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STEADY AND INTERMITTENT SLIPPING
IN A MODEL OF LANDSLIDE MOTION

REGULATED BY PORE-PRESSURE FEEDBACK∗

DAVID G. SCHAEFFER† AND RICHARD M. IVERSON‡

Abstract. This paper studies a parsimonious model of landslide motion, which consists of the
one-dimensional diffusion equation (for pore pressure) coupled through a boundary condition to a
first-order ODE (Newton’s second law). Velocity weakening of sliding friction gives rise to nonlin-
earity in the model. Analysis shows that solutions of the model equations exhibit a subcritical Hopf
bifurcation in which stable, steady sliding can transition to cyclical, stick-slip motion. Numerical
computations confirm the analytical predictions of the parameter values at which bifurcation oc-
curs. The existence of stick-slip behavior in part of the parameter space is particularly noteworthy
because, unlike stick-slip behavior in classical models, here it arises in the absence of a reversible
(elastic) driving force. Instead, the driving force is static (gravitational), mediated by the effects of
pore-pressure diffusion on frictional resistance.
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1. Introduction. Landslides exhibit a great diversity of movement styles and
rates, including steady creeping slip, intermittent rapid slip, and catastrophic ava-
lanching. Recently Iverson [4, 5] introduced a new theoretical model that in numerical
simulations exhibits all these behaviors as a consequence of pore-pressure feedback.
Most intriguing is the transition between steady and intermittent slip. In this paper
we analyze this transition as a bifurcation problem.

As sketched in Figure 2.1, consider a block of porous soil on a rigid planar slope
that is inclined at an angle θ. If there is no liquid in the pores of the soil, then
friction can support its weight at rest provided μ0, the coefficient of static friction,
is greater than tan θ. If, however, water pressure acting on the base of the block is
sufficiently large, the block will begin to slide. Suppose that it slides rigidly except for
a zone of intense shearing at its base. If the soil in the basal shear zone is compacted,
the governing equations admit a solution with steady sliding, due to the following
sequence of physical effects:

As the basal zone shears, it dilates; this expansion creates new pore
space, thereby reducing the fluid pressure in the expanding pores;
in consequence, the normal traction on the soil matrix is increased;
and increased friction between the soil and the base can balance the
driving and resisting forces, leading to steady creep as water pressure
is restored by steady diffusion from the overlying slide block.

If friction is rate-independent, this steady creeping motion is stable. However, even
a small amount of rate softening in the friction law is sufficient to destabilize steady
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motion through a Hopf bifurcation. This bifurcation is the primary focus of the present
paper.

Hopf bifurcation explains the origin of oscillatory behavior in the system. Inter-
mittent behavior—brief periods of rapid slipping alternating with comparatively long
periods with no slipping—arises from the singular behavior of friction at zero veloc-
ity. Specifically, the resisting frictional force jumps to a static value dictated by the
ambient pore pressure. The block then remains stationary while diffusion brings pore
pressure back up to a level where friction can no longer balance gravity.

The outline of this paper is as follows. In section 2 we introduce the equations
of Iverson’s model, nondimensionalize them, and linearize them around the steady-
state solution. Mathematically, provided the block velocity is positive, this model may
be described as a parabolic PDE for the pore pressure coupled through a boundary
condition to an ODE for the block velocity. In section 3 the linearized equations are
solved by separation of variables, leading to a trancendental equation for eigenval-
ues. In section 4 we extract the condition for bifurcation by analyzing the eigenvalue
equation. In section 5 we summarize the results of supporting computations, which
agree well with the theoretical predictions. In section 6 we present a concluding dis-
cussion regarding our findings. Finally, in an appendix we provide a mathematical
proof omitted from the main text.

Mathematically, this model is interesting in that time-periodic behavior appears
in a problem governed by the (scalar) diffusion equation (of course, coupled to an
ODE through a boundary condition). Physically, the model is important because it
provides a parsimonious mathematical description of diverse landslide behavior that
has not been rigorously analyzed until now.

2. Governing equations.

2.1. Dimensional formulation. As indicated in Figure 2.1, consider a block of
soil of porosity φ, height Hs, and density ρs, which is defined as the mass of solid grains
per unit total volume (i.e., the porosity is factored into ρs). The block is saturated
with pore water of density ρw to a height Hw that does not change with time.1

Suppose this system is supported by a planar slope inclined at an angle θ. Using
coordinates aligned with the slope, we describe this system by the pore pressure p(y, t),
the traction τx(t), τy(t) exerted by the supporting plane on the solid matrix (effective
stress at the base), and, assuming the block slides as a rigid unit over a shearing
basal zone, the velocity vx(t), vy(t) of the block. The motion is assumed to be one-
dimensional in that all variables are independent of the tangential coordinate x, but
it is two-dimensional in that the block is allowed to move in the normal direction as
well as the tangential—indeed, dilatancy of the shearing basal zone requires this.

Let us decompose the total pore pressure into a hydrostatic component plus the
excess pore pressure associated with dilation,

ptot(y, t) = phydro(y) + pex(y, t),

1The assumption that Hw is constant is not strictly satisfied owing to small fluxes of water to and
from the basal shear zone. Changes in Hw can be estimated from simple mass-balance considerations.
On this basis we estimate that such changes are less than 1%. We exclude such changes from our
model, however, not only for the sake of simplicity, but also because rigorous assessment of changes in
water-table height requires consideration of hysteretic, nonlinear processes associated with variably
saturated groundwater flow [2].

Incidentally, the model can easily be modified to allow for flux of water into the soil beneath
the shear zone as well as flux into the soil above the shear zone. Computations with these options
did not differ qualitatively from those reported here.
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Fig. 2.1. Schematic of landslide block.

where

(2.1) phydro(y) = ρwg cos θ(Hw − y).

Following arguments summarized by Iverson [5], we suppose the excess pore pressure
evolves diffusively,

(2.2) ∂tpex = D∂yypex, 0 < y < Hw,

with boundary conditions

(2.3) (a) pex(Hw, t) = 0,
(b) ∂ypex(0, t) = (ρwg/K)vy(t),

where D is the saturated hydraulic diffusivity, K is the saturated hydraulic conductiv-
ity below the water table, and g is the acceleration of gravity. Typical values for these
parameters, and for others below, are given in Table 2.1. Equation (2.3)(b) follows
from Darcy’s law [2]: the excess-pressure gradient at the boundary of the shear zone is
proportional to the fluid flux through the boundary that is needed to fill the volume
vacated through dilatancy.

In Iverson’s model, the behavior of the basal zone is characterized simply by two
constitutive equations: (i) dilatancy,

(2.4) vy = ψvx,

where ψ is the angle of dilatancy, and (ii) friction,

(2.5)
either vx = 0 and |τx| < μ0τy,
or τx = −μ(vx)τy and vx ≥ 0,

where μ(vx) is a rate-softening coefficient of friction,

(2.6) μ(vx) = μ0[1 − a sinh−1(vx/2vref)],
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Table 2.1

Parameter values in the model.

Parameter Definition Units Plausible Values used in
values computations

a Rate-dependence coefficient — 0 — 0.05 0.02, 0.04
in friction rule

D Hydraulic diffusivity of soil m2/s 10−8 — 1 10−8 — 3×10−1

g Acceleration of gravity m/s2 9.8 9.8
Hs Thickness of soil block m 0.1 — 100 0.65
Hw Height of water table m 0 — 100 0.3701
K Hydraulic conductivity of soil m/s 10−11 — 1 2×10−9 — 2×10−1

vref Reference slip rate in friction rule m/s 10−4 — 1 7×10−4 — 4×10−1

θ Slope angle radians 0.1 — 0.8 0.5411
μ0 Static friction coefficient of soil — 0.2 — 1.2 0.8693
ρw Mass density of pore water kg/m3 900 — 1100 1000
ρs Bulk density of dry soil kg/m3 1000 — 2200 1600
φ Porosity of soil block — 0.2 — 0.6 0.4
ψ Dilatancy angle of shearing soil radians -0.2 — 0.2 0.1047

vref being a reference velocity. Regarding dilatancy, we take ψ to be constant. Under
continued shearing, ψ will in fact converge to zero as the soil tends to a critical state.
However, as shown in the landslide experiments of [6], the evolution to critical state
occurs only when displacement magnitudes greatly exceed those appearing during the
processes considered here. Equation (2.6) is a three-parameter representation of rate-
weakening friction that we use instead of a more complicated, rate-and-state friction
model, which typically employs six parameters. Because of its simplicity, we are able
to explore the full relevant parameter space. However, investigation of the model with
a rate-and-state friction law remains a task for future research.

Finally, the system is completed by Newton’s equations of motion for the block.
For this system, the mass per unit area of slope is ρsHs + φρwHw. Thus, for the
tangential component of the motion we have

(2.7) (ρsHs + φρwHw)∂tvx = (ρsHs + φρwHw)g sin θ + τx.

Regarding the normal component, we are assuming the dilatancy ψ is small, and there-
fore, in light of (2.4), we may neglect acceleration in the y-direction; thus Newton’s
equation reduces to force balance. According to Terzaghi’s effective-stress principle
(e.g., see [2]), the effective normal traction exerted by the slope on the solid matrix
is the total stress reduced by the pore pressure at the base; in symbols,

τy = (ρsHs + φρwHw)g cos θ − ptot(0, t).

On substitution of (2.1), we obtain our last equation,

(2.8) τy = [ρsHs − (1 − φ)ρwHw]g cos θ − pex(0, t).

This formulation differs from that of Iverson [5] in two main respects:
• Most importantly, here we allow for rate-softening friction.
• Our assumptions on the imposed pore pressure are more restrictive: specif-

ically, in the notation of (8) of Iverson [5], we assume that β = cos θ and
W = 0. Physically, these assumptions imply that there is no flux of ground-
water normal to the water table, except for the flux caused by shear-zone
dilation.
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Provided

(2.9) (ρsHs + φρwHw) sin θ ≤ μ0 [ρsHs − (1 − φ)ρwHw] cos θ,

the above equations have a solution with pex = 0 and v = 0: i.e., friction is sufficient
to resist the pull of gravity. We study the case where (2.9) is violated.

2.2. Nondimensionalization. We nondimensionalize (2.2)–(2.8) by defining

(2.10) t =
t(dim)

H2
w/D

, y =
y(dim)

Hw
, v =

v(dim)
x

K
, p =

p(dim)
ex

ρwgHw
, τ =

τ (dim)

ρsgHs
,

where the superscript dim indicates the dimensional version of a variable. We will
eliminate v(dim)

y from the equations, so we do not define a scaled version of this variable;
however, we nondimensionalize both components of τ . As in Iverson [5], we have used
the diffusive time scale to nondimensionalize t; however, our nondimensionalization of
v differs from that of [5]. We also define two dimensionless constants that will appear
in the nondimensionalized equations below,

(2.11) ε =
K/g

H2
w/D

and M =
ρwHw

ρsHs
.

The first, which according to Table 2.1 is very small, is the ratio of the acceleration
time scale to the diffusive time scale; the second is φ−1 times the ratio of fluid mass
to solid mass.

The evolution of the nondimensionalized pressure is governed by

(2.12)
(a) ∂tp = ∂yyp, 0 < y < 1,
(b) p(1, t) = 0,
(c) ∂yp(0, t) = ψv(t).

In nondimensional variables, the friction relation (2.5) does not change, except that
the rate-softening coefficient in (2.6) must be rescaled to give

(2.13) μ(v) = μ0

[
1 − a sinh−1

(
K

2vref

v

)]
.

Newton’s equations for the motion of the block scale to

(2.14)
(a) ε ∂tv = sin θ − (1 + φM)−1τx,
(b) τy = [1 − (1 − φ)M ] cos θ − Mpex(0, t).

In nondimensional variables, the no-motion condition (2.9) may be rewritten as

(2.15) tan θ ≤ A1μ0,

where A1 is the first of two mass ratios defined in (2.17) below. If (2.15) is violated
and hence v > 0, then (2.5) and (2.14)(b) may be combined to solve for τx. On
substitution into (2.14)(a), we obtain

(2.16) ε ∂tv = sin θ − μ(v) (A1 cos θ − A2p(0, t)) ,

where

(2.17) A1 =
1 − (1 − φ)M

1 + φM
, A2 =

M

1 + φM
.

As long as v > 0, the motion is described by (2.12), (2.16).
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Fig. 2.2. Graphical solution of (2.19).

2.3. A steady solution and linearization of the equations. Henceforth we
assume that

(2.15) is violated and ψ > 0.

Let us look for a steady-state solution pss(y), vss of the equations of motion. It follows
from (2.12) that

(2.18) pss(y) = ψvss(y − 1),

and this relation may be substituted into (2.16) to obtain an implicit equation for vss,

(2.19) vss = (A2ψ)−1

[
sin θ

μ(vss)
− A1 cos θ

]
.

If the friction coefficient is independent of velocity, then this equation is in fact a
formula for vss. Even with rate-softening friction, for parameter values such as in
Table 2.1, the right-hand side (RHS) of (2.19) is a slowly varying function of vss (see
Figure 2.2). For example, defining

(2.20) vss,approx = (A2ψ)−1

[
sin θ

μ0
− A1 cos θ

]

as the solution of (2.19) in the rate-independent case, we may see that

μ(vss,approx)
μ0

= 1 − O
(

a

ψ

K

vref

)
,

and, unless ψ is extremely small, we have

(2.21)
a

ψ

K

vref

� 1.

Thus, assuming ψ > 0 is not too small, we conclude that (2.19) has a unique solution
close to vss,approx.

Incidentally, there is a second solution of (2.19) at very large values of vss. To see
this, observe from (2.13) that μ(v) vanishes when v ≈ (vref/K)e1/a. Since μ(vss) occurs
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in the denominator, the RHS of (2.19) blows up as v tends to (vref/K)e1/a, giving rise
to a second intersection with the linear function on the left-hand side (LHS). This
second steady-state solution of (2.19), for which the velocity is very large indeed,
is always unstable, but it can be involved in the steady-state bifurcation of (2.12),
(2.16) at extreme parameter values. For clarity, we shall refer to the first solution,
given approximately by (2.20), as the physical steady state. Referring to the figure
and comparing the derivatives of both sides of (2.19), we conclude that at the physical
steady state

(2.22)
sin θ |μ′(vss)|
A2ψ μ2(vss)

< 1.

To linearize (2.12), (2.16) near the (physical) steady-state solution, we define
incremental variables p, v by

p(y, t) = pss(y) + p(y, t), v(t) = vss + v(t).

Equations (2.12) are already linear, so we find trivially that

(2.23)
(a) ∂tp = ∂yyp, 0 < y < 1,
(b) p(1, t) = 0,
(c) ∂yp(0, t) = ψv(t),

and on linearizing (2.16) and simplifying using (2.19) we obtain

(2.24) ε∂tv = B1p(0, t) + B2, v,

where

(2.25) B1 = A2 μ(vss) and B2 = sin θ |μ′(vss)|/μ(vss).

Since μ′(vss) < 0, we have used the absolute value to emphasize that B2 > 0.

3. Derivation of the eigenvalue equation. We seek a solution of the lin-
earized equations (2.23), (2.24) with exponential time dependence e−λt (note the
minus sign). Using separation of variables, we derive from (2.23)(a),(b) that

p(y, t) = P sin[
√

λ(1 − y)]e−λt, v(t) = V e−λt,

where P and V are constants. Substitution of these formulas into (2.23)(c), (2.24)
yields the 2 × 2 homogeneous linear system

(3.1)
[ √

λ cos
√

λ ψ

B1 sin
√

λ ελ + B2

] [
P
V

]
= 0.

This system has a nonzero solution if and only if the determinant of the coefficient
matrix vanishes, which leads to the trancendental equation for the decay rate λ,

(3.2)
tan

√
λ√

λ
= εC1λ + C2,

where

(3.3) C1 = 1/B1ψ, C2 = B2/B1ψ.

Recalling (2.25), (2.22), we see that

(3.4) C2 < 1.
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Fig. 4.1. Graphical determination of the real solutions of (3.2). In the figure shown, εC1 = 0.02
and C2 = 0.3. As indicated by (4.9), the two complex solutions of (3.2) lie in the unstable half-plane,
{Reλ < 0}.

4. Analysis of the eigenvalue equation.

4.1. Introduction. As illustrated in Figure 4.1, (3.2) has an infinite sequence
of positive roots. Since these eigenvalues are all in the stable half plane, they do not
require further attention. It is not obvious, but (3.2) has two other, possibly complex,
roots, which are the focus of the present section.

As a function of a complex variable, (tan
√

λ)/
√

λ is a meromorphic function:
i.e., apart from a sequence of poles on the positive real axis, it is single-valued and
analytic in the entire plane. Although neither the numerator nor the denominator of
this expression is single-valued, the quotient avoids this difficulty. Of course, we use
the same branch of

√
λ in the numerator and the denominator so that

lim
λ→0

tan
√

λ√
λ

= 1.

To be specific, let us choose the branch

(4.1)
√

λ = |λ|1/2 ei(arg λ)/2,

where arg λ satisfies

0 ≤ arg λ < 2π.

The analysis of the complex roots of (3.2) is based on the simple behavior of
tan

√
λ away from the positive real axis, as articulated in the following proposition.

Proposition 4.1. Let Λ be a wedge in C excluding the positive real axis, say,

(4.2) Λ = {λ ∈ C : δ < argλ < 2π − δ} ,

where 0 < δ < π/2. Then, as |λ| → ∞ in Λ,

(4.3) tan
√

λ = i + O(e−δ
√

|λ|/2).
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Proof. By manipulating the definition of tan z, we deduce that

(4.4) tan z = i
1 − e2iz

1 + e2iz
.

Now |e2iz | = e−2 Im z , so taking z =
√

λ we see that

tan
√

λ = i + O(e−2 Im
√

λ).

By (4.1), Im
√

λ = |λ|1/2 sin(arg λ /2). To complete the proof, we estimate arg λ with
(4.2) and use the fact that sin(δ/2) ≥ δ/4.

4.2. The rate-independent case (C2 = 0). When friction is independent of
velocity, the coefficient C2 in (3.2) vanishes. In the appendix we prove that in this
case (3.2) has no zeros in the left half plane: i.e., the steady solution is stable. Since
the proof sheds little light on the Hopf bifurcation, we do not include it here. It is
instructive, however, to locate the two complex eigenvalues.

Suppose C2 = 0. By (4.3), for large |λ| away from the positive real axis, (3.2) may
be rewritten, approximately, as

ei[π−arg λ]/2 = εC1|λ|3/2ei arg λ.

Equating magnitudes we find that |λ| = (εC1)−2/3, and then equating arguments we
find the two approximate roots of (3.2):

(4.5) λ = eiπ/3(εC1)−2/3, e5iπ/3(εC1)−2/3.

By (4.3) the error in this estimate is exponentially small in ε. Since Reλ 
 1, the
associated eigenfunctions decay rapidly in time.

4.3. The rate-dependent case: Steady-state bifurcation. If C2 assumes
positive values, the complex2 eigenvalues (4.5) can cause the linearized equations
(2.23), (2.24) to lose stability if they cross into the left half plane. As we shall see in
the next subsection, for physical parameter values, (2.23), (2.24) lose stability through
a Hopf bifurcation: i.e., the complex eigenvalues cross the imaginary axis as a pair of
complex conjugates. However, for mathematical completeness, we also ask when real
solutions of (3.2) cross the imaginary axis. Indeed, one may see by inspection that
λ = 0 is a root of (3.2) iff C2 = 1. If one forces C2 to its limiting value unity (cf. (3.4)),
then the two solutions of (2.19) merge and annihilate one another at a steady-state
bifurcation of limit-point type [3].

4.4. The rate-dependent case: Hopf bifurcation.
(a) Main calculations. Figure 4.2 shows a curve Γ in the (εC1, C2)-plane that

separates the infinite strip

{(εC1, C2) : 0 < εC1 < ∞, 0 < C2 < 1}

into two regions in which (2.23), (2.24) are stable or unstable. This curve has the
parametric representation

(4.6) εC1 =
2
μ3

1 − 2e−μ sin μ − e−2μ

1 + 2e−μ cosμ + e−2μ
,

2We shall refer to these roots of (3.2) as complex eigenvalues even though, for extreme parameter
values, they may actually become real.
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Fig. 4.2. Graph of the Hopf bifurcation curve Γ defined parametrically by (4.6), (4.7).

(4.7) C2 =
1
μ

1 + 2e−μ sin μ − e−2μ

1 + 2e−μ cosμ + e−2μ
,

where 0 ≤ μ < ∞. In the following proposition we show that (2.23), (2.24) undergo
Hopf bifurcation when C1, C2 lies on Γ.

Proposition 4.2. If εC1, C2 lie on Γ, then the complex eigenvalues of (3.2) are
pure imaginary.

Proof. Suppose (3.2) has a root on the positive imaginary axis, say, at λ = iμ2/2,
where μ ≥ 0. Then

√
λ = (1 + i)μ/2. Equating real and imaginary parts of (3.2), we

conclude that

(4.8) εC1 =
2
μ2

Im
{

tan[(1 + i)μ/2]
(1 + i)μ/2

}
, εC2 = Re

{
tan[(1 + i)μ/2]

(1 + i)μ/2

}
.

We claim that

tan[(1 + i)μ/2] =
2e−μ + i(1 − e−2μ)

1 + 2e−μ cosμ + e−2μ
,

which may be proved by recalling (4.4), multiplying and dividing by the complex
conjugate of the denominator, and simplifying. Equations (4.6), (4.7) result on mul-
tiplying by [(1 + i)μ/2]−1 = (1 − i)/μ and substituting into (4.8).

By examining the Taylor series expansions of the numerators in (4.6), (4.7), we
see that

lim
μ→0

εC1 = 1/3, lim
μ→0

C2 = 1,

which is behavior that may be seen in Figure 4.2. At the other extreme, μ 
 1, or
equivalently εC1 � 1, the exponentials in (4.6), (4.7) may be neglected, so that it is
possible to eliminate μ and obtain a relation between the C’s that characterizes Hopf
bifurcation:

(4.9) C2 =
(

εC1

2

)1/3

,

both sides of the equation being small. The proof of the proposition shows that
at parameter values given by (4.6), (4.7), the complex eigenvalues of (2.23), (2.24)
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are ±iμ2/2, and in the asymptotic range the complex eigenvalues are approximately
±iC−2

2 /2. In particular, the bifurcating periodic solutions have periods approximately
equal to

(4.10)
2π

|λ| ≈ 4πC2
2 .

Our simulations below confirm the accuracy of this prediction.
It is natural to undo the nondimensionalization of the equations to seek a pre-

diction for the period of oscillations of landslide motion in the field. However, the
enormous ranges of D, K, and vref in Table 2.1 diminish the value of this exercise.
Specifically, one obtains oscillation periods ranging from about 10−7 to 103 seconds.
At the small end, these periods will be unobservable by conventional measurement
techniques. At the upper end, these periods are similar to those sometimes observed
in the field and also observed in the landslide experiments of Iverson et al. [6].

(b) Numerical limitations. Provided εC1 � 1, (4.9) characterizes the loss of sta-
bility in the PDE (2.23), (2.24) through Hopf bifurcation. However, this relation is
not accurate for numerical simulations if

(4.11) εC1 ≤ O(h3),

where h is the mesh size. To motivate this assertion, first recall that the eigenvalues
of the PDE at the bifurcation point have absolute value

μ2/2 = 1/(2C2
2) = 2−1/3(εC1)−2/3 
 1.

On the other hand, the largest eigenvalue of the discretization is O(h−2), and moreover
the large eigenvalues of the discretization do not approximate eigenvalues of the PDE.
These two observations warn of a mismatch if

(εC1)−2/3 ≥ O(h−2),

which is equivalent to (4.11).
Let us illustrate this phenomenon for a second-order explicit discretization of the

PDE. (In the simulations below, we used the Crank–Nicholson method, for which the
analysis is similar in spirit but more technical in detail.) For a positive integer N , let
h = 1/N be the mesh size in discretizing space, and let

yn = 1 − nh, n = 0, 1, . . . , N + 1.

Consider the semidiscrete approximation for the pressure equation (2.23),

(a) ∂tpn = h−2 [pn+1 − 2pn + pn−1] , n = 1, 2, . . . , N,
(b) p0 = 0,
(c) (2h)−1 [pN−1 − pN+1] = ψv,

(4.12)

and for the velocity equation (2.24),

(4.13) ε∂tv = B1pN + B2v.

As with the PDE, we look for solutions of (4.12), (4.13) such that pn(t) and v(t) have
exponential time dependence e−λt. It follows from (4.12)(a),(b) that

pn(t) = Pe−λt(zn − z−n), n = 0, 1, . . . , N + 1,

v(t) = V e−λt,
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where

(4.14) λ =
z − 2 − z−1

h2
.

Substituting into (4.12)(c), (4.13), we obtain a solution provided

(4.15) det
[

(2h)−1(z − z−1) ψ
B1 B2 − εh−2(z − 2 − z−1),

]
= 0,

where we have divided the first column of this determinant by zN .
We analyze the Hopf bifurcation in this system as with the PDE: i.e., we ask

when there is a solution z of (4.15) such that λ, computed according to (4.14), lies on
the imaginary axis, say, λ = iμ. We consider only the asymptotic range μ 
 1. Hence
z 
 1, and we may solve (4.14) for z approximately by neglecting z−1; i.e.,

z = 2 + iμh2.

Substituting this approximation into (4.15) and solving for Bi from (3.3), we rewrite
(4.15) as

(4.16) det
[

h−1 + iμh/2 ψ
1/(ψC1) C2/C1 − iεμ

]
= 0.

From the vanishing of the imaginary part of this equation, we conclude that

(4.17) C2 =
2
h2

εC1,

which is the relation that characterizes Hopf bifurcation at large eigenvalues in the
discretization; thus, (4.17) replaces (4.8) when discretization effects invalidate the
latter.

5. Supporting computations.

5.1. Methods. To test our bifurcation predictions and examine details of the
dynamics described by (2.2) and (2.7), we solved discretized versions of the equa-
tions numerically. Values of most parameters used in the computations were fixed to
match those of physical landslide experiments in which both quasi-steady sliding and
stick-slip behavior were observed [6], whereas values of K, D, and vref were modi-
fied systematically to make computational transects of the εC1-C2 parameter space
(Table 2.1). Specifically, values of ε were manipulated by adjusting the values of K
and D in accordance with values appropriate for diverse soils; then, while holding
εC1 essentially constant, C2 was increased incrementally through a plausible range by
adjusting vref. As C2 increased, bifurcation was detected as a transition from conver-
gent oscillations (leading to a stable steady state) to divergent oscillations (leading to
repetitive stick-slip cycles) in the v-p phase plane, a result described in more detail
below.

With few exceptions, the value of the rate-weakening friction parameter a used in
all computations was 0.02, consistent with observations in rate-controlled shear tests
with many soil-like materials [8, 12]. To attain values of C2 large enough to cause
bifurcation when εC1 > 0.1, however, it was necessary to increase a to 0.04. Such
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large values of a, C2, and εC1 are atypical and perhaps even physically implausi-
ble, but mathematically they characterize the upper fringes of the εC1-C2 parameter
space.

Our computational algorithm employed an explicit fourth-order Runge–Kutta
method to solve the ODE (2.7) and the Crank–Nicholson method to solve the PDE
(2.2) [9] in an operator-splitting scheme. First a Runge–Kutta time step Δt was
taken to advance the slide-block velocity vx(t) while holding the excess basal pore
pressure pex(0, t) constant; then using the new vx(t) to update the basal boundary
condition (2.3b) a Crank–Nicholson time step Δt was taken to advance the pore-
pressure diffusion solution pex(y, t). The updated pore-pressure solution provided the
basal pore pressure necessary to take the next Runge–Kutta step. Refinement of
this scheme by using the mean vx(t) between successive time steps to update (2.3b)
and then recompute pex(y, t) using this mean yielded solutions that differed neg-
ligibly from those of the basic scheme, provided that time steps were sufficiently
small. Therefore, we used the basic scheme for all computations reported in this
paper.

Our discretization of (2.2) and (2.7) used times steps with a size Δt suitable
for resolving slide-block acceleration, which had an intrinsic timescale K/g typically
much smaller than that of pore-pressure diffusion (i.e., ε � 1). In trial calculations we
initially set Δt = (K/g) sin θ, the time necessary for the block to accelerate from 0 to
K in the absence of friction and pore-pressure feedback. Subsequent trials showed that
when friction and feedback were present, Δt 
 (K/g) sin θ could generally be used
with negligible loss of accuracy. Therefore, we consistently employed Δt = 0.0002s
to produce all computational results reported in this paper, although we regularly
checked these results against those obtained using smaller time steps. Also, for the
sake of consistency, our spatial discretization of (2.2) employed h = 0.001 for all
results reported here, except for trials exploring finite-h effects.

In all computations we used Hw = 0.3701m, a value 1% larger than the static
limiting equilibrium value that applies when (2.9) reduces to an equality for the pa-
rameter values listed in Table 2.1. As indicated by (2.1), fixing the initial value of
Hw also fixed the background pore-pressure distribution phydro(y). An initial excess
pore-pressure distribution could be specified by (2.18), using (2.20) as an estimate for
the steady-state velocity. In practice, during production runs, we iterated (2.19) one
or more times to improve the initial estimate (2.20), in order to hasten convergence
to the steady state.

5.2. Results. Our computational results are summarized in Figure 5.1, a graph
that depicts theoretical bifurcation curves and computed bifurcation points in the
εC1-C2 parameter space. The broad range of values spanned by this parameter space
reflects the broad range of K and D values that are physically plausible for diverse
soils (e.g., [2]), and it illustrates the wide scope of the bifurcation phenomenon.

We determined all bifurcation points shown in Figure 5.1 to at least two significant
digits. At this level of precision, the computed bifurcation points lie exactly on the
theoretical Hopf-bifurcation curve Γ (solid line in Figure 5.1), provided the simulation
is not polluted by finite-h effects. When εC1 ≤ O(h3), numerical effects determine
the location of the bifurcation point, and it may be seen from the figure that the
bifurcation is accurately described by (4.17) (dashed line in Figure 5.1).

The physical character of the Hopf bifurcation is illustrated by phase portraits
depicting coevolution of vx(t) and pex(0, t). Figure 5.2 shows typical phase portraits
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Fig. 5.1. Comparison of computed bifurcation points with the Hopf bifurcation curve Γ predicted
by (4.6), (4.7) (solid line), and the finite-h limit (4.17) for the case in which h = 0.001 (dashed line).

for C2 near the bifurcation point. The bifurcation is subcritical—when C2 > C2Hopf,
the solution evolves to a periodic solution whose amplitude does not tend to zero as
C2 → C2Hopf. (Note that Figures 5.2B and 5.2C have different scales.) As expected,
the evolution toward or away from the steady state slows down as the bifurcation
point is approached [11].

For the parameter values used in making Figure 5.2, (4.10) predicts that near the
bifurcation point, the period of oscillations is 0.325 s. By comparision, the oscillations
depicted in Figure 5.2C have a computed period of 0.336 s. The fairly large discrepancy
between these two numbers is related to the fact that the bifurcation is subcritical.
Strictly speaking, (4.10) predicts the period of the small-amplitude, unstable orbits
close to the bifurcation point, while Figure 5.2C shows a moderate-amplitude, stable
orbit to which the solution jumps when C2 exceeds C2Hopf. A better comparison is
provided by the nearly periodic, decaying solution shown in Figure 5.2B, in which the
numerically estimated period is 0.324 s.

During part of the periodic orbits in Figures 5.2C and 5.2D, the velocity vanishes.
This stick-slip behavior occurs because the nonlinearity limiting growth of the oscil-
lations is a nonsmooth one, i.e., the discontinuous behavior of friction at v = 0. In no
instance did oscillations persist without stick-slip behavior.

Transitions in phase-portrait behavior for other values of εC1 were qualitatively
similar to those illustrated in Figure 5.2 except for unphysically large values of εC1:
i.e., near the end of Γ at the point (1/3, 1). In the latter case, the large-time orbit
differs from Figure 5.2 in that the block “sticks” during a large fraction of the period,
even immediately after bifurcation.
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Fig. 5.2. Examples of computed orbits in the vx, pex phase plane for a case in which εC1 =
5.256×10−6 and C2Hopf = 1.380×10−2. These computations used K = 2×10−4 m/s, D = 1×10−3

m2/s, a = 0.02, and values of vref ranging from 2.4×10−3 to 2.9×10−3 m/s to obtain varying
values of C2. All other parameters were held fixed at the values listed in Table 2.1. The point
marked “I.C.” indicates the initial condition used in each computation. Note that the value of C2

increases moving counterclockwise in the figure from frames A through D. In frame B, C2 is just
below critical, while in frame C, it is just above. Incidentally, in frame D, motion along the portion of
the trajectory where v ≡ 0, which is governed by diffusion alone, is slower than along the remainder
of the trajectory, and this effect is more pronounced if C2 is further from the bifurcation point.

6. Concluding discussion. Hopf bifurcation occurs in solutions of equations
that provide a parsimonious model of landslide motion regulated by dilatancy, pore-
pressure feedback, and rate-weakening friction. The bifurcation is manifested as an
abrupt transition (thus, the bifurcation is subcritical) from stable, steady, downslope
motion to periodic motion characterized by repetitive stick-slip cycles. The existence
of stick-slip behavior in this system is noteworthy because, unlike classical models
that exhibit stick-slip, our model includes no elastic element that exerts a variable
and reversible driving force. (The archetype model for stick-slip behavior is a rate-
weakening friction block pulled along a plane by an elastic spring.) Instead, in our
model, the driving force is the steady pull of gravity, and the frictional resisting force is
mediated by pore-pressure diffusion. Effects of pore-pressure diffusion have also been
studied in the context of stick-slip models that include an elastic driving element [10],
but to our knowledge no previous model has duplicated ours in omitting elastic forces
while retaining the capacity for stick-slip behavior.

Analysis and computations show that the Hopf bifurcation leading to stick-slip
behavior in our model is precisely governed by the parameters εC1 and C2, although
decomposition of these parameters into their physical components shows that their
variation depends mostly on variations in ε and the velocity ratio K/vref. Physically,
the timescale ratio ε specifies the relative speeds at which the landslide character-
istically moves and excess pore pressure characteristically diffuses, whereas K/vref
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specifies the degree to which rate-weakening friction affects landslide motion. For
relevant parameter values (Table 2.1), ε � 1 applies almost universally, indicating
that pore-pressure diffusion is a relatively slow process that serves to regulate the
inherently faster process of landslide motion. Also, for relevant parameter values,
K/vref � 1 is typical, although K/vref values of order 1 or larger are possible (see Ta-
ble 2.1). For K/vref � 1, the characteristic slip velocity vx = O(K) is small. Taking
the limit vss = 0 and then combining (3.3), (2.25), and (2.6), we calculate that

C2 =
sin θ

ψA2

aK

2μ0vref

,

which shows that, for K/vref � 1, increases in K/vref produce increases in C2 and
hence decreases in stability. This is the behavior typically observed in our compu-
tations. By contrast, if K/vref becomes comparable to or greater than 1, increases
in K/vref can produce decreases in C2 and hence increases in stability. Physically,
this behavior reflects the fact that friction, which decreases logarithmically at large
velocities, becomes increasingly insensitive to v as slip rates grow large.

Another important observation regarding the physics described by our model con-
cerns the consistent manner in which orbits in the vx-pex phase plane are skewed. As
shown in Figure 5.2, the minimum pex(0, t) always lags the maximum vx(t) by less
than one quarter of an orbit cycle, irrespective of whether orbits diverge unstably
or converge to a fixed point. Similar orbit skewness is exhibited in all of our com-
putational results. However, as εC1 → 0 the orbit skewness gradually diminishes, so
that orbits become almost symmetrical about the line vx = vss and the phase lag
approaches 1/4-cycle. This skewness of the orbits is a consequence of inertia. To il-
lustrate this, observe that εC1 → 0 if, for example, K → 0; it follows from (2.10)
that the dimensional steady-state velocity tends to zero as K → 0, and hence inertial
effects will disappear in this limit.

Finally, we emphasize that two key effects are not included in our model: (i) pa-
rameter evolution (e.g., dilatancy evolution) and (ii) a rate-and-state friction law in
which the friction coefficient evolves with time [1, 10]. Such effects could lead to other
kinds of instabilities, including a possibly more complex bifurcation than what we
have analyzed.

Appendix.
Proposition A.1. If C > 0, the function

f(λ) ≡ tan
√

λ√
λ

− Cλ

has no zeros in the closed left half plane {λ : Re λ ≤ 0}.
Proof. For any R > 0, let ΩR be the half disk

{λ : Re λ < 0, |λ| < R} ,

inside which f is analytic. According the principle of the argument [7, Chapter 4,
section 4], provided f is nonzero on ∂ΩR, the number of zeros of f in ΩR equals the
variation of arg f around the boundary. It is obvious that Re (−Cλ) ≥ 0 on ∂ΩR. We
claim that, no matter how large R may be,

Re
tan

√
λ√

λ
> 0 on ∂ΩR.
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Fig. A.1. Images of the semicircle ∂ΩR in the complex plane under two mappings (see the
appendix). The radius R = 100, and the constant C = 0.02.

Thus, the variation of the argument of f around ∂ΩR is zero, and this proves the
result.3

Let us prove the claim. For λ on the semicircle {λ : Re λ ≤ 0, |λ| = R}, we invoke
the asymptotic form (4.3) and observe that

Re
i√
λ

= |λ|−1/2 cos
(

π − arg λ

2

)
> 0;

the reason for the inequality is that −π/4 ≤ (π − arg λ)/2 ≤ π/4. For λ on the
imaginary axis, since f(λ) = f(λ), it suffices to restrict our attention to { Imλ ≥ 0}.
Along the nonnegative imaginary axis we may parametrize

√
λ as

√
λ = (1 + i)t, t ≥ 0.

Substituting into (4.4), we find

tan
√

λ√
λ

=
i

(1 + i)t
1 − e2i(1+i)t

1 + e2i(1+i)t
.

Multiplying both the numerator and the denominator by the complex conjugate of
the denominator and collecting terms, we calculate that

Re
tan

√
λ√

λ
= p(t)

sinh 2t + sin 2t

t
> 0,

where the positive factor

p(t) =
∣∣∣1 + e2i(1+i)t

∣∣∣−2

comes from the modulus squared of the denominator. This proves the proposition.

3The reader may find it interesting to consult Figure A.1, which shows the image of ∂ΩR under
(tan

√
λ)/

√
λ and under f .
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