6

Debris-flow mechanics

Richard M. Iverson

6.1 INTRODUCTION

Debris flows involve gravity-driven motion of solid-fluid mixtures with abrupt surge
fronts, free upper surfaces, variably erodible basal surfaces, and compositions that
may change with position and time. These complications pose great challenges in
efforts to understand debris-flow mechanics and predict debris-flow behavior.
Recently, however, a combination of observational, experimental, and theoretical
research has begun to yield a coherent picture of debris-flow mechanics. To help
build a foundation for future research, this chapter emphasizes principles of debris-
flow mechanics that are relatively well established and also highlights areas where
critical knowledge is lacking. The chapter does not provide a comprehensive review
of debris-flow mechanics literature, which has become voluminous during the past
decade. An entree to this literature is provided by the proceedings of three Inter-
national Conferences on Debris-Flow Hazards Mitigation: Mechanics, Prediction,
and Assessment (Chen, 1997; Wieczorek and Naeser. 2000; Rickenmann and Chen.
2003).

6.2 MECHANICAL DEFINITION OF DEBRIS FLOW

Debris flows encompass a broad and imprecisely defined range of phenomena inter-
mediate between dry rock avalanches and sediment-laden water floods, but to limit
the scope of mechanical analysis. it is necessary to identify some distinguishing traits.
Although debris flows are largely saturated with water, they differ from surging
water floods in which sediment is held in suspension almost exclusively by fluid
mechanical phenomena (e.g., viscous drag, buoyancy, turbulence). In such floods
the presence of suspended sediment is mostly incidental to the dynamics of the flood
wave as a whole. At the opposite extreme, although debris flows have sediment
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concentrations comparable to those of rock avalanches, they differ from avalanches
in which grains interact almost exclusively through solid-contact phenomena (e.g.,
collisions, adhesion, friction), perhaps mediated by intergranular air. In such ava-
lanches the presence of water is mostly incidental to the dynamics of the avalanche as
a whole. In contrast, strong interactions of the solid and liquid constituents are an
essential element of the mechanics of debris flows. The magnitude and character of
solid-liquid interactions may vary from flow to flow and within an individual flow,
but the interactions always play a definitive mechanical role.

Typically, solid grains and intergranular liquid constitute roughly equal percen-
tages (30-70%) of the volume of a debris flow. Rock avalanches can transform into
debris flows through entrainment of water or water-rich sediment, and debris flows
that entrain additional water can become so dilute that they transform to surging
floods. Subaqueous debris flows can undergo a similar transformation as a result of
entrainment of ambient water, thereby forming buoyancy-dominated gravity
currents.

This chapter focuses on the mechanics of relatively simple subaerial debris flows
in which average compositions remain more-or-less constant. Although the chapter
emphasizes debris-flow motion, it presents a mechanical framework that also applies
to quasistatic processes such as liquefaction during debris-flow initiation and con-
solidation of debris-flow deposits (cf. Iverson et al., 1997; Major and Iverson, 1999;
Iverson et al., 2000; Iverson and Denlinger, 2001; Denlinger and Iverson, 2001). The
conceptual continuity provided by this framework is important because debris-flow
motion begins and ends in static states. In this respect debris flows have more in
common with rock avalanches than with water floods.

6.3 MACROSCOPIC DYNAMICS

Any mechanical assessment of debris flows must begin with identification of the
scale of behaviour of interest. This chapter adopts a continuum perspective, which
considers behaviour on scales no smaller than that of representative elemental
volumes (REVs) containing large numbers of individual solid grains (see
Figure 6.1). The number of grains in an REV must be great enough that spatially
and temporally averaged continuum quantities such as stress are meaningful and
measurable, and are not subject to significant fluctuations due to the motion of
individual grains. Drew and Lahey (1993) discuss mathematical issues regarding
continuum averaging of fluctuating phenomena in grain—fluid mixtures. Iverson
(1997) presents data that show how continuum stress fluctuations at the base of
debris flows diminish as the size of the measurement device (or REV) increases to
include the simultaneous effects of many thousands of grains.

An alternative approach to debris-flow mechanics considers behaviour at the
scale of individual grains. Advances in computational power have facilitated
progress in this area (e.g., Campbell et al., 1995; Asmar et al., 2003), but such a
“discrete-body™ approach appears unlikely to supplant contmuum mechanics in the
foreseeable future, as even laboratory-sized debris flows (ml{]m ) commonly contain
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Figure 6.1. Definition of a REV containing a large number of solid grains as well as inter-
granular muddy fluid within a debris flow. Here the REV is a cube aligned with Cartesian
coordinate axes, a geometry that is convenient but not essential.

more than 10! interacting grains (Iverson, 1997). Nevertheless, an intriguing poss-
ibility for the future involves melding continuum and discrete-body mechanics to
investigate the interaction of isolated large clasts with adjacent, finer-grained debris
(e.g., Yamagishi et al., 2003).

6.3.1 Continuum conservation laws

The conservation laws of classical physics provide the fundamental tools for analysis
of debris-flow continuum mechanics. The most useful of these laws describe con-
servation of mass and linear momentum. Conservation of angular momentum also
applies to debris flows, but in conventional continuum mechanics angular
momentum is conserved implicitly through the use of a symmetric stress tensor, as
is used here (e.g., Malvern, 1969). Conservation of energy applies to debris flows, but
does not provide additional information if debris flows are treated as isothermal
phenomena, as they are here (cf. Iverson, 1997). (In 1-D analyses of debris-flow
motion, conservation of energy and linear momentum yield equivalent equations
of motion because the vectorial character of momentum reduces to a scalar form
like that of energy. However, this equivalence does not extend to multidimensional
debris flows, wherein the vectorial character of momentum conservation makes it the
most useful principle.)
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Differential equations describing mass and linear momentum conservation, valid
for each phase of a debris-flow mixture treated as a continuum, are (e.g., Gidaspow,
1994):

% + V- pinit; =

PO\ G - piniifs =~ Ty + pin +1; (62)

where ¢ is gravitational acceleration, ¢ is time, and quantities with a subscript i apply

to each phase individually. For each phase, n denotes the volume fraction (such that

Xn; = 1), p denotes mass density, ¢ denotes velocity (¢7 is a dyadic product: a 3 x 3

tensor with Cartesian components of the form v,v,), and T denotes stress (a 3 x 3

tensor with Cartesian components of the form 7,)- A minus sign precedes the stress

term in (6.2) because stress is defined as positive in compression, as is conventional in

soil and rock mechanics. The vector f; in (6.2) denotes the interaction force per unit
volume exerted on phase / due to relative motion of the other phase(s).

Terms on the left-hand side of the momentum-conservation equation (6.2) differ
from those on the left-hand side of the mass-conservation equation (6.1) only
through inclusion of an additional ¥, reflecting the definition of momentum: mass
times velocity. This connection between mass and momentum conservation is clear
because (6.2) depicts the ““conservative” form of the momentum equation. Some
readers may be more familiar with the “primitive” momentum equation wherein,
for example, t; - Vi; replaces V - i;t; in (6.2). The primitive form is obtained by
algebraic rearrangement of (6.2) and elimination of some terms through use of (6.1).

Conservation equations for the debris-flow mixture as a whole can be derived by
summing the equations for the individual phases while using appropriately weighted
averages to define the mixture density p= pn,+ pny and mixture velocity
U = (p,nit, + prngiy)/p. Here subscripts s and f denote the solid and fluid phases
indicated generically by i in (6.1) and (6.2). Summation of (6.1) for the solid and
fluid phases yields the mixture mass-conservation equation, which can be written in
several alternative forms. including:

|
=]

(6.1)

)

Q + V. pi=0 (6.3a)
ot

l@-i-v =0 (6.3b)
p dt o -

Similarly, summation of (6.2) for the solid and fluid phases yields the mixture
momentum-conservation equation, which can be written in several forms including:

%-FV-_HEE": VT4 pg (6.42)
(
B etviTig (6.4b)
dt p

In (6.3b) and (6.4b) the total time derivative d/dr represents the differential operator
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d/0t+v-V, and it denotes differentiation in a frame of reference that moves with
the mixture velocity ¥. Derivatives of p do not appear in (6.4b) because they cancel
from (6.4a) through subtraction of (6.3a). The interaction force f_,' in (6.2) does not
appear explicitly in (6.4a) or (6.4b) because the force exerted on the solid grains by
the fluid balances the force exerted on the fluid by the grains (thereby satisfying
Newton’s third law of motion).

Equations (6.3) and (6.4) are identical to the mass and momentum conservation
equations for a single-phase continuous medium (cf. Malvern, 1969). However, the
summed stress T in (6.4) implicitly includes distinct contributions from solid and
fluid phases and from relative motion of the phases (cf. Iverson, 1997; Iverson and
Denlinger, 2001).

6.3.2 Depth integration and mass-change effects

A more useful form of the 3-D conservation equations (6.3) and (6.4) can be
obtained by integrating the equations through the debris-flow thickness #,
measured vertically from the bed at elevation z = b(x, y, ) to the flow surface at
elevation z = n(x, v, 1), where x and y are planimetric coordinates (see Figure 6.2).
Alternatively, depth integration can be performed in a direction normal to the bed,
as presented, for example, by Savage and Hutter (1989, 1991), Iverson (1997), Gray
et al. (1999), and Iverson and Denlinger (2001). Results are similar in either case,
although vertical integration serves to highlight the influence of boundary conditions
and non-hydrostatic stress states, which are elaborated below.

Figure 6.2. Definition of the Cartesian coordinate system, variable bed elevation b, variable
debris thickness /i = 1y — b, and variable velocity vectors in a depth-averaged debris-flow model
obtained by vertical integration of the equations of motion. Cartesian velocity components
(vy. vy, v-) are depicted for one of the velocity vectors, and v. is negative when pointing
downward as shown.
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Prior to depth integration, the vector momentum equation (6.4) is disaggregated
into component equations containing the x, y, and z velocity components, v, v,, and
v. (see Figure 6.2). Integration of each component equation makes use of Leibniz’
theorem for interchanging the order of integration and differentiation (Abramowitz
and Stegun, 1964, p. 11). Most integrals are thereby absorbed into definitions of
depth-averaged quantities such as the depth-averaged velocity components (denoted
by overbars):

1 (==" 1 [==" 1 (="
U= f_’-‘.[_-=h v, dz U, = W .l._-:;, v, dz p. = Ej::b v-dz (6.5a,b,c)

Also absorbed into (6.3) and (6.4) during depth integration are kinematic
boundary conditions, which specify volumetric fluxes of debris through the basal
and upper surfaces of a debris flow due to erosion and sedimentation. The kinematic
conditions may be written as:

v.(n) = % + v.(n) % + UJ.(?_I) —d—r'f + A(x, v, 1) (6.6)
v-(h) :g—?+:1\( )(j ,(!) + B(x,v,1) (6.7)

In (6.6), A(x, y, 1) specifies the rate of vertical accretion to a debris flow’s surface as a
result of collapse of adjacent bank material, for example. In (6.7), B(x, y, ) specifies
the rate of bed elevation change as a result of sedimentation (8 > 0) or erosion
(B < 0). If no mass enters or leaves a debris flow, 4 and B as well as dh/dt equal
zero. Depth integrations that embed the kinematic conditions (6.6 and 6.7) in the
conservation equations (6.3 and 6.4) assume that debris entering or leaving the debris
flow locally has the same bulk density as the debris within the flow.

The mathematical details of depth integration of (6.3b) illustrate use of Leibniz’
theorem and incorporation of the kinematic boundary conditions (6.6) and (6.7):
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dx
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_["ldp ,  O(B.h)  O(v,h)
N _L pdt dat 3% Ay

s [u\-(?}) % +v,(n) % - uz(?})] + [v_‘,(h) 3 : 1({;) — —0.(h)

i - .
== j ld—pd: + 9(vsh) + a(”,rh) oh
b p i dx Ay *5

+A-B=0 (6.8)
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The last line of (6.8) is obtained by substituting (6.6) and (6.7) into the fifth line of
(6.8) and then using the substitution dn/dt — b/t = dh/0t (see Figure 6.2). If the
debris bulk density p is constant, the integral in the last line of (6.8) vanishes, and the
last line of (6.8) thereby reduces to the depth-integrated mass-conservation equation
conventionally used in shallow-water theory (e.g., Vreugdenhil, 1994).

If p is not constant but the solid and fluid constituents of a debris flow are
individually incompressible, the bulk density change dp/dr that appears in the
integral in the last line of (6.8) can be expressed in terms of porosity change (i.e.,
fluid volume-fraction change), because dp/dt = (p; — p,)dn;/dt. Changes in porosity
imply relative motion of the solid and fluid constituents and thereby produce solid-
fluid interaction stresses, as detailed below.

Mathematical operations similar to those in (6.8) are used to derive from (6.4)
the depth-integrated momentum-conservation equations for the x, y, and :z
directions:

— Avy(n) + Bu(b) (6.9)
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(6.11)

Several features of these equations deserve emphasis. First, the equations apply even
if the debris bulk density varies, provided that 4 and B represent boundary fluxes of
debris with a bulk density equal to the local flow bulk density. Second, the gravita-
tional forcing term —gh appears only in the z momentum equation (6.11), because
gravity is assumed to act vertically downward. Motion in the x and y directions is
driven by stress gradients that arise in reaction to this gravitational forcing. Third,
the non-linear advective acceleration terms (which contain velocity products such as
2 and v,0,) neglect the effects of non-uniform vertical velocity profiles, which
produce differential advection of momentum (cf. Vreugdenhil, 1994). Compensation
for this neglect involves adding momentum “‘correction coefficients™ to the advective
acceleration terms. However, such coeflicients are omitted here because vertical
velocity profiles in debris flows are poorly constrained and are likely variable
(Iverson and Vallance, 2001). Therefore, at this juncture, addition of momentum
correction coeflicients to the momentum-conservation equations would add no
mechanical insight.

The presence of the erosion and sedimentation terms involving 4 and B on the
right-hand side of (6.9), (6.10). and (6.11) distinguishes these equations from typical
depth-integrated momentum equations, such as those of Denlinger and Iverson
(2004). Mathematically, these terms arise from use of (6.6) and (6.7) during depth
integration. Physically, these terms represent the momentum change associated with
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accelerating newly added mass (assumed to have no initial velocity) to the speed of
the debris flow or with expelling debris-flow mass to create a static deposit. The
terms are exact insofar as mathematical book-keeping is concerned, but they do not
account fully for the mechanics of the erosion or deposition processes. Erlichson
(1991) likened mass-change terms such as those in (6.9), (6.10), and (6.11) to mass-
change terms in rocket equations: only in systems in which mass change occurs
independently of external forces do such terms account completely for momentum
change produced by mass change. Otherwise, it is necessary to account explicitly for
the external forces that cause the mass change, as well as for the effects of mass
change as represented in (6.9), (6.10), and (6.11).

Conservation equations such as (6.9), (6.10), and (6.11) provide a starting point
for investigation of erosion and sedimentation by debris flows, but characterization
of forces that cause such mass change remains largely speculative and requires
further research. For this reason, and to streamline the mathematics in the
remainder of this chapter, the assumption 4 = B = 0 will be used hereafter.

6.3.3 Scaling and shallow flow with non-hydrostatic stress

Virtually all computational models of debris-flow motion use some form of shallow-
flow approximation. Shallow-flow approximations of 4-D conservation laws
(involving three space coordinates plus time, as in (6.8)—(6.11)) reduce the number
of governing equations and dependent variables from 4 to 3, thereby facilitating
computation of solutions (e.g., Denlinger and Iverson, 2001). Shallow-flow approx-
imations also simplify evaluation of stresses — a particularly significant advantage
when stress states are poorly constrained (e.g., Iverson and Denlinger, 2001). Below,
scaling of (6.8)—(6.11) is used to obtain a shallow debris-flow approximation that is
valid on both steep and gentle slopes. This approximation subsumes as a special case
the approximation commonly used in shallow-water theory (cf. Vreugdenhil, 1994).

For either debris flows or shallow-water flows of finite extent, the pertinent
length scale in the =z direction is the typical flow thickness H, whereas the length
scale in the x and y directions is a typical planimetric dimension (length, width) of
the flow L (Figure 6.3). Velocity components in the x, v, and z directions scale with
the product of gravitational acceleration and the pertinent length scale (L or H)
raised to the § power, and time scales with (L/g)"? because gravity drives time-
dependent motion dominantly in the x and y directions. All stress components in
(6.9), (6.10), and (6.11) scale with the static stress due to gravity, pgH, because
gravity and its effect on debris weight are the fundamental phenomena driving
motion. These scalings are summarized by (cf. Savage and Hutter, 1989):

x,y~L z~H (6.12a,b)
Tyxs Tyys Tzzy Tywy Toxs Tyz ™ f”?}'H (6 12(:)
b0y~ (gL)'? b~ (gH)'? 1~ (LYg)'? (6.12d,¢,f)

Typically H/L < 1 because debris flows generally have more-or-less tabular
geometries like that shown in Figure 6.3. As a consequence of this geometry and
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Figure 6.3. Schematic of typical. tabular debris-flow geometry. illustrating the length scales /f
and L.

the scalings in (6.12a,b,c,d,e,[), the stress derivatives with respect to x and y in
(6.9). (6.10), and (6.11) are inferred to be significantly smaller than the stress deri-
vatives with respect to z (by a factor ~ H/L). Similarly, the velocity component in
the = direction is inferred to be smaller than the velocity components in the x and y
directions (by a factor ~ (H/L)"?). Thus, a rational approximation of the vertical
momentum equation (6.11) can be obtained by omitting the relatively small
terms involving z velocity components and x and y derivatives of stress
components. Omission of these terms reduces (6.11) to a simple hydrostatic stress
balance ['(0r../dz)d= = —pgh, and integration of this equation using the free-
surface boundary condition 7..(n) = 0 yields a hydrostatic basal normal stress
7--(b) = pgh. This is the stress state (and supporting rationale) assumed in conven-
tional shallow-water theory (e.g., Vreugdenhil, 1994).

In debris flows the stress state may differ significantly from the hydrostatic state
assumed in conventional shallow-water theory, in part because vertical accelerations
(involving v.) may not be negligible. Vertical accelerations effectively change the
weight of a moving debris mass, and their consequent effect on stresses is apt to
be particularly important where debris flows encounter steep slopes or irregular
terrain that deflects the flow. If vertical accelerations are significant, a suitable
approximation of the vertical momentum equation (6.11) can be obtained by neglect-
ing the terms involving x and y derivatives of stress (of order H/L) but retaining the
vertical velocity terms (of order (H/L)'/?), yielding:

ohs,) | oivz,) | AUwe) | [ o
at dx dy P,

—Zdz—gh (6.13)
b U=
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Evaluating the integral in (6.13) and inferring that the flow surface is stress-free (i.e.,
7.-(n) = 0) yields an expression for the basal normal stress, which includes dynamic
terms due to z momentum in addition to the hydrostatic term pgh:
_[oh a(ho,) O(hv,) dv.

T:2(0) = pgh + pb; | o+ —5 =+ |1 ph—~ (6.14)
For debris flows with no mass exchange with boundaries (4 = B = 0), (6.14) sim-
plifies because the terms in brackets reduce to a single term through application of
the depth-averaged mass-conservation equation (6.8). (Note that when d/dt operates
on a depth-averaged quantity, such as . in (6.14). it represents a total time derivative
advected with the depth-averaged horizontal motion, d/dt = 9/t + v,0/0x+
6,0/0y.)
 After applying (6.8) with 4 = B =0 to the terms in brackets (6.14) can be
rewritten as:

7..(b) = pg’h — p!'.-‘_.j !—’?d: (6.15)

where ¢’ denotes a total vertical acceleration defined by:

5 (6.16)

g =g+
Equation (6.15) constitutes the central approximation in a shallow-flow theory for
motion of debris flows on steep, irregular slopes, and it reduces to the hydrostatic
approximation if dv./dr =0 and dp/dt = 0. For debris flows in which p is nearly
constant, the magnitude of the term containing ¢’ in (6.15) greatly exceeds the
magnitude of the term containing dp/dt, and the integral in (6.15) can be
neglected. Ramifications of (6.15) and (6.16) for evaluation of stress components
in addition to 7.. are discussed below.

For (6.15) and (6.16) to be useful, estimation of 7. is necessary. A suitable
estimate results from approximating the value of 7. with the mean of the surface
and basal values of v., which is obtained by inserting the depth-averaged velocity
components v, and v, in the kinematic boundary conditions (6.6) and (6.7):

3 - @4—{_} 0”—1—1, an L[ob _ 0b _ 0Ob
T2 Yax T Yay| T2

E+ U“'a-i-b-"i)_y (6.17)
Through use of (6.15), (6.16), and (6.17), effects of vertical accelerations can be
included in stress evaluations without including 7. as an explicit dependent
variable (Denlinger and Iverson, 2004).

An alternative way of representing the effects of vertical accelerations on stresses
involves use of curvilinear coordinate systems fitted to topography. In this case,
vertical accelerations are represented by the combined effects of downslope accel-
erations and centripetal accelerations that are induced as flows traverse the topog-
raphy (cf. Savage and Hutter, 1991; Hungr, 1995; Gray et al., 1999; Iverson and
Denlinger, 2001). However, such an approach is difficult to implement if topographic
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curvature has both x and y components and topography is as irregular as that of
most natural debris-flow paths.

6.4 STRESS ESTIMATION

Whereas development of applicable conservation equations for shallow debris flows
(i.e., equations 6.8, 6.9, 6.10, and 6.15) is tightly constrained by universal physical
laws, mathematical rules, and scaling principles, stress estimation is more
ambiguous. Stresses are important because they do the irreversible small-scale
work that is responsible for continuum-scale energy dissipation and resistance to
debris-flow motion. Of course, stress is simply a surrogate for the effects of
momentum transport at scales too small to be resolved at a continuum scale.
Therefore, momentum transport at scales much smaller than that of a continuum
REV (Figure 6.1) can in principle be analysed to gain insight about stress and
rheology, which relates stress to deformation. However, this chapter focuses on
the continuum viewpoint and depth-averaged modeling described above, and does
not present such analyses.

An advantage of depth-averaged debris-flow modeling is that the magnitude of
one crucial stress component can be estimated without ambiguity: 7..(h) is given by
(6.15) regardless of flow rheology. Estimation of the magnitudes of other individual
stress components depends on rheology but can be simplified by first applying
Leibniz’ theorem to the integrals on the right-hand sides of (6.9) and (6.10). From
(6.9) this operation yields:

r [('}r_\__\. o & ab N o7, h b

R B N e NORCID
and an exactly analogous expression arises from (6.10). When Leibniz’ theorem is
used to obtain (6.18), some terms vanish because the upper surface of the flow (at
z=m) is assumed free of all stresses. Stress components with overbars in (6.18)
denote depth-averaged quantities defined by integrals analogous to those in (6.5).

Terms on the right-hand side of (6.18) can be grouped into two categories. The
collection of terms —7..(b) + 7, (h)[0b/Ox]| + 7,.(h)[0b/Dy] describes basal resist-
ance to motion, and includes both a shear stress term ., (h) and two “form drag”
terms that are non-zero if the local components of bed slope (9b/dx, db/dy) result in
a component of horizontal force directed into or out of the bed. These form drag
terms vanish if depth integration is performed normal to the bed, rather than
vertically, as is performed above (cf. Iverson and Denlinger, 2001). However, if
the bed topography is irregular, depth integration normal to the bed results in
spatial variation of the integration direction, which leads to other mathematical
complications (Keller, 2003).

Additional terms on the right-hand side of (6.18), (7. h)/0x + O(7,h) /Dy,
express the influence of depth-averaged horizontal stress gradients. These terms
are non-zero even in steady, uniform flows on slopes, because the flow depth at a
fixed z varies as a function of x and y in such flows. If depth integration is performed
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normal to the bed, the terms O(7/1)/0x + O(7,h)/Jy have the same form as in
(6.18), but the terms vanish if flow is steady and uniform.

A lowest order approximation of the stress terms on the right-hand side of (6.18)
can be identified by using the scalings summarized in (6.12). The scalings indicate
that the basal resistance is of the order of pgH, whereas the terms involving the
depth-averaged horizontal stresses 7., and 7, are smaller, of the order of pgH? /L
(where H/L < 1). Thus, basal shear resistance has primary importance in depth-
averaged debris-flow models, although the effects of lateral stress gradients cannot be
ignored when modeling surge-like motion (Savage and Hutter, 1989).

6.4.1 Stress partitioning

As noted above, stresses in debris flows include distinct contributions from solid
grains, intergranular fluid, and solid—fluid interactions. This partitioning of stress
motivates two fundamental questions: In a debris mixture comprising a great
diversity of grains and fluids, how are the solid and fluid phases distinguished?
Once a distinction between solids and fluids is made, how is partitioning of stress
determined?

Definition of the fluid phase in debris flows is not as simple as it might seem. The
most straightforward definition (that the fluid consists of pure liquid water and pure
gaseous air) is not the most useful for analysing debris-flow mechanics. To a large
degree, air can be excluded from consideration because its low density, its low
viscosity, and its large compressibility make its mechanical effects very small
compared to those of liquid water. Furthermore, liquid water in debris flows
generally carries small solid grains that can remain suspended solely as a conse-
quence of buoyancy, viscosity, and turbulence. Because suspension of these small
grains can occur in the absence of direct grain-to-grain contacts, it is not appropriate
to treat the suspended grains as solids that transfer momentum only through direct
contacts. Therefore, the discussion below defines the fluid phase of debris flows as
water plus suspended small grains, which can in turn influence the effective fluid
properties.

A scaling criterion can be used to distinguish the sizes of grains that are treated
as part of the debris-flow fluid (Iverson, 1997). If the duration 7, of a debris flow is
long in comparison with the time required for settling of a grain in static, pure water,
the grain must be considered part of the solid fraction. On the other hand, if a grain
can remain suspended for times that exceed 15 as a result of only water viscosity and
buoyancy, the grain acts as part of the fluid. Durations of debris flows range from
about 7, = 10s for small but significant events to 10* s for the largest. The time scale
for grain settling (in the absence of other grains) can be estimated by dividing the
characteristic settling distance or half thickness of a debris flow H /2 by the grain
settling velocity v, estimated from Stokes law or a more general equation that
accounts for grain inertia (Vanoni, 1975). Thus if H/(21pv,,) < 1 the debris-flow
duration is large compared with the time scale for grain settling. The half thickness
of debris flows ranges from about 0.01 m for small flows to 10m for large ones. Thus
H/(2tp) ~ 0.001 m/s is typical for both small and large debris flows, which implies
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that vy, < 0.001 m/s is required for grains to act as part of the fluid. In water, grain
settling velocities of ~0.001 m/s or less occur if grain diameters are less than about
0.05mm (Vanoni, 1975). This critical grain size corresponds reasonably well with the
conventional silt-sand boundary (0.062 Smm), and it also falls in the range where
settling is characterized by grain Reynolds numbers much smaller than I, such that
viscous and buoyancy forces dominate grain motion. By this rationale, a useful but
inexact guideline states that grains larger than silt-size generally constitute the solid
phase in debris flows, whereas grains in the silt—clay (i.e., “mud”) size fraction act as
part of the fluid. Size distributions of grains in muddy fluids drained from freshly
emplaced debris-flow deposits support this interpretation (Iverson, 1997).

Stress partitioning between the solid and fluid phases in mixtures can be accom-
plished in a variety of ways, but for debris flows it is convenient to employ a
partitioning that is consistent with well-established conventions of soil mechanics
(cf. Passman and McTigue, 1986). Thus, the total mixture stress T can be partitioned
as (cf. Iverson, 1997; Iverson and Denlinger, 2001):

T=T,4+1p+nT, (6.19)

where T, is the effective stress, p is the pore-fluid pressure, I is the identity tensor
(which in equation 6.19 indicates that fluid pressure acts isotropically), T,; is the
viscous or deviatoric fluid stress (total fluid stress minus pressure), and n is the
mixture porosity (or fluid volume fraction). This stress partitioning treats T, and p
as stresses that effectively act throughout the mixture (just as in conventional soil
mechanics), whereas T,;; acts only within the fluid phase. For the special case in
which the fluid is essentially static and the state of stress is 1-D (6.19) reduces to the
familiar effective-stress definition of Terzaghi (1936):

a=0,+p (6.20)

where o denotes a normal-stress component and o, is effective normal stress.
However, definitions such as (6.19) and (6.20) imply nothing about the mechanical
roles of pore pressure or effective stress; they merely provide a convenient means of
partitioning the total stress.

6.4.2 Stress due to solid—fluid interaction

Practical application of (6.19) and (6.20) requires specification of the mechanical
roles of pore-fluid pressure and effective stress in debris flows. Clearly, these roles
may be very complicated, because solid and fluid constituents in grain—fluid mixtures
may interact in diverse ways (Iverson, 1997, Koch and Hill, 2001). However, to
provide the simplest viable theory and establish a link with classical soil
mechanics, the analysis below employs three postulates about the bulk interactions
of solids and fluids in continuum REVs like that shown in Figure 6.1: the fluid
pressure p mediates solid—fluid interactions; a linear drag equation specifies how
fluid pressure gradients are coupled to relative motion of solid grains and intergra-
nular fluid; and effective stress governs solid-contact friction. As shown below, use of
these postulates in conjunction with mass conservation laws yields a theoretical
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framework that can be applied to rapid flows with large deformations as well as to
the special cases of quasistatic liquefaction and consolidation of soils.

For a debris-flow mixture with porosity n fully saturated with liquid, the mass-
conservation equations for the fluid and solid phases can be inferred directly from
(6.1). The equations are:

Alnpy]

5+ V- [Gmpy] =0 (6.21)

ol(1 = n)p,
ot
where subscripts / and s denote the fluid and solid phases, respectively. If the
densities of the solid and fluid phases are constant (a reasonable assumption for
the stress magnitudes < 100 kPa typical of debris flows) then (6.21) and (6.22) reduce
to:

+ V- [5(1 = n)p] =0 (6.22)

Onfot+V - (Uyn) =0 (6.23)
—on/ot —V - (nd,) +V -5, =0 (6.24)

Addition of (6.23) and (6.24) yields a special form of the mixture mass-conservation
equation, which shows how the divergence of solid grain velocities V - ¢, must be
balanced by flow of fluid relative to the grains:

V.7, =-V.-n(f —7,) (6.25)

An additional equation shows how the same divergence must be balanced by changes
in porosity. The equation is obtained by rearranging (6.24) as:
n d.n 1 dn
R R (nB) = == V.-35) = &7 6.26
Vv - 01+V (n¥) i +n(V - 7,) T ( )
where d,/dit = 0/0t + ¥, - V denotes a total time derivative in a frame of reference
advected with the velocity of the solid grains 7. Equating (6.25) and (6.26) yields a
particularly useful form of the mixture mass-conservation equation (6.3b), which is
exact if the solid and fluid phases are individually incompressible:

‘—’; =—(1 = n)V - n(5 — ) (6.27)
: _

This equation shows that local porosity changes necessarily are accompanied by
differences in the local solid and fluid velocities. Even slight velocity differences
have large mechanical ramifications if they result in significant solid—fluid drag.

Equation (6.27) can be converted to a form that uses a total time derivative
advected with the mean mixture velocity, d/dt = 9/0t+ v - V. This conversion is
important because d/dt is the total time derivative used in (6.3b) and (6.4b) to
describe mixture mass and momentum change, and it is helpful to express porosity
change in the same frame of reference. Some simple algebraic substitutions and
cancellations show that:

dn dn psll = n] " prn\ on,.
i~ di ( o= 1)8 Vat (== | Va==~(-7%) Fn  (628)
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Therefore, by utilizing (6.28), (6.27) can be rewritten as:

%: —(1 = n)V - n(v, — 7,) W e e —¥,)-Vn (6.29)

The solid-fluid velocity difference @, — 7, that appears in (6.27), (6.28), and
(6.29) implies the existence of drag due to relative motion of solid grains and
adjacent fluid. A simple estimate of this drag for continuum REVs (Figure 6.1)
assumes that it is proportional to the gradient in excess fluid pressure p, that
arises in reaction to relative motion of grains and fluid (where p, is defined as
total fluid pressure minus hydrostatic fluid pressure). This reasoning yields a linear
drag equation with the same form as Darcy’s law, which may be written as:

7.
B —t,=2=-"1vp, (6.30)

Here ¢4 is the specific discharge of fluid (the flux relative to the adjacent granular
aggregate), k is the intrinsic hydraulic permeability of the granular aggregate, y is the
fluid viscosity, and the coefficient group k/nu may be viewed as a drag parameter.
Bear (1972) provides an intensive discussion of Darcy’s law and its interpretation for
quasistatic rocks and soils. Experimental data indicate that Darcian drag is probably
prevalent even in liquefied debris-flow mixtures (Iverson, 1997; Major et al., 1997).

Substitution of (6.30) into (6.27) and (6.29) yields alternative forms of an
equation describing diffusive redistribution of excess pore pressure that occurs in
response to porosity change:

1 dn k
eI, o i | Jle
| —n dt ¥ ;LVP( (il
dn
F i (1 —n)V — TV Vp( (6.31b)

Slight changes in porosity n can produce very significant changes in excess pore
pressure p, becaube plduszb]e values of the coefficient k/u in (6.31a,b) range from
about 107'% to 10 °m’ kb 's for debris-flow mixtures (Iverson, 1997; Major et al.,
1997).

A more familiar form of the excess pore-diffusion equation arises from defining a
debris bulk compressibility « such that:

1 dn dT,
kI~ 3. Yl )
1 —n dt a7 6.32)

where T, is the mean effective normal stress (cf. Savage and Iverson, 2003). Sub-
stitution of (6.32) in (6.31a) yields an equation that shows how excess pore pressure
changes in response to changes in effective stress:

1T, :
a4l __lg. (5vp¢,) (6.33)

di o n
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Alternatively, the definition of effective stress (equation 6.19) can be used to rewrite
(6.33) as a forced diffusion equation for excess pore pressure p,:

d;:::" = %V . (f_, Vp(,) + % [T — prg(n — z)] (6.34)
where p,g(n — z) is the hydrostatic component of pore pressure.

Several attributes of (6.34) are noteworthy. Equation (6.34) is similar to pore-
pressure diffusion equations used in standard theories of soil consolidation and
groundwater motion, except that (6.34) includes an advected time derivative which
accounts for the fact that pressure diffusion occurs in debris that may move at
significant rates. Equation (6.34) also includes a forcing term that accounts for
evolution of the mean total stress T and the hydrostatic component of pore
pressure, quantities that change as debris-flow geometry changes. Finally, the
equation contains a group of parameters (k/ap) that plays the role of a pore-
pressure diffusivity or consolidation coefficient. Values of these parameters may,
of course, evolve as debris-flow composition and bulk density evolve.

Savage and Iverson (2003) showed how (6.34) may be solved in conjunction with
debris-flow dynamics equations for cases in which debris-flow motion is I-D. excess
pore pressure diffuses only normal to the bed, and pore-pressure diffusivity is a
simple function of position within the flow. Denlinger and Iverson (2001) computa-
tionally solved an equation similar to (6.34), but lacking the forcing term, in con-
junction with multidimensional debris-flow equations. However, completely general
models that couple 3-D pore-pressure diffusion to porosity changes caused by debris-
flow motion remain to be developed. Such models require consideration of the
coupling between debris agitation and porosity change, perhaps through use of
the “granular temperature” concept commonly used in grain—flow dynamics (e.g.,
Goldhirsh, 2003).

Despite the current lack of a complete model, the most important implications
of pore-fluid pressures in debris flows are well established on the basis of both theory
and experiments: pore pressure co-evolves with debris-flow deformation; significant
pore-pressure changes can result from small changes in debris porosity; and pore-
pressure changes imply commensurate changes in intergranular effective stress,
which plays an important role in debris-flow mechanics owing to its influence on
intergranular friction (Iverson, 1997, 2003a; Major and Iverson, 1999; Savage and
Iverson, 2003).

6.4.3 Stress due to interactions of solid grains

Field observations and laboratory experiments indicate that contacts of solid grains
against the bed and one another transfer much momentum, dissipate much energy,
and therefore produce much of the stress during debris-flow motion (Iverson, 2003a).
Grains can interact with the bed and one another through both enduring contacts
(i.e.. frictional sliding, rolling, and locking) and brief inelastic collisions. A wealth of
experimental and theoretical evidence indicates that both types of interaction tend to
produce intergranular shear stresses directly proportional to intergranular normal
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stresses, as summarized by the Coulomb equation (e.g., Bagnold, 1954; Hungr and
Morgenstern, 1984; Savage and Sayed, 1984). Therefore, estimation of intergranular
shear stresses in depth-averaged debris-flow models can be based on (6.15), which
provides a basis for estimating intergranular normal stress.

Coulomb (1776) proposed his well-known equation describing bulk stresses in
failing masses of grains through analogy with frictional behaviour of discrete solid
bodies in contact. The Coulomb equation:

Tshear = Tnorm tan Y (635)

has an apparent simplicity that belies its subtle (and sometimes complicated) implica-
tions. The equation states that the bulk intergranular shear stress 7,,,, on a plane of
shearing is directly proportional to the bulk intergranular normal stress o,,,,, acting
on the same plane, irrespective of the area of grain contacts, rate of shearing, and
magnitudes of stress components not acting on the plane of shearing. The propor-
tionality constant is specified by the tangent of the friction angle .

By measuring and calculating stresses produced by collisions in a shearing
mixture of neutrally buoyant spherical grains, Bagnold (1954) provided the first
evidence that a Coulomb proportionality applies even in rapid, collisional grain
flows. Subsequent analyses and experiments with diverse materials have generally
supported Bagnold’s findings and lent credibility to the Coulomb proportionality
(e.g., Brown and Richards, 1970; Savage and Sayed, 1984; Hunt et al., 2002).

The Coulomb equation (6.35) may be generalized by replacing o,,,, with the
intergranular effective normal stress o,, defined as o, = ,,,,, — p. and by adding a
cohesive strength component ¢. These generalizations produce the Coulomb-
Terzaghi equation typically used to describe stresses during shear failure of rocks
and soils (e.g., Terzaghi, 1936; Lambe and Whitman, 1979):

Tshear = (O-Hr;m: i P) tan ¥ +c (636)

For granular materials subject to large deformations (as in debris flows) cohesive
forces are generally negligible, and (6.36) reduces to Ty, = (Tporm — P) tan . Impor-
tantly, intergranular stresses are coupled to the solid-fluid interaction stresses
described in the previous section though inclusion of p in (6.36).

Equation (6.36) with ¢ = 0 provides information about the state of intergranular
stress in shearing debris, but does not constitute a rheological model in the usual
sense, because it implies no one-to-one correspondence between stress and deforma-
tion or deformation rate. Moreover, (6.36) is a 1-D equation, and generalizing the
equation to 3-D results in a complicated mathematical formulation (e.g.. Desai and
Siriwardane, 1984). Coulomb stress states in a 3-D medium can be represented
relatively simply, however, by depicting them geometrically in a 3-D stress space
in which Cartesian axes denote principal stresses (Figure 6.4). In this depiction,
Coulomb stress states lie on the surface of an irregular hexagonal cone, but these
states cannot be determined without some independent knowledge or concurrent
calculation of deformation (e.g., Denlinger and Iverson, 2004). In this sense, the
Coulomb stress model shares a property with traditional rheological models (e.g..
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Figure 6.4. A Coulomb yield surface in 3-D stress space. In this space the coordinate axes
represent principal stresses, but the relative magnitudes of the three principal stresses S1, 52,
and S3 are unspecified. See Denlinger and Iverson (2004) for further details.

viscosity, elasticity): calculation of multidimensional states of stress cannot be
accomplished without calculation of deformation.

In cases where debris-flow thickness varies only gradually, however, the [-D
form of the Coulomb-Terzaghi equation (6.36) suffices to estimate basal intergra-
nular shear stresses that resist debris-flow motion. In such cases the total stress
normal to the bed can be estimated from the apparent weight of the superincumbent
debris, and lateral stresses are assumed to have negligible influence on the basal shear
stress. With reference to Figure 6.5, the apparent weight of a moving column of
debris of constant density p, mean vertical height /2, and horizontal planimetric area
AxAy is pg'hAxAy, where ¢’ is defined as in (6.16). Normal to the bed the component
of apparent weight is pg'hAxAy cos, where 6 is the angle between the bed and a
horizontal reference surface. The basal traction (defined as force per unit of bed area)
due to this component of apparent weight is pg'h cos’ . Therefore, according to
(6.36), the basal Coulomb shear resistance acting parallel to the base of the debris
column is approximately:

Tﬂ’n‘m'(b) = (P{."!h COSE 0 — pb(’u’)lan Phed (63?)

where ;,; denotes a friction angle appropriate for the grain—bed interface and pj,, is
the pore-fluid pressure at this interface. For simple Coulomb sliding parallel to the
bed, the basal resistance equation (6.37) takes the place of the collection of
basal stress terms that appear in (6.18), —7..(b) + 7y, (b)[0b/Ox] + T, (b)[0b/Dy].
Moreover, (6.37) provides a first (or “lowest order™ in H/L) approximation of resis-
tance to debris-flow motion even in more complicated cases (cf. Iverson and
Denlinger, 2001).
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Figure 6.5. Geometry used to calculate the basal normal traction due to the apparent weight
of a vertical column of debris with mean height & = (i, + hy + hy + hy)/4. The apparent
weight depends on the total vertical acceleration ¢’ defined in (6.16).

Typical values of basal Coulomb shear stresses in debris flows may be estimated
by using (6.37) in conjunction with typical parameter values such as h = I m,
p = 2,000 kgfm"', ©hed = 307, and 6 = 5°. With these values and p,,, =0, (6.37)
indicates a basal shear stress of roughly 10,000 Pa. Of course, this Coulomb shear
stress will be reduced as py,, increases, and will be zero in the extreme case where pj,,
balances the total basal normal stress.

Additional Coulomb stress components that appear in (6.18) can be estimated
with varying degrees of sophistication, although all such estimations require analyses
that are too involved to be presented in detail here. The simplest approach entails use
of lateral earth-pressure coefficients similar to those used in quasistatic soil mechanics
(e.g., Lambe and Whitman, 1979). In this case depth-averaged lateral stresses
such as 7, are related to the vertical stress 7.. through a simple proportionality:

?__.\'.\' = ku:'!/ﬂaﬂ_\'fz: (638)

Values of the lateral pressure coefficient k /s, are computed by assuming Coulomb
limiting equilibrium in a granular slab deforming uniformly in compression or
extension (Savage and Hutter, 1989; Iverson and Denlinger, 2001).

A more accurate approach estimates all components of Coulomb stresses acting
on vertical planes by using deformation kinematics to infer the location of principal
stresses on the Coulomb cone of Figure 6.4 (Denlinger and Iverson, 2004). Then
standard mathematical rules for tensor transformations can be employed together
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with (6.15) and (6.18) to obtain all stress components. This approach may be
necessary to accurately resolve Coulomb stresses where debris-flow thicknesses
change abruptly as a result of flow interaction with irregular terrain (Iverson et
al., 2004).

More elaborate models may someday supplant the simple Coulomb model of
intergranular stresses in debris flows. At present, however, no data convincingly
demonstrate the inadequacy of the Coulomb model, and as noted above, the
model is particularly useful in the context of depth-averaged flow computation.

6.4.4 Stress due to fluid shear

Stress also results from shear deformation of the fluid phase in debris flows. Magni-
tudes of shear stresses in debris-flow fluids that consist of water plus silt and clay
carried in suspension have been evaluated in rheometric tests. Such tests approx-
imate steady, uniform, 1-D flow in devices (typically rotational rheometers) in which
the stress and deformation fields can be calculated exactly or measured directly.
Rheometric tests indicate that viscosities of fine-grained slurries range from about
0.1 to 50 Pa-s (about 100 to 50,000 times greater than the viscosity of pure water),
depending on the sediment concentration (cf. Hunt et al., 2002). Given that shear
rates in debris flows are typically of the order of 10s~', this range of viscosities
implies the existence of viscous shear stresses no larger than about 500 Pa.

Rheometric measurements of muddy debris-flow slurries also reveal the
existence of finite shear strengths, which contribute to stress by resisting deforma-
tion. Strengths of mud slurries typically range from about 10-400 Pa (e.g.. Kang and
Zhang, 1980; O’Brien and Julien, 1988; Phillips and Davies, 1991: Major and
Pierson, 1992; Coussot and Piau, 1995; Locat, 1997; Parsons et al., 2001). To gain
some intuitive grasp of the size of these strengths, it is instructive to slide a book
across a tabletop. For diverse books and tabletops, basal shear stresses that resist
sliding are comparable to the strengths in fine-grained debris-flow slurries.

Although debate continues about the best mathematical model for representing
fluid shear stresses in debris-flow mixtures, the mechanical effects described above
can be represented by a simple Bingham model. The 1-D form of this model can be
expressed as:

dv,
dz

Tshear = Sf +p {639)
where s, is the fluid (slurry) shear strength and dv,/dz is the 1-D shear deformation
rate. Iverson (1985) showed how (6.39) and related rheological equations may be
generalized to three space dimensions.

The basal shear stress implied by (6.39) can be expressed as a function of the
depth-averaged debris-flow velocity v, and flow thickness /# by assuming the
shear stress results only from the weight of the superincumbent debris (7., =
pg'(n — z)sinfcosf, analogous to the assumption used to obtain the basal
Coulomb shear stress equation (6.37)). Then integration of (6.39) from z =0 to
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z = h shows that the basal resistance due to fluid shear can be expressed as (cf. Bird
et al., 1960, pp. 37-40):
T_‘-_:“,m-{b) = '\_.f' T 3»”'5.\'/"‘rr (6‘4OJ

It is useful to compare the magnitude of this fluid basal shear stress with that of the
Coulomb basal shear stress described by (6.37) for a typical debris flow with bulk
density p = 2,000 kg/m>, thickness # = 1 m, and depth-averaged velocity 7, = 10m/s
descending a planar surface with slope @ = 5°. If the fluid slurry has typical proper-
ties s, = 100 Pa and p = 10 Pa-s. the basal shear stress described by (6.40) then has a
value of 500 Pa. In contrast, if the basal friction angle of the granular debris has a
typical value ;s = 30° and the basal pore pressure has a value py, =0, the
Coulomb basal shear stress described by (6.37) has a value of roughly 10kPa, 20
times larger than the fluid stress. This stress ratio is reduced to 1: 1 if the basal pore
pressure nearly liquefies the mixture by balancing 95% of the total basal normal
stress. In such instances fluid resistance to shear is comparable to the Coulomb shear
resistance.

The foregoing discussion intentionally omits any mention of fluid turbulence.
Although turbulent fluid flow might occur in debris flows, turbulence is suppressed
by the presence of high concentrations of solid grains (Koch and Hill, 2001). Indeed.
a crucial difference exists between fluid turbulence and the generally agitated state
commonly evident in debris flows. Agitation associated with bobbing and jostling of
grains in debris flows indicates the presence of disorganized kinetic energy,
commonly called “granular temperature™ by analogy with thermodynamic tempera-
ture in the kinetic theory of molecular gases (e.g.. Hafl, 1983; Iverson, 1997:
Goldhirsch, 2003). Granular temperature can exist in the absence of any fluid or
fluid turbulence, and it involves energy dissipation so intense that it hinders devel-
opment of coherent vorticity structures like those associated with eddies in turbulent
fluid flow. Further research is needed to understand the relationships between
granular temperature and small-scale turbulent fluctuations of intergranular fluid
in debris-flow mixtures. At present, however, inclusion of such relationships in
debris-flow models would entail almost pure conjecture (cf. Koch and Hill, 2001).

6.4.5 Lumped rheology and calibrated resistance formulas

As an alternative to separating the stress contributions of solid and fluid constituents
and their interactions, many investigators use lumped-rheology models or calibrated
resistance formulas to represent the effects of stresses throughout debris flows. In the
lumped-rheology approach, debris is treated as a single-phase continuum, and the
stress in (6.4a, b) is specified explicitly as a function of debris deformation or defor-
mation rate (e.g., Iverson, 1985; Chen, 1988). Although the mathematical simplicity
of this approach is appealing, the approach cannot represent evolution of stress-
generation processes. Lumped-rheology equations assume that stress-generation
processes remain essentially constant in space and time, whereas field observations
and experimental data indicate that dominant stress-generation processes differ in
the coarse granular surge fronts and nearly liquefied interiors that develop in debris
flows (Iverson, 2003a).
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A related factor limiting the utility of the lumped-rheology approach is the
complexity and poor reproducibility of rheological properties of debris-flow
materials treated as single-phase continua (Phillips and Davies, 1991; Major and
Pierson, 1992). No standard devices or established protocols exist for measuring
rheologies of mixtures consisting of both muddy slurry and coarse granular debris
that may include gravel, cobbles, and boulders. (On the other hand, the distinct solid
and fluid constituents of debris flows have mechanical properties that are clearly
defined and readily measured in standard tests. The most important solid-fluid
coupling parameter, the mixture permeability k, is also readily measured (Major et
al., 1997).) Therefore, the relative simplicity of the lumped-rheology approach is
largely illusory. Lumping rheological effects into a single equation can simplify
mathematical and computational tasks, but it complicates the task of measuring
relevant parameters.

Measurement difficulties can be circumvented by using calibrated resistance
formulas rather than explicit rheological equations to represent the net effect of
stresses in debris flows. Calibrated resistance formulas often can provide good
agreement between model results and field observations, because values or even
the functional forms of resistance terms can be adjusted with the explicit aim of
achieving good fits. However, the appeal of good fits must be weighed against loss of
the ability to perform conclusive hypothesis tests. From a scientific perspective, a
mechanical model represents a hypothesis cast in precise mathematical form, but the
hypothesis can be tested only if it makes unequivocal predictions. If a mechanical
model is calibrated to fit data rather than tested against data, no unequivocal
predictions are made, and it becomes difficult to distinguish whether good model
performance reflects inherent model accuracy or merely model adaptability that is
accommodated by calibration (Iverson, 2003b).

The resistance-formula approach generally focuses on adjustment of the basal
shear stress (i.e., 7.,(b) in the depth-averaged stress equation (6.18)), with the aim of
fitting observations of debris-flow travel times and distances. Commonly modellers
assume that 7..(b) is some function of the depth-averaged velocity 7, (e.g., O'Brien et
al., 1993; Hungr, 1995). Any such function can be represented by a power-series
expansion of the form:

T-o(b) = ag + a0y + agEf— + -4 ﬂNE_‘f (6.41)

and if the coefficients a, through ay are freely adjustable, (6.41) can be calibrated to
any desired precision (i.e., if the power series contains N terms, it can be fitted to
N + 1 data points exactly).

Typically debris-flow modellers restrict attention to the first three terms on the
right-hand side of (6.41), and also ascribe some rheological significance to the
coefficients ay, a,, and a, (e.g., O'Brien et al., 1993; Hungr, 1995). The basis for
this reasoning becomes clearer if some additional factors and constants are inserted
in (6.41). For example, if some appropriate factors and constants are inserted and
the series expansion is truncated to two terms, (6.41) takes the form:

T-(b) = pghay + (3/M)a, v, (6.42)
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Here it is clear that a; can be regarded as analogous to the basal Coulomb friction
coeflicient tan ¢y, in (6.38) and a, can be regarded as analogous to the viscosity
coefficient 1 in (6.40). Thus, in principle it should be possible to determine applicable
values of these coefficients using appropriate rheometric tests. Instead, in the cali-
brated-resistance approach, the values of coefficients such as @, and «, are adjusted
to fit model results to field data. This adjustment constitutes the most fundamental
distinction between lumped-rheology and calibrated-resistance approaches.

Another distinction between the mixture-theory, lumped-rheology, and cali-
brated-resistance approaches involves evaluation of stress components other than
T.¢(h) in (6.18). Mixture theory assumes that solid and fluid constituents and their
interactions can influence all stress components (Iverson, 1997; Iverson and
Denlinger, 2001). The lumped-rheology approach similarly assumes that all stress
components depend on rheology of a mixture idealized as a one-phase material. In
contrast, the calibrated-resistance approach typically assumes that stresses such as
Ty in (6.18) have a fixed form that is independent of the calibrated form of 7..(b)
(e.g., O’Brien et al., 1993). This dissociation of stress components impedes efforts to
interpret calibrated resistance formulas rheologically.

6.5 SURGE DYNAMICS

A conspicuous and important trait of debris flows involves their tendency to move as
a discrete surge or series of surges, with each surge typically exhibiting a coarse-
grained head and finer grained, more-liquefied tail (Sharp and Nobles, 1953; Davies,
1990; Iverson, 1997; Hungr, 2000). The head-and-tail morphology results from mass
and momentum conservation operating in conjunction with solid-fluid stress parti-
tioning and grain-size segregation. Other phenomena, such as buoyancy and inertia
due to ambient fluid surrounding a flow, can contribute significantly to head-and-tail
surge morphology in dilute density currents and subaqueous debris flows, but are
relatively unimportant in subaerial debris flows (Iverson, 2003c).

To illustrate some key aspects of surge dynamics, it is useful to consider a
simplified depth-integrated momentum-conservation equation, which applies to an
infinitely wide debris flow travelling in the x direction across a horizontal surface
without erosion or deposition. In this case the y and z velocity components are
zero (Figure 6.2), and the momentum conservation equation for the x direction
reduces to:

Ahv,)  O(hoy) 1 [0(Tech)
a ' ox p [ ox

which is obtained by combining (6.9) and (6.18) and eliminating terms that equal
zero in this special case.

To facilitate interpretation of (6.43). the depth-averaged longitudinal normal
stress 7y, can be approximated as a gravity-induced stress that is proportional to
the local debris thickness A, such that 7., = (1/2)pghk c;/pas. Where Kactpass 18 the
same proportionality coefficient as in (6.38) (cf. Savage and Hutter, 1989; Hungr,

= T:,\.(h)} (6.43)
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1995:; Iverson, 1997). Substituting this expression and the applicable form of (6.37)

(ie., 7o (D) = —(pgh — ppeq) tan gy,,) into (6.43) yields a 1-D momentum equation in
which physical aspects of surge dynamics are especially transparent:
Ahv,)  O(hv?) Oh Phed
: - = —pgh | ket 1pass =— | ——= ) tany,, 6.44
r”( By a= Ix PYN | Kaerf pass 9% + pyh Ched ( )

In this simplified momentum equation, longitudinal normal stresses due to the solid
and fluid constituents have been lumped into a single term. but separation of these
stresses is straightforward (Iverson, 1997).

All the terms in (6.44) have clear physical implications that can be couched in
terms of Newton's second law of motion. The terms on the left-hand side of (6.44)
express the change in momentum of the debris per unit of bed area AxAy, and the
terms on the right-hand side express the net force on the debris per unit of bed area.
These forces result from gravity and are therefore proportional to the lithostatic
stress pgh. The term —pgh(1 — pp./pgh) tan g, expresses the basal resisting stress
due to Coulomb friction, and this resistance is modulated by the basal pore pressure
Phea- Which is generally a function of x and ¢ The term —pghk . pas(Oh/0x)
expresses the variation in longitudinal normal stress due to variation in debris
thickness. This term acts to drive debris forward if dh/dx < 0, as in the head of
an advancing surge, whereas it acts to drive debris backward if 9h/dx > 0, as in the
tail of a surge. Thus, the longitudinal stress term indicates that gravitational
spreading should cause surges to elongate and thereby attenuate. In contrast, obser-
vations and data show that, although debris-flow surges may elongate, attenuation
of surge fronts is by no means pervasive. Instead. debris-flow surge fronts tend to
grow large and steep, and secondary surge [ronts tend to appear. Therefore, under-
standing the development and persistence of debris-flow surges and surge fronts
requires delving deeper into the implications of (6.44).

Stability analysis of an equation similar to (6.44) shows that development of
small-amplitude surges can result from an interaction of inertial and gravitational
effects that are present in shallow flows of any fluid-like substance, irrespective of its
rheology (Forterre and Pouliquen, 2003). However, surge fronts in debris flows
appear to grow to large amplitudes as a consequence of non-uniform frictional
resistance that results from grain-size segregation and pore-pressure diffusion (cf.
Iverson, 1997; Savage and Iverson, 2003). In (6.44), non-uniform frictional resistance
is represented by a non-uniform distribution of —pgh(1 — pp../pgh) tan g, which
results mostly from variation in basal pore-fluid pressure p;.,. Recall from (6.34) that
variation of pore-fluid pressure about an equilibrium (hydrostatic) distribution
obeys a diffusion equation, and that the diffusivity k/ap includes the permeability
k. which can vary by many orders of magnitude as a consequence of variations in
grain-size distributions (Iverson, 1997: Major et al., 1997). Thus, grain-size segrega-
tion in debris flows can result in great variations in dissipation of excess (non-
equilibrium) pore-fluid pressure, which causes great variation in frictional resistance.

Figure 6.6 depicts schematically the means by which grain-size segregation in
debris flows appears to develop and persist. As a consequence of grain-size
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Figure 6.6. Schematic of grain trajectories and resulting grain-size segregation in a debris-flow
surge.

segregation, debris-flow surges typically have steep, coarse-grained, high-resistance
heads with little excess pore-fluid pressure and relatively fine-grained, low-resistance,
tapering surge tails nearly liquefied by high pore-fluid pressure (Figure 6.7). The
liquefied tail tends to push against the high-friction head, which can act somewhat
like a moving dam. Thus, a disparity in frictional resistance between the surge head
and tail can amplify the surge waveform despite the tendency for the term
—PGhK 41 /pass(Oh/Ox) in (6.44) to attenuate the surge (Savage and Iverson, 2003).

The important role of grain-size segregation in growth of debris-flow surges is
indicative of an emergent phenomenon. (*‘Emergent” is a term commonly used in
non-linear dynamics to describe phenomena or structures that arise from dynamical
feedbacks rather than from physical properties that can be specified a priori.) Indeed,
any a priori specification of debris-flow rheology or flow resistance disregards a
fundamental fact of debris-flow mechanics: the form of the chief macroscopic flow
structure (i.e., a blunt, large-amplitude surge head followed by a tapering, more
dilute tail) is contingent on a non-uniform distribution of flow resistance that
evolves as a consequence of flow dynamics. Future progress in debris-flow
mechanics may therefore depend on the degree to which grain-size segregation
processes and the consequent emergence and persistence of surges can be successfully
represented in continuum models.
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Figure 6.7. Acrial photographs of an experimental ~10m® debris flow discharging from the
mouth of the USGS debris-flow flume. Grain-size segregation produced a surge front
composed almost entirely of gravel (dark toned) and a surge tail composed of liquefied mud
(light toned). Time stamps of photo frames are referenced to 1 = 0 when the debris flow was

released from a headgate 82.5m upslope from the flume mouth. Iverson (2003a) provides
further details and data on this experiment.

6.6 CONCLUDING REMARKS

Continuum mechanical models of debris flows are founded partly on well-established
physical laws and mathematical rules, and partly on empirical and theoretical infer-
ences about stresses that are responsible for energy dissipation. Therefore, a primary
objective in mechanistic debris-flow modelling is to honor physical laws and mathe-
matical rules as faithfully as possible, and a second objective is to link representation
of stresses to data and theory in a manner that is direct and transparent.

Mechanical models of debris flows can have value as both hazard-assessment
tools and precise conceptual frameworks. The conceptual value depends largely on
the degree to which models link debris-flow behavior to universal scientific prin-
ciples, such as conservation of momentum and mass, and to replicable experimental
data. Models with weak linkages to replicable data and universal principles have
limited conceptual value but may offer useful methodology for practical hazard
assessment in some circumstances.
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Clear tests of the predictive power of mechanistic models can be achieved only in
controlled experiments in which all parameter values and boundary conditions are
independently constrained. On the other hand, natural debris flows typically have
indeterminate parameter values and unconstrained initial and boundary conditions,
which preclude decisive model tests. As a consequence, models commonly are cali-
brated by adjusting stress or resistance terms to fit the observed behaviour of natural
debris flows. The differences between model testing using experimental data and
model calibration using field observations can have a synergistic effect, however.
The two procedures can be used together to reveal model weaknesses and thereby
lead to model improvements.

Predictions of debris-flow models should be regarded with ample skepticism by
both model developers and model users. Scientific interpretations derived from
model output are only as valid as the assumptions used in model formulation.
Model developers should, therefore, make painstaking efforts to thoroughly
document all physical, mathematical, and computational aspects of their models,
as well as the sources and reliability of data that serve as model inputs. Model users
should demand this thorough documentation and should make their own pain-
staking efforts to understand model limitations. Through such combined efforts of
model developers and model users, mechanistic models of debris flows can be
expected to improve.
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