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[1] To establish a theoretical basis for predicting and interpreting the behavior of rapid
mass movements on Earth’s surface, we develop and test a new computational model for
gravity-driven motion of granular avalanches across irregular, three-dimensional (3-D)
terrain. The principles embodied in the model are simple and few: continuum mass and
momentum conservation and intergranular stress generation governed by Coulomb
friction. However, significant challenges result from the necessity of satisfying these
principles when deforming avalanches interact with steep and highly variable 3-D terrain.
We address these challenges in four ways. (1) We formulate depth-averaged governing
equations that are referenced to a rectangular Cartesian coordinate system (with z vertical)
and that account explicitly for the effect of nonzero vertical accelerations on depth-
averaged mass and momentum fluxes and stress states. (2) We compute fluxes of mass and
momentum across vertical cell boundaries using a high-resolution finite volume method
and Roe-type Riemann solver. Our algorithm incorporates flux difference splitting, an
entropy correction for the flux, and eigenvector decomposition to embed the effects of
driving and resisting forces in Riemann solutions. (3) We use a finite element method and
avalanche displacements predicted by Riemann solutions to compute Coulomb stresses
conjugate to the displacements in 3-D stress space. (4) We test the model output against
analytical solutions, a sand cone conceptual experiment, and (in a companion paper)
data from detailed laboratory experiments. Model results illustrate a complex interplay of
basal traction and internal stress, and they successfully predict not only the gross behavior
but also many details of avalanche motion from initiation to deposition.  INDEX TERMS:
1824 Hydrology: Geomorphology (1625); 3210 Mathematical Geophysics: Modeling; 1815 Hydrology:
Erosion and sedimentation; 8020 Structural Geology: Mechanics; 8168 Tectonophysics: Stresses—general;
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approach pioneered by Savage and Hutter [1989, 1991].
Our central postulate parallels that of Savage and Hutter
[1989, 1991] and holds that granular avalanches behave as
shallow, isochoric flows of finite volumes of continuous
media in which mass and momentum are conserved and
shear and normal stresses on internal and bounding surfaces
obey the Coulomb [1776] friction equation (T = o tan o,
where T and o are the shear and normal stresses on failure
surfaces with friction angle ¢). Experiments demonstrate
that applicability of the Coulomb equation extends beyond
the quasistatic flow regime, in which grains interact exclu-
sively through enduring frictional contacts, because even
rapid granular flows exhibit a Coulomb-like proportionality
between shear and normal stresses [e.g., Bagnold, 1954;

1. Introduction

[2] Understanding of granular avalanches provides a
foundation for understanding a variety of mass movement
phenomena, including rock avalanches, snow avalanches,
debris flows, and pyroclastic flows. These phenomena
typically involve mixtures of solid grains and intergranular
fluid that surge rapidly across irregular terrain, but granular
avalanches constitute an important end-member case, in
which intergranular fluid and cohesion play negligible roles.
The relative simplicity of this special case makes it a
compelling target for development and testing of physically
based predictive models. Rigorous formulation and stringent
testing of granular avalanche models provide the scientific

underpinnings for modeling diverse mass movements on the
Earth and other planets.

[3] In this paper we describe an approach to modeling
granular avalanches that both extends and revises an
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Hungr and Morgenstern, 1984; Savage and Hutter, 1989;
Iverson and Denlinger, 2001; Hunt et al., 2002]. Elaborate
constitutive postulates appear unnecessary in avalanche
models unless compelling data indicate that the simple
Coulomb postulate is inadequate.

[4] The decade following the publications of Savage and
Hutter [1989, 1991] witnessed an expansion and general-
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ization of their approach. Key elements of the original work
by Savage and Hutter [1989, 1991] included (1) derivation
and scaling of depth-averaged momentum and mass con-
servation equations to obtain one-dimensional shallow flow
equations appropriately normalized to account for the finite
size of avalanching masses; (2) formulation of shallow flow
equations using the Coulomb equation for basal shear
resistance and an earth-pressure equation for the influence
of Coulomb friction on longitudinal normal stresses;
(3) numerical solution of the one-dimensional shallow flow
equations using a Lagrangian finite difference scheme
suitable for tracking propagation and deformation of an
avalanching mass; and (4) experimental testing that dem-
onstrated the veracity of the model. Subsequent general-
izations of the Savage-Hutter approach have included
extension to multidimensional avalanches [Hutter et al.,
1993; Gray et al., 1999; Denlinger and Iverson, 2001;
Pudasaini and Hutter, 2003], extension to flows containing
viscous intergranular fluid [lverson, 1997; Iverson and
Denlinger, 2001; Savage and Iverson, 2003], and a variety
of numerical implementations and experimental tests [e.g.,
Hutter and Koch, 1991; Wieland et al., 1999; Denlinger and
Iverson, 2001; Gray et al., 1999]. As a consequence, the
Savage-Hutter approach has incrementally advanced to a
stage in which reliable application to complex geophysical
phenomena appears within reach.

[s] Here we focus on one of the biggest challenges in
extending the Savage-Hutter approach to geophysical appli-
cations: assessment of avalanche behavior when motion is
affected by irregular, three-dimensional terrain. The strong
influence of irregular terrain on geophysical flows is clearly
evident. For example, topographic steering dramatically
affected the catastrophic ~2.5 km® rockslide-debris ava-
lanche at Mount St. Helens, Washington, in 1980 [Voight et
al., 1983; Glicken, 1998]. In one location, part of the
advancing avalanche front surmounted the 300-m-high
Johnston Ridge, while the remainder of the avalanche was
deflected by the ridge and redirected almost 90° into the
Toutle River valley. As at Mount St. Helens, the terrain in
most locations prone to catastrophic avalanches is steep and
irregular, and abrupt changes in slope angle and orientation
over distances much less than typical avalanche dimensions
are common. Therefore it is crucial to account for multi-
dimensional momentum transfer within avalanches and for
the influence of three-dimensional reaction forces exerted
by the underlying Earth.

[6] Although prior calculations have addressed the effects
of three-dimensional basal topography on granular ava-
lanches, these calculations have involved restrictive
assumptions about the orientation of Coulomb stresses
[e.g., Gray et al., 1999; Denlinger and Iverson, 2001].
Moreover, tests of the accuracy of these calculations have
employed only gently curving, regular terrain that is far less
complex than that of most natural landscapes. Rigorous
analysis and testing of the effects of irregular terrain has
been lacking but is required before geophysical applications
can be undertaken with confidence.

[7] The investigations we report here are novel in three
respects. First, we develop a new, quasi three-dimensional
algorithm for resolving arbitrarily oriented Coulomb
stresses in a model of shallow flow across arbitrarily
complex terrain. Second, we solve the shallow flow equa-
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tions numerically using a hybrid finite element/finite vol-
ume scheme, in which normal-stress effects are embedded
in an approximate Riemann solver using a wave propaga-
tion algorithm that facilitates accurate computation of both
static and dynamic states. Third, in a companion paper we
test numerical predictions against data obtained from unique
laboratory experiments, in which laser cartography enabled
precise determination of the transient geometry of granular
avalanches traversing irregular terrain [[verson et al., 2004].
Further discussion of the origins and geophysical motiva-
tion of this work can be found in previous work [/verson,
1997; Iverson et al., 1997; Denlinger and Iverson, 2001;
Iverson and Denlinger, 2001; Iverson and Vallance, 2001].
These publications also address the effects of intergranular
pore fluid, which we neglect in this paper in order to focus
on the effects of complex basal topography.

2. Mathematical Model
2.1. Conceptual Framework

[8] Our depth-averaged mass and momentum conserva-
tion equations are similar to those derived previously by
Gray et al. [1999] and Iverson and Denlinger [2001].
However, those authors referenced their equations to a
curvilinear coordinate system fitted to basal topography,
whereas we reference our equations to a rectangular Carte-
sian coordinate system, in which the z coordinate is vertical
and aligned with the gravitational attraction of the Earth.
Our motivation for using this coordinate system is threefold.
(1) Flow interaction with irregular topography may cause
the direction of velocity vectors to deviate significantly
from directions parallel to the local bed surface (e.g., as
occurs along steep channel margins). Therefore the direc-
tion normal to the bed (a coordinate in the curvilinear
system) does not necessarily provide a preferred direction
for depth averaging. (2) In a fitted, curvilinear coordinate
system, variations in bed orientation imply three-dimen-
sional variations both in the orientation of adjacent com-
putational cells and in their common boundaries and cause
problems in balancing numerical fluxes of conserved var-
iables (mass and momentum) between adjacent cells using
Riemann methods. (3) Topographic data for natural land-
scapes are widely available in the form of digital eleva-
tion models (DEMs), which provide gridded elevations
referenced to a geodetic (Earth-centered) datum. Models
for forecasting the behavior of geophysical flows should
ideally utilize these gridded elevation data without prepro-
cessing to map the data to a new coordinate system and
without postprocessing to interpret the results.

[¢] Use of rectangular Cartesian coordinates in our shal-
low flow model poses some difficulties, however, because
acceleration in the vertical (z) direction is not always
negligible and basal tractions are not always exerted on a
plane normal to z. We address these difficulties by adopting
a new and comprehensive strategy for computing Coulomb
stresses, which is detailed in section 3.2. A key element of
the stress computation involves use of kinematic constraints
to estimate time- and space-dependent accelerations in the
z direction. These accelerations are used to derive the total
vertical acceleration from the z momentum equation, and
this acceleration affects both internal stresses and basal
tractions. A finite element calculation allows us to stipulate
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that these stresses and tractions must map on the surface of a
three-dimensional stress-space representation of a Coulomb
failure envelope. Computationally, this mapping is simpler
to implement than in traditional quasistatic plasticity models
because deformation that generates the Coulomb stress state
is inertially driven and largely inherited from the preceding
time step.

[10] Previous extensions of the Savage-Hutter theory to
multidimensional flow have used schemes for incorporat-
ing Coulomb stresses that were less comprehensive than
the scheme described above. For example, Hutter et al.
[1993] and Gray et al. [1999] used Rankine-state earth-
pressure calculations to define anisotropic lateral stress
coefficients that specified ratios between lithostatic stresses
normal to the bed and depth-averaged normal stresses
parallel to the bed. The lateral stress coefficients assumed
one of several discrete values commensurate with com-
pressional and extensional deformation in the bed-parallel
(x and y) directions. Iverson and Denlinger [2001] used a
different approach, in which a single, isotropic lateral stress
coefficient was specified for the x and y directions (with
the lateral stress value contingent on whether the two-
dimensional flow was convergent or divergent at a point).
Then, Coulomb shear stresses on x-z and y-z planes were
evaluated explicitly by inferring that isotropic normal
stresses in the x and y direction equaled the mean stress.
Although this approach was rotationally invariant in a
mathematical sense, the implied stress state retained de-
pendence on the orientation of the x and y coordinates, and
in this sense the approach shared a limitation with the
approach of Hutter et al. [1993] and Gray et al. [1999].
Both of these approaches can yield spurious dependence
on the coordinate system when solutions for flow across
irregular topography are computed. For that reason we
have devised a new approach, in which the estimated
Coulomb stress state is independent of the orientation of
the coordinate system.

2.2. Conservation Laws

[11] To model avalanche motion, we employ integral
equations for mass and momentum balances written in the
conservative forms [e.g., Aris, 1962]

/{%nLV-pu}dV:O (1)

/{8§:)+V~puu}dV:—/.(V~T)dV+/‘png’ 2)

4 Vv Vv

where V' is an arbitrary control volume, # is time, p is the
bulk density of the granular mass, g is the gravitational
acceleration vector, T is the stress tensor, u is the velocity
vector, and uu is a dyadic product formed from velocity
vectors. For stresses we adopt the sign convention that
compression is positive, as is customary in soil and rock
mechanics [cf. Iverson and Denlinger, 2001].

[12] To obtain depth-averaged forms of equations (1) and
(2), we stipulate that each control volume } spans the
thickness of the granular mass (where this thickness is
nonzero) and is referenced to a rectangular Cartesian
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Figure 1. Definition sketch illustrating the coordinate
system and variables used to calculate avalanche motion.

coordinate system. The volume integrals in equations (1)
and (2) are then expressed as

/dV_/jdsz, 3)

where A is an area element in the horizontal (x-y) plane, z is
the vertical coordinate normal to this plane, z = b(x, y)
defines the elevation of the base of the flow, and z = n(x, y, )
defines the elevation of the flow surface (Figure 1). We
stipulate that no flux of mass occurs across the surfaces z =
b(x, y) and z = n(x, y, f), which implies that the vertical
velocity component w at these surfaces obeys the kinematic
boundary conditions

o, o
[W]Z:n— {& +u o +v 8y} . (4)
ob ob
W, _p= {“a + Va—y} ) (5)

where u and v are the velocity components in the x and y
directions, respectively. Note that equations (4) and (5)
imply that the z component of velocity (and momentum) is
zero only if the avalanche translates across a horizontal
surface as a rigid body. We address some ramifications of
this fact in our description of stress calculations.

[13] Although the bulk density of deforming granular
masses can vary as a consequence of dilation and contrac-
tion, such variations are generally slight in comparison to
variations in other dynamic properties [cf. Savage and
Hutter, 1989; Iverson et al., 2000], and we therefore assume
p is constant. Then, use of equations (1)—(5) and Leibniz
theorem for interchanging the order of integration and
differentiation [4bramowitz and Stegun, 1964, p. 11] ena-
bles the conservation equations for mass and momentum to

3of 14



F01014

be expressed in depth-averaged forms analogous to those of
shallow water theory:

/ {@4_8(115) N a(hv)} A =0,

ot Ox dy ©)

O(hu) ~ O(ha*)  O(huv)] , 0T 0T OTw
p/[0t+8x+8y dA_,/8x+8y+ade’
A 4

o(hv)  O(m*)  9( huv 0Ty GTU (9sz
p/{ o + oy + dA = / 82 dv,
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(®)
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where 4 =1 — b is the flow thickness, measured vertically
from the bed at z = b to the flow surface at z=m, u, v, and w
are velocity components in the x, y, and z directions,
averaged over the thickness £, 7;; are Cartesian components
of'the stress tensor, and g is the magmtude of'the gravitational
acceleration g in equation (2). As in previous shallow flow
theories for granular avalanches, equations (7)—(9) ignore the
possible effects of differential advection of momentum due to
variation of velocity with depth. (Vreugdenhil [1994]
provides a detailed discussion of differential advection in
the context of shallow water theory.) Inclusion of a correction
coefficient to represent the effects of differential advection
appears unnecessary for granular avalanches, in which shear
deformation tends to be strongly localized near the bed
[Savage and Hutter, 1989].

©)

2.3. Vertical Stress Calculation

[14] In all shallow flow theories, stress calculations are
built around a simplifying assumption regarding the vertical
(i.e., z) momentum balance of equation (9). Typically, such
theories assume that forces associated with changes in
z momentum are negligible relative to the static weight of
the mass so that equation (9) reduces to an equation for the
z direction static normal stress, T.. = pg(n — z) [cf.
Vreugdenhil, 1994]. In our theory we use a more general
approach that incorporates the influence of changes in z
momentum. We have found that this generalization is crucial
for computing stresses that are generated by avalanche
interaction with irregular terrain.

[15] Mathematically, the rationale for our approach
derives from scaling considerations and rearrangement of
the z momentum equation (9). Following Savage and Hutter
[1989] and many subsequent researchers, we note that the
length scale for the z direction is the typical avalanche
thickness H, whereas the length scale L in the x and y
directions is the square root of the typical planimetric area
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of the avalanche. Typically, H < L so that the parameter € =
H/L is much less than unity. Because all stress components
on the right-hand side of equation (9) scale with the
lithostatic stress pgH, we infer that the term O07../0z is of
the order of pg, whereas the terms O7,./0x and Or,./0y are
of the order of epg and are small in comparison to J1_./0z.
Neglecting these small ;c}erms, employing equation (3),

evaluating the integral [ (97../0z)dz, and utilizing the

b ..

stress-free surface boundary condition ., (1) = 0, we reduce
equation (9) to an expression for the z direction normal
stress at z = b:

A(hw)

N I(huaw)
ot Ox

A(hvw)

o (10)

=2(b) = pgh +p
The right-hand side of equation (10) can be simplified
by subtracting the product of w and the depth-averaged
mass conservation equation (i.e., W [0h/Ot + O(hu)/Ox +
O(hv)/dy] = 0) from the term in brackets. As a result,
equation (10) can be rewritten as
T=2(b) = ph(g + dw/dt), (11)
where d w/dt denotes the total time derivative d/dt = 0/0t+u
(0/0x) + v (0/0y) of the depth-averaged vertical velocity w.
Finally, by assuming that 7., varies linearly from T..(b) at the
base of the flow to 0 at the free surface, where z = 1), we infer
that the z direction normal stress obeys

(12)

Tzz N pg/(ﬂ - 2)7

where g’ is the total vertical acceleration defined by

g =g+dw/d. (13)

[16] The concept of total vertical acceleration g’ is useful
because it indicates that the effect of dw/dt on 7_, as defined
in equations (12) and (13) either amplifies or reduces the
effect of gravity when the flow is vertically accelerated or
deflected by topography. For example, a mass that is static
or moving with constant velocity has g’ = g because dw/dt =
0, whereas a mass that accelerates in free fall has g’ = 0
because dw/dt = —g, and a mass that decelerates vertically
as a result of flow impingement against the bed has g’ > g
because dw/dt > 0. Physically, the effect of dw/dt in
equation (13) is analogous to the summed effect of down-
slope and centripetal accelerations in avalanche theories that
use curvilinear coordinates fitted to topography [e.g., Gray
et al., 1999; Iverson and Denlinger, 2001], but the mathe-
matical form in equation (13) is more readily employed with
complex multidimensional terrain.

[17] We use kinematic constraints to estimate the depth-
averaged vertical velocity w(x, y, f) in equations (11) and
(13). Neglecting the effects of differential advection, we
infer that u ~ u and v ~ V are suitable approximations in the
kinematic boundary conditions (4) and (5). We also assume
that the depth average of w is approximated well by the
mean of the surface and basal values of w as given by
equations (4) and (5). This mean value,

s Lo, o Jom 1[-0b  _0b
”2{8t+ [l o 1 L v v B O

=
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is used to compute the total vertical acceleration defined in
equation (13). The connection between equation (13),
equation (14), and the concept of total vertical acceleration
can be clarified by considering simple cases that yield
analytical solutions, as in Appendix A.

[18] As in previous granular avalanche theories that build
upon the theory of Savage and Hutter [1989], we assume
that lateral normal stresses are proportional to T..; that is,

Txx = kxTzz Ty = kysz (15)
where k, and k, are lateral stress coefficients that have
values derived from Coulomb stress calculations. However,
whereas previous theories have assumed that &, and &, have
one of several discrete values dictated by Rankine-state
calculations for extending or compressing quasistatic
deformation of uniform Coulomb slabs, our quasi three-
dimensional finite element calculations yield continuously
varying k. and k, values that depend on all components of
the stress and flow fields. This approach yields improved
resolution of Coulomb stresses and smooth variations in
these stresses from cell to cell, even where avalanches
interact with abrupt changes in topography. Implementation
of our finite element calculation is outlined in section 3.2.

[19] The physical significance of the lateral stress coef-
ficients k, and k, defined in equation (15) and of g’ defined
in equation (13) becomes more apparent when equation (12)
is substituted into equation (15), equation (15) is substituted
into equations (7) and (8), and the stress integrals on the
right-hand sides of equations (7) and (8) are evaluated. For
example, with these substitutions the right-hand side of the
x momentum equation (7) reduces to

n

a’rxx aTyx o 8[/&98/(71 — Z)]
/{8x+ 6y+ }dV_// Ox e
Vv A b

0Ty

dy

OTox
0z

+

dv — / T.(h)dA. (16)

The final term on the right-hand side of this equation results
from employing equation (3) and integrating from z = b to
z = . The depth integral involving the lateral normal stress
ke pg(n — z) can be evaluated explicitly using Leibniz’s
theorem, which yields

og’
2]

1 ,
dz =pg'hk, {@ + %] +5 1 {g’ (?9];

Oox Ox| 2

/” Olkpg’ (0 — 2)]
/] Ox

(17)

As described by equation (17), the transmission of normal
stress in the x direction depends not only on the bed slope
and thickness gradient (as it would in a typical shallow
water flow) but also on k.g" and the gradients of k, and g’.
Indeed, as shown by Denlinger and Iverson [2001], it is
useful to combine the influences of all these factors to
define a gravity wave speed +/k.g’h that describes the
maximum rate of information propagation in the avalanche.
Unlike Denlinger and Iverson [2001], however, we
emphasize here that the gravity wave speed includes the
total vertical acceleration as defined in equation (13).

[20] Expressions analogous to equations (16) and (17) are
easily obtained and applied for the y momentum equation,
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and all these expressions are used in the vector form of the
conservation equations presented below.

3. Numerical Method

[21] Our numerical technique for solving the depth-aver-
aged conservation equations (6)—(8) utilizes a hybrid finite
volume/finite element procedure. The key advantages of
this technique are twofold: (1) the finite volume method is
very effective for preserving conservation of mass and
momentum in multidimensional physical systems such as
granular avalanches, wherein abrupt transitions between
rapidly flowing and stationary states are common [e.g.,
LeVeque, 2002; Toro, 1997]; (2) the finite element method
is a powerful means of resolving Coulomb stress states
when flow is oriented arbitrarily with respect to an imposed
coordinate system. Finite volume calculations of fluxes of
mass and momentum provide kinematic constraints for
finite element calculations of stresses, and the finite element
stress calculations in turn provide a basis for evaluating
source terms that modify fluxes.

[22] As a preliminary step in our numerical method, we
break the flow domain into discrete cells with vertical bound-
aries, through which fluxes of mass and momentum pass
during each increment in time. Evaluation of fluxes is accom-
plished by rewriting equations (6)—(8) in the vector form

Qs [ gy [2Cas :/SgdA+ST, (18)
A

ot Ox dy
4 4 4

where Q is the vector of conserved flow variables:

h
Q= | hu|.
hv

Here, and in all equations that follow, overbars are omitted
from the velocity components u# and v, but these symbols
continue to denote depth-averaged quantities. In equation
(18) the vectors F and G describe the flux of mass and
momentum in the x and y directions, respectively, S, contains
gravitational driving or “source” terms, and S, contains the
source terms resulting from internal stresses and boundary
forces on the right-hand sides of equations (7) and (8).
Specifically, we have

(19)

hu

1
hu® + Ekxg’h2 (20)
huv

hv

huv

1)

1
m? + Ekyg’h2

0

ob 1
'~ _ /
S, = k‘ghax+2gh
ob 1
’ Z o2
kygh—ay+2gh

2 Ok,
ox |’
Oy
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3'r} x

TZA

A/
/ OTy dVv — / Ty (b
4

The conservation equations (18) are solved using stresses
from the previous time step in S, and S... Once a flow solution
is obtained, finite element methods are used to calculate
internal stresses and to modify these source terms for the next
time step.

3.1. Finite Volume Method For Flow Calculation

[23] In the finite volume method the area integrals of
OJF/Ox and OG/0y are replaced by line integrals of the net
flux across the wvertical boundaries of each cell, as
discussed by LelVeque [2002, p. 422]. To update the flow
variables in each cell to the next time step, we use a forward
Euler discretization of equation (18) between time ¢* and

time 7 ! to give the conservative difference scheme

At
Fi - ny + Gy - ny) +—Sjf

Qn+l — Qn _
Vi

Z le

’/k

(24)

where the superscripts on Q denote the time increment, Vj; is
the volume of cell ij, N, is the number of cell edges, n; is
the outward normal of the edge between cell i and cell &, L;;
is the length of that edge, and S} is the combined vector of
source term integrals over each cell.

[24] To solve equation (24), we construct Jacobians
JF/0Q and 0G/0Q of the flux such that their product with the
change in Q across a cell edge is equal to the jump in flux AF
or AG across that edge. This condition is enforced by using
Roe averages of the flow variables (defined below) between
cells in these Jacobians [Roe, 1981] and by assuming that
these averages are constant for the duration of the time step.
As the advective terms in our conservation equations (6)—(8)
are identical to those in the standard shallow water equations,
the Roe averages are given for the x direction by LelVeque
[2002, p. 481] as

=~ hp+hg

h=" (25)
,;,fM (26)
WV +h

P = hL(i’ - Z"L)VL + hR(uR — [{)VR
T h(i—ug) + he(ug — ) (27)

In these equations and all that follow, symbols with tildes
denote Roe averages. Analogous equations apply for the G
flux and are obtained by interchanging u and v above.

[25] Constructed with Roe averages, the fluxes F and G
in equation (24) form a constant coefficient, linear system
and consequently, an approximation to the flux at every
time step may be obtained in a variety of ways. Here we use
a wave propagation form of Godunov’s method as outlined
by LeVeque [2002, p. 78] and represent these flux differ-
ences as mathematical waves. We begin by factoring the
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flux terms into characteristic components of the homoge-
neous system

0Q  ~0Q  -0Q
o PAG B 0 28)
where
- OF
_ 9G

are the linear approximations to the Jacobian matrices of the
flux in the x and y directions. These Jacobian matrices
contain the information needed to solve for mass and
momentum fluxes in the flow. The eigenvalues of the
Jacobians are real, making the conservation equations fully
hyperbolic. Factoring these Jacobian matrices into right and
left eigenvector matrices, we decompose the flow vector
onto them to determine the fan of flow characteristics across
each cell edge [Hubbard and Garcia-Navarro, 2000]. Using
a similar decomposition, the gravitational source term S,
and stress source term in S, are also incorporated into the
analysis, as described in equations (34)—(37).

[26] The linear form of the flux Jacobian matrices allows
us to decouple the conservation equations, writing the flux
difference across each cell interface as the sum of N waves,
where N is the number of conservation equations being
solved. The flux calculation is particularly straightforward
for a quadrilateral grid aligned with Cartesian x and y axes.
For the grid in Figure 2 the flux difference across the x
interface between cells 7, j and i + 1, j may be written as

AF‘II*]/ZJ = (AAQ)H-I/Z/ (RAAAR AQ)

N ~
= Z (&kxk;k)m/z;’

k=1

i+1/2,
(31)

where AF is the jump in flux F across the edge R, is the
matrix of right eigenvectors 7, of A, R, is the left
eigenvector matrix of A, and Ay is the dlagonal matrix of
eigenvalues . The wave strengths &y are glven by R !
AQ. A similar equation is written for the flux jumps AG
across the y faces.

[27] We write the jumps in flux across each cell edge as a
linear combination of right- and left-going waves and
update the cell variables on either side as described by
Hubbard and Garcia-Navarro [2000] and by LeVeque
[2002, pp. 80—81]. A preliminary estimate of the updated
flow vector is given by

At S
o5 = QZ Ax {<RAA R, 1AQ>z+1/2.j+<RAAKR;1AQ>I>1/2J
At [/~ ~ ~ o
e [(RBABRBIAQ> ,-,-+1/2+(RBAERBIAQ>U4/2}
At -
+,<T,-,-S’3?’ (32)
where
- 1/~
A =2 (A= A)) (33)
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Figure 2. Sample of the offset computational grids used in
finite volume computations of fluxes (solid lines) and finite
element computations of stresses (dashed lines).

Here R and Ry are the right and left eigenvector matrices
of G, respectively, 4;; is the area of cell i/, and the splitting
of source terms S¥ will be described below.

[28] Flux difference splitting, treated in equation (32) as
waves traveling in opposite directions, produces positive
and negative components that are used to split cell edge
waves into transverse components, as described by LelVeque
[2002]. This procedure yields an algorithm that incorporates
all nine cells of the labeled stencil shown in Figure 2 to
update each grid point, and it thereby minimizes the effects
of grid orientation on the solution.

[29] The decomposition of the source terms on vertical
cell edges uses the contribution to the source from cells
bounding each edge. For example, for the edge between
cells 4, j and i + 1, j (Figure 2), the source term integration
across the cell edge is

JH1/2 i1
/ Sdxdy = §,11 0, = (RR'S),

=120

and the x component contributions to the source vector over
the entire cell in equation (32) are written

[S¥],= Sy + St o0 35)
where
- . e
S =5 Ra(l= sgn(N)RR'S),, (36)
and
_ 1. o
Sztl/Z,/' =3 (Ra(I+ Sgn(x))Rxls)H/y (37)

are the left and right traveling contributions, respectively,
with similar terms for the y components. I is the identity
matrix.

[30] The remaining source term (the last term in equation
(16)) is not decomposed in this fashion as it represents the
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basal stress or drag resulting from sliding on the bed. Effects
of this bed drag are included in a final computational
update, which uses O of equation (32). The final update is

er_jt_ﬂ =05 — A /(h . Tb),-jdA (38)

A

where 4 is the cell bed area and the bed drag acts on both
components of velocity. Once the updated solution is
obtained, the displacements and depths derived from this
solution are fixed and then are used to update the stresses
for the next time step.

3.2. Finite Element Method For Resolving
Coulomb Stresses

[31] We calculate the Coulomb stresses within the gran-
ular avalanche using finite element methods in conjunction
with the velocities and flow thicknesses obtained from the
finite volume solution described in section 3.1. The stresses
are estimated at the center of a finite element brick with
corner vertices at the centroids of the upper and basal
surfaces of four adjoining finite volume cells (Figure 2).
The velocities at the base and the surface of each finite
volume determine the displacements at a corner of a finite
element.

[32] The expression for strain within each finite element
is given as

Exx
S uAt
e=| ==L > [ A, (39)
Exy corners \ WA?
€y
€xz

where L is a linear differential operator that converts corner
displacements (the product of velocity and time step) to
strain. An example of this operator is given as S in the work
of Zienkiewicz and Taylor [2000, equation (6.9)]. As only
corner displacements are specified, strains are regarded as
constant within each element.

[33] The stresses resulting from these strains cannot
exceed the Coulomb shear strength of the granular material.
If shear stresses are less than the Coulomb strength, the
material remains elastic and no flow occurs (although
sliding can occur at the bed). The stresses accompanying
the strains given by equation (39) are initially estimated by

AT = De, (40)

where the total stress is

T="7"+AT. (41)
Here AT is the current stress increment, 7' is the
preexisting stress at the same location, € is the strain tensor
on the left hand side of equation (39), and D is an isotropic
matrix of elastic constants [Zienkiewicz and Taylor, 2000,
equation (6.14)]. This stress estimate is added to other
contributions to the stress resulting from sliding along the
bed (bed shear stress) and from the material weight.
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Figure 3. Coulomb yield surface in three-dimensional
stress space, where S1, S2, and S3 represent principal stress
components of unspecified relative magnitude. A line
passing axially through the center of the irregular hexagonal
cone forming the yield surface represents a lithostatic state
of stress. The yield surface was computed for the sand used
in experiment B of Iverson et al. [2004].

[34] The bed shear stress is determined from the granular
material’s weight per unit of bed area and bed orientation
relative to the flow or, in a frame of reference oriented
parallel to the bed,

Thed = pg,yzz’h - tan d)bcdv (42)
where Tyeq is the bed shear stress, g’ is given by equation
(13), and vy.., is the direction cosine of the bed normal with
respect to vertical. The bed shear stress in equation (42) is
transformed into our Cartesian coordinate system as
described in Appendix B and is then added to the weight
and to the flow stress of equation (41) to obtain an initial
estimate for the total state of stress in the element. If flow
occurs, the initial stress state necessarily exceeds the
strength as described by the Coulomb yield criterion.

[35] The shear strength defined by the Coulomb criterion
is pressure-dependent but not rate-dependent, and Coulomb
shear stresses increase with the mean stress. For sand B in
our experimental tests [[verson et al., 2004], the admissible
stresses are enclosed by the irregular, hexagonal Coulomb
yield cone shown in Figure 3. The cone is hexagonal rather
than circular in cross section because yield is determined
solely by the difference between the maximum and mini-
mum principal stresses in the flow [Desai and Siriwardane,
1984]. The axis of this cone defines a lithostatic stress state,
and an infinite number of Mohr stress circles may be
inscribed within the cone on planes containing this axis.
Inside the cone the differences between principal stresses

DENLINGER AND IVERSON: GRANULAR AVALANCHES ACROSS IRREGULAR TERRAIN, 1

F01014

are insufficient to produce shear failure, whereas outside the
cone the principal stress differences are too large to be
supported by the material. As the granular material deforms,
the stresses remain on the cone surface.
[36] Mathematically, the shift in stresses during a time
step must satisfy yield conditions specified by
oY

—AT=0.

or (43)

For Coulomb behavior the yield function Y is [Zienkiewicz
and Taylor, 1991]

. _(cosB sinBsin o,
Y= omsmd)im-l—o(———"“

\/§ 3 ) — €Cos ¢)im7 (44)

which is written in terms of stress invariants o,, o, 0,
defined as
(T + Toy + 722)

Om = — ’

: (45)

_ 1 2 2 2
g = ﬁ {(Txx - 'ryy) + (Tyy - ’rzz) + (T — T22)” + 6’1')20} + 67_32
1/2
+6r2] (46)
1 t
0= 3 arcsin (¥%> , (47)
Sij = T” — Oy (48)

Here 1, = 7;; for i = x, y, z and ¢y, is the angle of internal
friction. Note that equation (47) is not the conventional third
stress invariant commonly used in continuum mechanics but
is an alternative invariant written in terms of the deviatoric
stress s;; [cf. Malvern, 1969].

[37] The correction of the stress from conditions outside
the yield surface shown in Figure 3 to the yield surface (Y'in
equation (44)) is obtained by iteratively solving

Y (ov\"
D or (81’) D

AT=|D——-F%—| ‘¢,
Y’

T
()

or or
where ¢ is the strain occurring over the time increment Az in
equation (39) and Y is the yield function that is assumed to
apply outside the yield surface. Here we use the same
function as ¥, with an internal friction angle of 4°, a value
commonly observed in residual friction studies of sand
[Wood, 1990]. Typically, only a few iterations are required
to attain the condition in equation (43).

[38] In our avalanche computations the initial state of
stress prior to any deformation is assumed to be lithostatic,
where all stresses are equal and determined by the depth at
the centroid of each finite element brick. Once deformation
begins, the initial elastic stress estimate typically is far
outside the yield surface in stress space (Figure 3). Iterating
on equation (49), we return the stress state to a position on
the Coulomb yield cone (Figure 3). In general, this changes
the magnitudes and ratios of all stress components. For a
displacement-driven system, as we have here, this process is

(49)
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robust and accurate, and as the corrections are large, it is
insensitive to the values used for the elastic constants. As a
final step, the stresses in the surrounding finite elements are
averaged to the center of each finite volume cell (Figure 2)
to begin the next time increment.

4. Computational Results and Model Verification

[39] We test our model in three ways. (1) Computational
accuracy is tested by comparing model predictions with those
of appropriate one-dimensional analytical solutions. (2) To
test for spurious grid dependence, we compute the symmet-
rical collapse of cylindrical sand columns to form conical
heaps. (3) Finally, to test all aspects of the model against
physical reality, we compare computational predictions to
results of sand avalanche experiments conducted in a labo-
ratory flume. A complete description of these experiments,
together with a complete set of comparisons between model
predictions and experimental results, is presented in a com-
panion paper [lverson et al., 2004]. Here we use the exper-
imental data to illustrate how specific attributes of the model
facilitate prediction of complicated, three-dimensional ava-
lanche behavior.

4.1. Analytical Solution

[40] Mangeney et al. [2000] provide an analytical solu-
tion for a one-dimensional granular avalanche with litho-
static internal stress (and hence zero internal friction) but
with significant bed friction. The solution describes motion
of a flow front that avalanches off an unsupported face of an
infinite slab of material resting on an infinite, uniform slope.
Figure 4 depicts the comparison between this analytical
solution and our numerical solution for two different values
of the bed friction angle and bed slope.

[41] In the first example (Figure 4a), with zero bed slope
and zero friction, the equations governing the flow reduce to
the standard shallow water equations. In this case, our
computational results are identical with the analytical results
for sudden release of the vertical front.

[42] The second example (Figure 4b), with a 30° bed
slope and a 20° angle of bed friction, is more closely
analogous to a typical granular avalanche. This example
illustrates the importance of using the total vertical acceler-
ation g’ in computations. Here the vertical component of the
avalanche acceleration reduces the apparent weight of the
granular mass and thereby reduces the basal frictional
resistance. If the vertical acceleration is erroneously fixed
at the value of g, the basal normal force derived from this
value is too large, and excess basal friction causes the
numerical solution to lag behind the analytical one. Incor-
porating the total vertical acceleration in the g’ computation
brings the numerical solution into close agreement with the
analytical solution. The discrepancy at the flow front is the
result of using a small, nonzero depth to define the flow
front. The minimum cell depth at which momentum is
calculated is given by the front height (1/2)dx tan ¢,, where
oy 1s the basal friction angle. As the cell size decreases, the
discrepancy between the two solutions also decreases.

4.2. Collapse of Sand Cylinder

[43] A numerical experiment emulating the release of a
vertical cylinder of water is commonly used to test spread-
ing and grid dependence in multidimensional dam break
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Figure 4. Graphs comparing solutions that predict flow
depth as a function of distance and time for a one-
dimensional dam break problem. Analytical solutions are
from Mangeney et al. [2000], and numerical solutions are
obtained using our model. (a) Solutions for a tabular
reservoir of sand with zero bed slope, zero internal friction,
and zero bed friction at a time of 10 s. (b) Solutions for a
tabular reservoir of sand with a 30° bed slope, zero internal
friction, and 20° basal friction at a time of 15 s. For this
case, two numerical solutions are shown, one which uses
only g as the vertical acceleration and one which uses the
total vertical acceleration, g’ = g + dw/dt.

models [Guinot, 2003; LeVeque, 2002]. Here we run a
similar experiment, but with a vertical cylinder of sand,
which unlike water will come to rest as a cone-shaped
deposit. The final slope angle of the cone is somewhat less
than the sand’s angle of repose as friction has to overcome
the momentum of the vertical collapse to arrest the flow.
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Figure 5. Results of numerical simulations of collapse of vertical cylinders of sand to form cones.

[44] The results shown in Figure 5 test two aspects of the
model. First, the deposits that are generated are circular
cones with no distortion produced by the quadrilateral grid,
reflecting the effectiveness of the transverse splitting of the
momentum flux in the model. Second, a taller cylinder
generates more vertical momentum, and conversion of this
vertical momentum to horizontal momentum through the
interaction of basal forces and internal stresses produces a
flatter cone. The same results and timing are generated
when the grid spacing is reduced by half, lending confi-
dence in the numerical results.

4.3. Experimental Avalanches

[4s] Finally, and most importantly, we test our model
predictions by comparison with the behavior of avalanches
of sand in a laboratory flume with irregular topography.
Iverson et al. [2004] provide a detailed description of these
experimental avalanches as well as comprehensive com-
parisons between the experimental and computational
results. Here we focus on specific aspects of the results
that test and illustrate some key attributes of our model. Of
particular interest is the shape, speed, and stress distribu-
tion of the avalanche front as it interacts with terrain. The
speed of the front is directly related to the gravity wave
speed and the relationship of internal stresses to basal
shear stress.

[46] Figure 6 depicts an avalanche front predicted for a
time 0.3 s after the release of experimental avalanche A of
Iverson et al. [2004]. The front is split by a midchannel
ridge as the avalanche funnels into a narrow chute. A
surface mesh of the finite elements used to determine

stresses, along with avalanche depths and the velocities
driving the stress states, are also shown in Figure 6. The
vectors depict surface velocities so that where the vectors
are not visible, they project under the surface (since the
avalanche is extending and becoming thinner as advance of
the propagating front outstrips the influx of sand). Smooth
variation of these vectors and of the avalanche depth as well
as excellent correspondence of the predicted and measured
positions of the avalanche front [Iverson et al., 2004]
support the viability of our model.

[47] Figure 7 illustrates model predictions of the interplay
of depth, velocity, stress, and vertical acceleration dw/dt in
an advancing avalanche front. For comparison, Figure 7
also depicts a photograph of experimental avalanche B of
Iverson et al. [2004] at the same instant (0.31 s after
avalanche release). The trajectories of black tracer particles
visible in the photograph provide an indication of avalanche
surface velocities.

[48] Figures 7c and 7d show the distribution of horizon-
tal normal stresses scaled by the vertical stress (7,,/7., and
T,»/T2:) throughout static and moving parts of the avalanche.
The stresses respond strongly to variations in topography that
produce localized regions of compression and extension. In
some instances the lateral normal stress components are
isotropic, whereas in other instances, they are not. This result
contrasts with earlier results of Denlinger and Iverson
[2001]. Moreover, the computed stresses shown in Figure 7
vary continuously and smoothly, in marked contrast with
stresses computed using Rankine-state pressure coefficients
in previous models [e.g., Gray et al., 1999; Iverson and
Denlinger, 2001].

10 of 14



F01014

DENLINGER AND IVERSON: GRANULAR AVALANCHES ACROSS IRREGULAR TERRAIN, 1

F01014

Flow Depth (m)

i 0.033

0.023
0.013
0.003

Figure 6. Oblique views of the computed distribution of sand thickness and velocity as an avalanche
front discharges from the head of the flume used in experiment A of Iverson et al. [2004]. Time is 0.3 s
after avalanche release. Velocities vectors (red) depict surface velocities. The computational mesh of cells
(in gray) shows the active finite element grid used to estimate stresses.

[40] Figure 7e depicts the vertical acceleration dw/dt
normalized by the magnitude of gravitational acceleration.
The magnitude of dw/dt can be comparable to that of
gravity, with great ramifications for all components of
stress. High values of dw/dt occur where descending sand
impinges against the bed and low values on steep lee sides
of ridges within the bed topography. This additional
acceleration modifies the effect of gravity and hence
modifies both the horizontal stress ratios and bed drag.
Our results show that both the change in bed friction and
the changes in horizontal stress ratios act together to
deflect flowing granular material that encounters a ridge.
A good example of such flow deflection is the split in the
flow front tongue by the midchannel ridge shown in
Figure 6.

[s0] Bed shear stress, which is the dominant term decel-
erating the avalanche, is plotted in Figure 7f. Variations in
flow velocity produce variations in vertical acceleration that
directly couple to bed shear stress through equation (42).
Comparison of Figures 7e and 7f illustrates how this
coupling provides an important link between the vertical
and horizontal components of acceleration of the avalanche
as it encounters uneven terrain.

5. Conclusions

[51] Predicting the motion of granular avalanches across
irregular, three-dimensional terrain poses challenges for
model formulation, computation, and testing. We have
developed and tested a depth-averaged computational

model that is conceptually parsimonious as it invokes
only conservation of mass and momentum and Coulomb
friction to predict avalanche motion from initiation to
deposition. Nonetheless, special care must be taken in
honoring these principles as avalanches interact with
irregular terrain. Use of a high-resolution finite volume
method for computation of fluxes of mass and momentum,
combined with a finite element method for computation of
Coulomb stresses, provides numerical predictions that
correspond well with analytical solutions and experimental
data.

[52] In our model, significant computational advantages
are realized through use of vertical cell boundaries. In
contrast, most previous avalanche models have used curvi-
linear coordinate systems such that boundaries of compu-
tational cells are sloped at various angles with respect to the
vertical and one another. This situation leads to variations in
the gravity wave speed on individual cell boundaries and
greatly complicates calculation of Riemann fluxes between
cells. With vertical cell boundaries the gravity wave speed is
constant on individual cell boundaries and varies only
across the boundaries, simplifying volume integration of
the governing conservation laws. Moreover, use of vertical
boundaries facilitates linear decomposition of flux matrices
and thereby facilitates accurate conservation of mass and
momentum. However, because avalanches descend steep
terrain, use of vertical cell boundaries necessitates that
variable vertical accelerations must be taken into account
in computation of basal and internal Coulomb stresses. We
account for these accelerations by deriving an appropriate
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Figure 7. Oblique views of observed and computed avalanche behavior 0.31 s after avalanche release in
experiment B of Iverson et al. [2004]. Lines running across the avalanche and bed surfaces are
topographic contours at intervals of 0.5 cm. (a) Photograph of the physical experiment. (b) Computed
avalanche thicknesses and velocities. (c) Computed magnitudes of downslope normal stresses.
(d) Computed magnitudes of cross-slope normal stresses. (¢) Computed magnitudes of the vertical
acceleration. (f) Computed magnitudes of basal shear stress.

expression from the vertical momentum equation and infer-
ring vertical velocities from kinematic constraints. Our
results demonstrate that the magnitude of vertical acceler-
ations may be comparable to that of gravity and that such
accelerations have a pronounced effect on Coulomb friction
and avalanche dynamics.

[53] Our model results illustrate a complex interplay
between the basal shear stress and internal stresses that
serves to deflect as well as focus avalanches as they interact
with irregular terrain. The model predicts continuously
varying distributions of all stress components, quite differ-
ent from predictions of previous models and quite plausible
at a continuum scale in granular masses that deform rapidly
and pervasively.

[s4] Comparison of our model results with applicable
analytical solutions, conceptual experiments, and physical
experiments demonstrates the predictive power of our
formulation. For example, comparison with analytical dam
break solutions illustrates the numerical accuracy of the
model and the importance of including the total vertical
acceleration in stress calculations. Comparison with a con-
ceptual experiment involving a cylindrical column of sand
that collapses to form a symmetrical cone illustrates the lack
of spurious grid dependence in our mathematical and
numerical formulation. Finally, and most importantly, com-
parison with detailed experimental data demonstrates that
our model correctly predicts most aspects of avalanche
motion across irregular, three-dimensional terrain. A com-
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panion paper [[verson et al., 2004] provides details of these
experimental tests.

Appendix A: Vertical Acceleration

[s5] To help clarify the physical basis for employing the
total vertical acceleration g’ = g + dWw/dt, consider a simple,
one-dimensional problem involving a uniform slab of
material descending a frictionless slope uniformly inclined
at the angle 6. Newton’s second law indicates that the
downslope velocity p of the slab obeys

dp/dt = gsin®. (A1)

The horizontal (x) and vertical (z) components of the
velocity ( = p cos 0 and w = —p sin 0) therefore obey
du/dt = gsinfcosb dw/dt = —g sin® 0. (A2)
Equation (A2) implies that the vertical acceleration —g sin’0
reduces the effective weight of the slab (as measured by the
vertical force exerted on the bed by the slab). Whereas the
weight per unit of slab mass is g when the slab does
not accelerate, the effective weight per unit of slab mass is
g — g sin® 0 during the acceleration described by
equation (A2). Therefore to evaluate stresses in the slab (here
assumed to occur exclusively in reaction to the slab’s weight),
it is convenient to define an effective vertical acceleration
g =g[l —sin*0] = gcos®, (A3)
which compensates for the reduced effective weight.

[s6] Now consider how the same sliding slab problem is
represented by the conservation equation for x momentum
in our shallow flow model (7), wherein equations (7) and
(16) reduce to

/ CZ"'A_ /[8Txr]dV_ //a[kxpg

A

ddA

(A4)

In this simple case, k, = 1 because strains are zero, and the x
momentum equation implies that the only driving force is
due to the horizontal stress gradient caused by the weight of
the slab and the gradient in surface elevation m. If g is
constant and equal to gravity, then the x momentum
equation (A4) reduces to

du/dt = —g(dn/dx)

= gtan, (AS5)
which differs from the correct equation (A2). Equation (AS5)
is erroneous because it does not account for the reduction in
horizontal stress and effective weight that results from the
vertical acceleration of the slab. This error can be corrected
by using g’ to account for the effects of vertical acceleration.
The appropriate value of g’ can be obtained from equation
(A2), in this special case, or from equation (13), which
applies in all cases. For the special case considered here,
reduction of equation (13) leads to

dw d[1_(on b du
g —g+dt AR {—u(ax—l-ax)} —g—Etane. (A6

=
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Replacement of g in equation (A5) by g’ as defined in either
equation (A3) or equation (A6) then yields, after some
algebraic simplification,

di/dt = —g'(dn/dx) = g’ tan§ = gsin0cos b, (A7)

which recovers the correct result, as given by equation (A2).

Appendix B: Stresses Obtained From Basal
Sliding

[57] The stresses obtained from drag on the bed are easily
estimated in a coordinate system aligned so that one axis is
normal to the bed, labeled below with primes. The compo-
nents of shear stress are then obtained from the velocity and
normal stress across the basal plane. In the primed coordi-
nate system the drag stress is given by

0

\/V + Wheg
v#+ﬁ+%m

\/” + Wheg
VWi

where the gravity term has components from weight and
from inertia of debris flowing into the cell from upstream, as
discussed in Appendix A, and the direction cosine ...
determines the fraction of the vertical acceleration that is
directed normal to the basal plane.

[s8] To estimate the effect of these stresses on each cell in
the global system, the dipping shear plane is assumed to
form one side of a tetrahedron, where the other three planes
are oriented to the global system (Figure 1). For static
balance the basal shear plane stress is related to stresses
on the other three Cartesian planes by the transformation

g VZZ/ h tan d)bed
, (BI)

g’Yzz h tan d)bed

0 0 0 O 2mn 2nl
0 0 00 2m'n’ 2m'l
Trx 0
Tyy 0
0 0 0 O 2m"n" 2m"l"
T | 0
o | T
% 00 0 0 (m/n// + m//n/) (n/l// + n//l/) /y
Tyz T
Txz T;z
0 0 0 0 (mn+m"n) (nl"+n"l)
0 0 0 0 (mn+mn) (nl' +n'l)

(B2)

in which the /, m, n components of the matrix are direction
cosines given by

X ' m n
y/ — I// m// n//
z I m n
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where z' in the primed system is orthogonal to the basal
plane. The forces corresponding to these stresses are then
added to forces generated by internal deformation to form a
resultant stress that is corrected for the basal shear traction.
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