of ‘‘apparent salta-
tion’’ from model predictions.
[37] Figure 9 shows that model predictions match many

of the details as well as the overall behavior of the
avalanche in experiment A. Errors in prediction of the
avalanche front speed are <15% at all times, and errors in
prediction of the distal limit of the avalanche deposit are
�3%. The effects of topographic forcing on the three-
dimensional form and lateral limits of the avalanche are
predicted well, especially during the first �1 s of ava-
lanche motion and deposition. The predicted form of the
final avalanche deposit is slightly more rotund than that
of the experimental deposit, but the predicted deposit
exhibits the same two-part morphology (with a distal
lobe and proximal talus slope) evident in the experimental
data.
[38] In Figure 9 the form and slope of the facets in sand

stranded upslope of the head gate are quite similar in the
predictions and data. This similarity is noteworthy because
formation of the facets involves a strongly three-dimensional
interplay of basal and internal Coulomb friction, and we
interpret this similarity as evidence in support of our
methodology for stress state computation [Denlinger and
Iverson, 2004]. As shown in the last few panels of Figure 9,
the model predicts a continuing trickle of thin sheets of sand
off these facets after motion has ceased in the experiment.
The trickle originates at the acute, three-dimensional corner
formed by the sand facets and the edge of the head gate
adjacent to the aperture. The trickle results from computa-
tional errors that accrue at this corner due to difficulties in
balancing fluxes across nonorthogonal faces not represented
in our computational grid. Adaptive mesh refinement may
provide a remedy [cf. LeVeque, 2002], although we have not
yet explored this approach.
[39] Figure 10 shows that model predictions for experi-

ment B are, in most respects, as good or better than
predictions for experiment A. The similarity of the observed
and computed avalanche forms in the first two panels of
Figure 10 (t = 0.27 s and 0.48 s, respectively) is particularly
striking. At t � 0.90 s, differences in the geometry of
observed and computed deposits result largely from dis-
persal of the distal margin due to sand saltation in the
experiments. Model predictions of the growth and form of
the V notch upslope from the head gate in this experiment
illustrate that convergence of sand toward the narrow gate
aperture causes a slower discharge (and slower V notch
growth) than in experiment A.

5. Discussion

[40] The predictive accuracy evident in Figures 9 and 10
was attained by making several major improvements in a
multidimensional continuum model described previously
[Iverson and Denlinger, 2001; Denlinger and Iverson,
2001]. In section 5.1 we emphasize two of these improve-
ments, which are particularly noteworthy because they
involve improved representations of fundamental mechanics
[Denlinger and Iverson, 2004]. To facilitate discussion of
additional mechanical issues, we also contrast the predic-
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tions of our improved avalanche model with those of a
much simpler point mass model.

5.1. Improved Representation of Mechanics

[41] One major improvement in our model entailed the
use of a new formulation for conserving momentum and
estimating the effects of vertical accelerations on basal and
internal stresses. The presence of vertical accelerations is a
source of concern in all depth-averaged flow models,
which commonly assume no vertical momentum compo-
nent [e.g., Vreugdenhil, 1994], but vertical accelerations are
particularly crucial in Coulomb avalanche models owing to
the presence of steep slopes (>30�) and the effect of
normal stresses on shear resistance. Previous depth-aver-
aged models of multidimensional Coulomb avalanches
incorporate the effects of vertical accelerations through
the use of curvilinear coordinate systems, in which the x
and y axes, for example, are fitted to basal topography
[e.g., Gray et al., 1999; Iverson and Denlinger, 2001].
Then, a combination of slope-parallel accelerations and
centripetal accelerations associated with bed curvature
combine to represent vertical acceleration effects. However,
in fitted-coordinate models such as those of Gray et al.
[1999] and Iverson and Denlinger [2001], bed curvature in
the x direction has no effect on Coulomb reaction stresses
that affect motion in the y direction and vice versa, a
mathematical artifact that does not faithfully represent
the pertinent physics. We therefore adopted a new approach,
in which a rectangular Cartesian coordinate system is
employed and effects of vertical accelerations on all
stress components are computed explicitly. Denlinger and
Iverson [2004] describe the mathematical details of our new
approach and illustrate how vertical acceleration affects
computational accuracy.
[42] Another major model improvement entailed the

representation of Coulomb stress states in three dimensions.
Prior approaches represented Coulomb stresses on planes
normal to the bed in terms of depth-integrated lateral Earth
pressure coefficients derived from two-dimensional Ran-
kine state theory [e.g., Savage and Hutter, 1989, 1991;
Hutter and Koch, 1991; Gray et al., 1999; Iverson and
Denlinger, 2001]. These coefficients assumed one of several
discrete values, which depended only on whether the
granular mass was locally extending or compressing as it
moved downslope. In our new approach we retain the use of
depth-integrated lateral stress coefficients, but these coef-
ficients can assume any value consistent with a depth-
averaged three-dimensional Coulomb stress state. Shear
stresses on arbitrarily oriented planes arise naturally in this
approach and are included in momentum balance calcula-
tions. Denlinger and Iverson [2004] describe the mathemat-
ical and computational details of our Coulomb calculations,
which yield smoother stress distributions than those attained
with previous approaches.
[43] The accuracy of our model predictions lends support

to the Savage and Hutter [1989] hypothesis that a simple
Coulomb proportionality (t = s tan f) between shear stress
t and normal stress s is a robust feature of granular
avalanches. This finding may seem surprising given that
the relatively high speed (u � 1 m s�1) and small thickness
(H � 5 mm) of our experimental avalanches imply depth-
averaged shear rates u/H � 200 s�1 if a no-slip basal

boundary condition is assumed. Such shear rates are con-
siderably larger than shear rates that may be typical of most
geophysical avalanches [Iverson and Vallance, 2001] and
are far larger than the shear rates that characterize classical
quasi-static Coulomb behavior.
[44] Three important considerations indicate that Cou-

lomb behavior in our avalanches is, in fact, unsurprising.
First, our avalanches exhibited a large amount of basal slip,
rendering internal shear rates less (perhaps much less) than
the depth-averaged estimate of 200 s�1. A large amount of
basal slip is understandable because internal friction angles
exceeded basal friction angles by factors of roughly 2
(Table 2). Second, an appropriate nondimensional charac-
terization of the effect of avalanche shear rates on inter-
granular stress generation, the Savage number, indicates that
conditions in our experimental avalanches were not far from
the regime in which grain interactions are dominated by
enduring, frictional contacts. For conditions in our ava-
lanches the Savage number can be approximated as [Iverson
and Denlinger, 2001]

NS � u2d2

gH3
: ð5Þ

Assuming no basal slip and inserting applicable values in
equation (5) (u = 1 m s�1, d = 0.0005 m, g = 9.8 m s�2, H =
0.005 m) yields NS � 0.2. Savage and Hutter [1989]
observed that the transition from friction-dominated to
collision-dominated granular flow occurs when NS exceeds
�0.1. Thus if our avalanches were ‘‘collisional,’’ they were
only moderately so. More likely, the applicable Savage
number for our avalanches was smaller than 0.1 owing to
basal slip and consequent reduction of the internal shear
rate, and our avalanches were mostly frictional.
[45] The third reason Coulomb behavior is not surprising

is that granular materials generally exhibit a Coulomb-like
proportionality between shear and normal stresses even
when they are fully fluidized and undergo collisional flow.
The ubiquity of this proportionality was the central finding
of the seminal experiments of Bagnold [1954], which has
been reinforced by subsequent work [Hunt et al., 2002]. In
shallow flows with free upper surfaces (as occur in our
avalanches), normal stresses on planes parallel to the
surface adjust freely to balance the weight of the superin-
cumbent granular mass (plus departures from the static
weight due to vertical accelerations). In deforming regions,
shear stresses adjust to normal stresses accordingly. Thus
to a substantial degree, all stresses depend ultimately on
the bulk weight and inertia of the granular aggregate,
irrespective of the shear rate. The success of our compu-
tational model hinges partly on the robustness of this
phenomenon.
[46] The prevalence of Coulomb behavior in granular

avalanches can be viewed as a consequence of self-organi-
zation and feedback. Mechanical interactions at innu-
merable grain contacts give rise to relatively predictable
macroscopic stresses in homogeneous granular masses that
deform inertially on a continuum scale because stresses
continually adjust to balance the effects of momentum
fluxes. The Coulomb equation appears to provide a good
summary of this behavior as it yields accurate predictions
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when used in conjunction with accurate accounting for
macroscopic momentum conservation.

5.2. Comparison With a Point Mass Model

[47] To further assess quasi three-dimensional Coulomb
behavior, it is useful to compare our model results (Figures 9
and 10) with results of the simplest possible Coulomb
model, the sliding point mass model introduced by Heim
[1932]. This model assumes that avalanche motion is
described by the one-dimensional momentum conservation
equation

d2p=dt2 ¼ du=dt ¼ g sin q� cos q tanfbedð Þ; ð6Þ

where p is avalanche position measured along the ground
surface, u is downslope avalanche velocity parallel to the
surface, t is time, g is the magnitude of gravitational
acceleration, q is the slope angle, and fbed is the angle of
friction for basal sliding. Heim’s [1932] model omits many
effects of multidimensional mass and momentum conserva-
tion, but it contains an elementary representation of gravity-
driven sliding resisted by Coulomb friction, which forms
the kernel of Coulomb avalanche models [cf. Savage and
Hutter, 1989, 1991; Iverson and Denlinger, 2001].
Integrating equation (6) along an avalanche path, neglecting
centripetal acceleration effects due to path curvature (as is
tacitly assumed in equation (6)), and applying suitable
initial conditions yields the famous Heim [1932] equation
for the relationship between the vertical descent D and
horizontal reach R of the avalanche, D/R = tan fbed.
(Generally, H/L is used in this equation rather than D/R,
which is used here to avoid confusion with our prior usage
of H and L.)
[48] The integration of equation (6) that yields the Heim

[1932] equation also yields predictions of avalanche posi-
tion at all times. Figure 11 compares these predictions with
the position of the avalanche front observed in experi-
ments A and B and with predictions of our multidimen-
sional continuum model. (Note that results depicted in
Figure 11 cannot be extracted directly from Figures 9
and 10 without performing coordinate transformations;
Figures 9 and 10 depict planimetric projections of the
avalanche slope, not distance along the slope as employed
in equation (6) and Figure 11.) Predictions of the contin-
uum model are clearly superior to those of the point mass
model, especially during the most rapid avalanche motion
(from �0.2 to 0.6 s in Figure 11). The distinction between
the predictions of the continuum model and point mass
model are greatest for experiment B, wherein multidimen-
sional effects are strongest near the base of the slope.
However, given the vast differences in information content
and computational sophistication in the two models, the
gains in accuracy afforded by the multidimensional con-
tinuum model are perhaps more subtle than expected,
especially with respect to the timing and distance of runout
termination.
[49] The similarities in runout predictions illustrated in

Figure 11 serve to illustrate two important points, one
physical and one philosophical. The physical point is that
the dynamics of the leading edge or front of an avalanche of
homogenous Coulomb material differ rather subtly from the
dynamics of a Coulomb point mass. Grains at the avalanche

front experience relatively weak interactions with other
grains. An exception occurs during the earliest stages of
avalanche motion, when steep gradients in thickness h are
common near the avalanche front and the resulting longi-
tudinal forces drive downslope acceleration that exceeds
that of an isolated point mass. Thus point mass motion lags
behind that of the experimental avalanches and multidimen-
sional predictions (Figure 11). However, because of a
compensating omission in the point mass model (i.e.,
neglect of centripetal accelerations that increase basal Cou-
lomb friction when masses descend slopes with convex
longitudinal profiles), the model predicts runout times and
distances that almost match the those of the data and
multidimensional predictions. This success of the point
mass model is therefore partly fortuitous.
[50] The apparent success of the point mass model

illustrates a key consideration in testing avalanche models
with data. Commonly, such models focus almost exclusively
on predicting the distal extent of avalanche runout [Legros,
2002]. However, as noted by Feynman [1994], tests of
models against a single type of data or outcome are
relatively undemanding and may lead to the spurious
conclusion that a model is ‘‘correct,’’ even if it is funda-
mentally flawed. Figure 11 summarizes all possible predic-
tions and tests of the point mass model with our experimental

Figure 11. Displacement of avalanche fronts as indicated
by data and predicted by our quasi three-dimensional
continuum model and a point mass model. All predictions
use the friction angles listed in Table 2. (a) Comparisons for
experiment A. (b) Comparisons for experiment B.
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data, but it depicts only a small fraction of the prediction
and testing information available in Figures 9 and 10.
Whereas the point mass model predicts exclusively the
downslope motion of the avalanche front as a function
of time, our multidimensional continuum model predicts
this property plus the distributions of downslope and cross-
slope displacement and avalanche thickness as functions
of x, y, and t. Simultaneous prediction of these multiple
interdependent variables affords a much higher standard of
testing than is possible when only a single variable is
predicted, a principle that has implications in a wide variety
of modeling contexts [cf. Furbish, 2003].

6. Conclusions

[51] Scaling considerations indicate that miniature
experiments can be used to test models of ideal granular
avalanches, in which the effects of intergranular fluid and
cohesion are negligible. We found that such experiments
are particularly useful for testing the ability of a numerical
model to predict avalanche motion across complex, three-
dimensional terrain. Model testing is enhanced by collec-
tion of detailed data on all phases of avalanche motion,
rather than on a single aspect of avalanche behavior such
as the distal extent of runout. Experimental testing under
tightly constrained and monitored conditions is also a
crucial step toward model application to geophysical
avalanches, which are generally poorly constrained and
incompletely characterized and which may involve com-
plicated (and scale-dependent) effects of intergranular fluid
and cohesion.
[52] The most important conclusion derived from our

experiments is that a conceptually simple Coulomb con-
tinuum model can yield quite accurate predictions of
granular avalanche motion across irregular three-dimen-
sional terrain, from initiation to deposition. We attribute
this accuracy to the prevalence of Coulomb-like behavior
(i.e., proportionality of shear and normal stresses) in
deforming granular masses over a wide range of quasi-
static and dynamic conditions and to three features of our
computational model: (1) a depth-averaged mathematical
formulation that accounts for the effects of vertical accel-
erations and adheres closely to the principles of mass and
momentum conservation; (2) the use of a suitable meth-
odology for accurately resolving Coulomb stresses; and
(3) the use of an appropriate, high-resolution method for
computing solutions of the governing equations. The
accuracy of our model predictions indicates that compli-
cated constitutive postulates are unnecessary to explain the
dynamics of granular avalanches if no effects of intergran-
ular fluid or cohesion are present.
[53] An ancillary conclusion is that the interplay of basal

friction, internal friction, and multidimensional mass and
momentum conservation affects the behavior of granular
avalanches. Three-dimensional topography influences all of
these phenomena in a manner that varies with time and
position as avalanche motion proceeds from initiation to
deposition. Therefore it is unlikely that topographic influ-
ences can be parameterized successfully by a bulk rough-
ness or energy loss coefficient, as is necessary in simplified
models that neglect multidimensional momentum conserva-
tion [cf. Hungr, 1995].
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