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Dynamics of Seismogenic Volcanic Extrusion Resisted by 
a Solid Surface Plug, Mount St. Helens, 2004–2005

By Richard M. Iverson1

Abstract
The 2004–5 eruption of Mount St. Helens exhibited 

sustained, near-equilibrium behavior characterized by nearly 
steady extrusion of a solid dacite plug and nearly periodic 
occurrence of shallow earthquakes. Diverse data support the 
hypothesis that these earthquakes resulted from stick-slip 
motion along the margins of the plug as it was forced incre-
mentally upward by ascending, solidifying, gas-poor magma. 
I formalize this hypothesis with a mathematical model derived 
by assuming that magma enters the base of the eruption 
conduit at a steady rate, invoking conservation of mass and 
momentum of the magma and plug, and postulating simple 
constitutive equations that describe magma and conduit com-
pressibilities and friction along the plug margins. Reduction 
of the model equations reveals a strong mathematical analogy 
between the dynamics of the magma-plug system and those of 
a variably damped oscillator. Oscillations in extrusion velocity 
result from the interaction of plug inertia, a variable upward 
force due to magma pressure, and a downward force due to 
the plug weight. Damping of oscillations depends mostly 
on plug-boundary friction, and oscillations grow unstably if 
friction exhibits rate weakening similar to that observed in 
experiments. When growth of oscillations causes the extrusion 
rate to reach zero, however, gravity causes friction to reverse 
direction, and this reversal instigates a transition from unstable 
oscillations to self-regulating stick-slip cycles. The transition 
occurs irrespective of the details of rate-weakening behavior, 
and repetitive stick-slip cycles are, therefore, robust features of 
the system’s dynamics. The presence of a highly compressible 
elastic driving element (that is, magma containing bubbles) 
appears crucial for enabling seismogenic slip events to occur 
repeatedly at the shallow earthquake focal depths (<1 km) 
observed during the 2004–5 eruption. Computations show that 

fluctuations in magma pressure accompanying such slip events 
are <3 kPa, indicating that deviations from mechanical equi-
librium are slight and that coseismic force drops are <108 N. 
These results imply that the system’s self-regulating behavior 
is not susceptible to dramatic change—provided that the rate 
of magma ascent remains similar to the rate of magma accre-
tion at the base of the plug, that plug surface erosion more or 
less compensates for mass gain due to basal accretion, and that 
magma and rock properties do not change significantly. Even 
if disequilibrium initial conditions are imposed, the dynamics 
of the magma-plug system are strongly attracted to self-regu-
lating stick-slip cycles, although this self-regulating behavior 
can be bypassed on the way to runaway behavior if the initial 
state is too far from equilibrium.

Introduction
The dome-building eruption of Mount St. Helens that 

began in October 2004 was remarkable in several respects. 
This paper describes formulation, analysis, and predictions of 
a mechanistic model that links three key aspects of the erup-
tion. The first and perhaps most striking of these aspects was 
extrusion of solid rock that emerged from the crater floor as a 
sequence of spines with conspicuous fault gouge and striations 
on their freshly exposed bounding surfaces. Second, extrusion 
proceeded at a nearly constant long-term rate (~1–2 m3/s) that 
was sustained from December 2004 through at least Decem-
ber 2005. Third, extrusion was accompanied by more than a 
million small earthquakes that occurred almost periodically 
at hypocentral locations <1 km beneath the extruding dome. 
These eruption characteristics motivate the hypothesis that 
extrusion was driven by a nearly constant influx of magma at 
depth and resisted by a plug of solidified magma that slipped 
incrementally and seismogenically against the wall rock 
forming the upper parts of the magma conduit. I refer to this 
hypothesis as SPASM, an acronym for Seismogenic Plug of 
Ascending, Solidifying Magma.
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This paper formalizes the SPASM hypothesis mathemati-
cally and tests whether it is consistent quantitatively with 
behavior observed during the 2004–5 eruption of Mount St. 
Helens. The mechanistic framework of the SPASM model is 
simple, reflecting my belief that a relatively simple physical 
process (that is, one involving few special conditions and con-
tingencies) is most likely responsible for producing persistent, 
repetitive, natural events—such as nearly periodic earth-
quakes. Although the SPASM model aims chiefly to explain 
the origin of these earthquakes, it can also provide insight into 
conditions under which the eruption style might significantly 
change, and the potential for such change has large implica-
tions for assessment of volcano hazards.

Below, following a brief overview of key features of the 
2004–5 eruption of Mount St. Helens, I describe the con-
ceptual basis of the SPASM model. I then present the math-
ematical formulation of the nonlinear SPASM equations and 
analytical results obtained from exact solutions of approximate 
(that is, linearized) versions of these equations. The analytical 
results demonstrate the plausibility of several broad classes of 
eruptive behavior, including both stable and unstable behavior. 
I then use numerical results obtained from approximate solu-
tions of the exact, nonlinear model equations to clarify some 
consequences of instability. In particular, the numerical results 
show how stick-slip motion arises as a natural consequence of 
plug extrusion dynamics. In the final sections of the paper, I 
discuss implications of these findings for interpreting solid-
state volcanic extrusion and accompanying seismicity.

Eruption Overview
Despite Mount St. Helens’ famous explosive eruption in 

1980, the dome-building activity that began in 2004 is consis-
tent with the volcano’s recent geologic history (Mullineaux 
and Crandell, 1981). Over the past ~4,000 years, Mount St. 
Helens has extruded rock at a mean rate of about 0.2 m3/s 
while constructing a 26-km3 modern edifice (defined here as 
the volume above 1,220 m altitude) composed primarily of 
andesite and dacite lava flows and domes and their detritus. 
From 1980 to 1986 a dacite dome grew episodically in the cra-
ter formed during the 1980 eruption, and its volume ultimately 
reached 7.4×107 m3 (Swanson and Holcomb, 1990). From 
1987 to 2004 Mount St. Helens did not erupt, although at least 
six phreatic explosions occurred from 1989 to 1991 (Mas-
tin, 1994). Recurrent seismicity at depths of 2–8 km in the 
late 1980s and 1990s may have been associated with magma 
recharge but did not lead to eruptions (Moran, 1994).

Renewed eruptive activity began on October 1, 
2004, when a small explosion formed a vent through the 
~150-m-thick glacier that had grown in the southern part of 
Mount St. Helens’ crater since 1986 (Schilling and others, 
2004; Dzurisin and others, 2005; Walder and others, 2005). 
The explosion was preceded by about 7 days of increasingly 
intense seismicity at depths <1 km, but deeper seismicity 

(such as might be indicative of magma-chamber pressurization 
or depressurization) did not occur then and has not occurred 
subsequently (Moran and others, this volume, chap. 2). By 
October 11, explosions had largely ceased, seismic energy 
release had decreased to a rate about one-tenth that of the 
preceding two weeks, and extrusion of a solid dacite plug had 
begun (Dzurisin and others, 2005). By December 2004, extru-
sion rates had become nearly steady, and by December 15, 
2005, the volume of the resulting new lava dome was ~7.3×107 
m3 (Schilling and others, this volume, chap. 8). This volume, 
added to that of the 1980–86 lava dome, implies that the mean 
extrusion rate at Mount St. Helens from 1980 to 2005 was 
about 0.2 m3/s, similar to the mean rate for the past 4,000 
years. Thus, the 2004–5 activity of Mount St. Helens was by 
no means unusual.

The remainder of this section focuses on the quasi-steady 
eruptive behavior observed at Mount St. Helens from December 
2004 through December 2005, because understanding this behav-
ior is the goal of SPASM. Other papers in this volume provide 
detailed descriptions of the findings briefly summarized below.

Extrusion Rates and Vent Size

After extrusion commenced, it appeared to occur continu-
ously through December 2005, and it produced a sequence of 
monolithic dacite spines, with some reaching heights >100 m. 
The fourth of these spines had such a strikingly smooth, 
symmetrical, elongate form that it resembled a breaching 
whale and was accordingly dubbed the “whaleback” (fig. 1). 
Each spine emerged over a period of several weeks to sev-
eral months and eventually disintegrated as a consequence of 
fracturing and avalanching of rock from its exposed surfaces. 
By late 2005, the sequence of spines had formed a composite 
dome with the appearance of a multicrested pile of rubble, and 
distinguishing individual spines would in retrospect have been 
difficult without knowledge of their emplacement history.

Despite the rather complicated details of spine emplace-
ment, photogrammetric analysis showed that the rate of 
extrusion remained remarkably constant from about December 
2004 to December 2005 (fig. 2) and typically ranged from 
about 1 to 2 m3/s (Schilling and others, this volume, chap. 8). 
During the same period, the linear extrusion rate (that is, the 
speed of spine emergence from the ground) estimated from 
far-field, ground-based photography typically ranged from 
about 3×10-5 to 7×10-5 m/s (3–6 m/day) (Major and others, this 
volume, chap. 12), and these rates were largely consistent with 
high-precision data transmitted by short-lived GPS receiv-
ers placed intermittently on the extruding spines (LaHusen 
and others, this volume, chap. 16). Similar linear extrusion 
rates were inferred from short-duration, short-range photog-
raphy, which detected centimeter-scale plug emergence over 
durations as brief as a few minutes (Dzurisin and others, this 
volume, chap. 14). Thus, all evidence indicates that extrusion 
rates were essentially constant over time scales longer than the 
duration of small earthquakes (about 10 s or less) but shorter 
than the multiyear duration of the eruption as a whole (>107 s).



21.  Dynamics of Seismogenic Volcanic Extrusion Resisted by a Solid Surface Plug, Mount St. Helens, 2004–2005    427

Figure 1.  Oblique aerial photograph of extruding 
“whaleback” spine 4 at Mount St. Helens, viewed from the 
northwest, on February 22, 2005. Horizontal length of the 
smooth whaleback is about 380 m. Arrow shows vent from 
which the spine emerged. USGS photo by S.P. Schilling.

According to the SPASM hypothesis, small, abrupt 
pulses in plug extrusion were responsible for generating small 
earthquakes. These pulses would have typically entailed 
upward plug displacements of ~5 mm (a value obtained by 
multiplying the typical 5×10-5 m/s linear extrusion rate by 
the typical 100-s interval between earthquakes), but abrupt 
movements this small were not resolvable by displacement 
measurements. Moreover, abrupt slip occurring at earthquake 
hypocentral depths may have been muted at shallower depths 
owing to inelastic deformation of weak near-surface materi-
als. As a consequence, no direct measurements of coseismic 
pulses of plug extrusion were made during the eruption. 
Therefore, the SPASM model addresses the dynamics of 
stick-slip cycles with properties that have been inferred but 
not directly measured.

Inference also plays a role in estimating the size of the 
vent where extruding spines breached the crater floor, because 
the presence of fragmented glacier ice and accumulated talus, 
as well as previously extruded rock, partly obscured the vent 
margins. Moreover, different parts of the vent became vis-
ible as successive spines emerged and moved laterally as well 
as upward. From the standpoint of constraining the SPASM 
model, the most useful estimates of the effective cross-sec-
tional area of the vent are obtained not from direct observa-
tions of spine geometry but from comparison of volumetric 
and linear extrusion rates measured over extended periods. 
Division of the typical volumetric rate of 1.5 m3/s by the typi-
cal linear rate of 5×10-5 m/s yields an effective vent area of 
30,000 m2, which implies an effective vent diameter of ~200 
m if the vent geometry is assumed to be circular. A vent of this 
size (but not necessarily circular) is assumed for all calcula-
tions I present in this paper.

Gouge Properties

Where fresh surfaces of newly extruded spines were 
exposed, they were coated with granulated, striated dacite 
interpreted to be fault gouge. The gouge presumably formed as 
a consequence of mechanical wear during localized shearing 
along the margins of the dacite plug as it moved upward rela-
tive to the adjacent conduit walls (compare Tuffen and Din-
gwell, 2005). Observations and dredge sampling from hovering 
helicopters indicated that the gouge thickness was typically 
about 1 m (J.S. Pallister, U.S. Geological Survey, oral com-
mun., 2005). Striations on the gouge surface were abundant and 
generally aligned with the direction of extrusion (fig. 3).

Frictional properties of the gouge were measured using a 
large-scale ring-shear apparatus, in which a remolded, annular 
specimen (~0.012 m3) was deformed in simple shear at various 
imposed rates (Moore and others, this volume, chap. 20). The 
measurements demonstrated that the gouge typically exhibited 
peak strength at displacements <0.5 mm, steady-state strength 
after about 3 mm of displacement, and reduction of steady-
state strength with increasing shear rate (for example, fig. 4). 
At rates ≥5×10-4 m/s (about 43 m/day), this rate-weakening 

Figure 2.  Measured volume of extruded dome rock at Mount 
St. Helens as a function of time (after Schilling and others, 
this volume, chap. 8). The red reference line shows growth of 
dome volume occurring with a constant extrusion rate of 1.5 
m3/s from December 2004 to December 2005.
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Figure 3.  Photographs of striated, gouge-coated surfaces of 
extruding spines at Mount St. Helens. Arrows show direction of 
spine motion. A, Crest of spine 4 viewed from east on February 
22, 2005. Hovering helicopter (circled) provides scale. B, Base of 
spine 5 viewed from north on July 28, 2005. Field of view is roughly 
30 m wide. USGS photos by S.P. Schilling.

behavior was supplanted by rate-strengthening behavior, but 
the relevance of this transition is questionable because the test 
equipment could shear the specimen at rates ≥5×10-4 m/s only 
under very low confining stresses, ≤23 kPa (Moore and others, 
this volume, chap. 20).

Overall, the ring-shear tests of Moore and others (this 
volume, chap. 20) showed that frictional behavior of the 
Mount St. Helens gouge was largely consistent with that 
expected from models of rate- and state-dependent friction 
(for example, Dieterich, 1979; Ruina, 1983; Marone, 1998). 
Such models posit that frictional strength varies in propor-
tion to the logarithms of the imposed shear rate and hold time 
(that is, the time a specimen is held in a static state between 
successive shear events). In rate-weakening materials, the 
combined effect of shear rate and hold time causes a reduction 
of frictional strength as steady shear rates increase. In tests of 
the Mount St. Helens fault gouge under confining stresses of 

86–195 kPa, measured values of steady-state friction coef-
ficients ranged from 0.42 to 0.47, and these values declined 
logarithmically as the imposed shear rate increased (Moore 
and others, this volume, chap. 20). Measured peak friction 
coefficients were 1–9 percent larger than steady-state friction 
coefficients, and peak values increased logarithmically with 
hold time. This hold-time effect is typical of rocks and densely 
packed granular materials (for example, Beeler and others, 
1994; Losert and others, 2000).

Testing by Moore and others (this volume, chap. 20) also 
revealed that the effective in-place shear stiffness of the gouge 
was probably orders of magnitude larger than the effective stiff-
ness of the magma body that loaded the gouge as it pushed the 
extruding plug upward. This contrast in stiffness, along with 
rate-weakening steady-state friction, provides a sufficient con-
dition for stick-slip behavior in materials exhibiting rate- and 
state-dependent friction (Rice and Ruina, 1983; Ruina, 1983).

Drumbeat Earthquakes

An extraordinary feature of the 2004–5 eruption of 
Mount St. Helens was persistence of small (M

d
 ≤2), shal-

low earthquakes that recurred so regularly they were dubbed 
“drumbeats” (Moran and others, this volume, chap. 2). The 
period between successive drumbeats shifted slowly with time 
but was commonly ~100 s (for example, fig. 5) and nearly 
always in the range 30–300 s. Seismograms showed that 

Figure 4.  Example of data collected during ring-shear tests 
of gouge friction by Moore and others (this volume, chap. 20). 
Measured shear stress as a function of displacement is shown 
for two steady-state shear rates. Inferred friction coefficients 
(right-hand axis) represent shear stress divided by a nominally 
constant normal stress of 159 kPa, but normal stress fluctuated 
slightly (<1 percent) during the tests, such that friction 
coefficients are approximate (after Moore and others, this 
volume, chap. 20).
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drumbeat waveforms generally had impulsive, high-frequency 
onsets and low-frequency codas, similar to waveforms of 
other hybrid volcanic earthquakes (for example, Lahr and 
others, 1994; Neuberg, 2000). Over time scales of hours to 
weeks, drumbeats typically had consistent sizes and did not 
display a Gutenberg-Richter magnitude-frequency distribu-
tion typical of tectonic earthquakes (Moran and others, this 
volume, chap. 2). Precise location of drumbeat hypocenters 
was hindered by the geologic and topographic complexity of 
the Mount St. Helens crater and the low density of crater seis-
mometers, but within resolution limits (~100 m), all drum-
beats originated at depths <1 km directly around or beneath 
the growing dome. Accompanying the drumbeats at irregular 
intervals were smaller and larger earthquakes (as large as M

d
 

3.4) with differing seismic signatures, but these earthquakes 
had little lasting effect on the drumbeats.

The recurrence and character of drumbeat earthquakes 
implies the existence of a nondestructive seismic source, as 

Figure 5.  Example of 24-hour seismogram illustrating nearly periodic occurrence of “drumbeat” earthquakes at Mount 
St. Helens. Graph shows seismicity recorded at station YEL, located 1.5 km north of the 2004–5 vent. Time begins at 21:00 
UTC on December 1, 2005, and scrolls from left to right and then top to bottom. Earthquake magnitudes were roughly 
0.5–1 during this interval. Data courtesy of Pacific Northwest Seismic Network.

has been inferred for other repetitive volcanic earthquakes 
(Lahr and others, 1994; Goto, 1999; Neuberg, 2000; Neuberg 
and others, 2006). The most outstanding attribute of the drum-
beat earthquakes at Mount St. Helens, however, was their peri-
odicity. This periodicity, together with the presence of striated 
fault gouge bounding the extruding plug, is the key motivation 
for the SPASM hypothesis.

Although the SPASM model aims to link plug extru-
sion and earthquake generation, it does not address resulting 
seismic radiation. Radiation of seismic waves could result 
from rapid propagation of rupture that spreads along the 
fault surface after nucleating in a strong “keystone” patch of 
fault gouge (see Scholz, 2002). Alternatively, the force drop 
accompanying frictional slip that occurs uniformly along 
the plug margins might be so abrupt as to radiate seismic 
energy (see Marone and Richardson, 2006), and this force 
drop is calculated by the SPASM model. In relating SPASM 
mechanics to seismic radiation, however, it must be borne 
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in mind that only a small fraction (<10 percent) of the work 
done during fault slip typically results in seismic radiation 
(McGarr, 1999). Generally, more work is done in overcom-
ing friction, and the mechanics of the total work cycle is the 
primary focus of SPASM.

Magma Solidification and Compressibility

Although genesis of the magma that erupted in 2004–5 
remains uncertain, petrologic data indicate that solidification 
occurred at depths <1 km. This inference derives from the 
fact that the composition of glass in the newly erupted dacite 
plots between the 0.1 and 50 MPa cotectics of the modified 
quartz-albite-orthoclase phase diagram for Mount St. Helens 
dacites (Blundy and Cashman, 2001) and from the presence 
of tridymite, which constrains the late stages of solidification 
to pressures of 10–20 MPa (equivalent to estimated lithostatic 
pressures at depths ~0.5–1 km) (Pallister and others, 2005, and 
this volume, chap. 30). These depths are consistent with the 
maximum hypocentral depths inferred for drumbeat earth-
quakes (Moran and others, this volume, chap. 2), and they 
imply that solid-state extrusion and earthquake generation 
were collocated.

The quantity and composition of volcanic gases emit-
ted during the 2004–5 eruption demonstrate that the magma 
was gas poor in comparison to the 1980 Mount St. Helens 
magma but that the 2004–5 magma nonetheless contained 
sufficient exsolved gas to greatly influence its compress-
ibility. At 8 km depth the gas volume fraction was probably 
<2 percent, but calculations using methods of Newman and 
Lowenstern (2002) indicate that the gas volume fraction 
grew during magma ascent and reached about 50 percent at 
~1 km depth, where solidification began (Gerlach and oth-
ers, this volume, chap. 26). The same calculations indicate 
that at depths between 8 and 1 km, the gas volume fraction 
averaged ~12 percent. Allowing for inevitable gas separation 
from rock during extrusion, these results are consistent with 
observed vesicle volume fractions of 11–34 percent in samples 
of the 2004–5 dacite (Gerlach and others, this volume, chap. 
26). An exsolved gas volume fraction of 12 percent implies a 
magma compressibility ~10−7 Pa−1, according to the model of 
Mastin and Ghiorso (2000). Although this value is, of course, 
inexact, its mechanical significance is clear: the magma was 
almost certainly much more compressible than solid rock, 
which generally has compressibilities <10−10 Pa−1 (Hatheway 
and Kiersch, 1989). As a consequence, magma compression 
almost certainly dominated elastic strain as pressure within the 
magma-conduit-plug system increased.

Geodetic Inferences About Magma Influx

Measured displacements of the volcano flanks and adja-
cent areas preceding and during the 2004–5 eruption imply 
that the volume of magma evacuated from depths <10 km was 
considerably less than the volume of extruded rock (Lisowski 

and others, this volume, chap. 15). No evidence of systematic 
preeruption surface displacement was found by global position-
ing system (GPS) surveys in 2000 and 2003 of a 40-station 
network centered on the volcano, nor by continuous opera-
tion of GPS station JRO1, located 9 km north of the eruption 
vent. Seismicity that heralded the eruption in late September 
2004 was accompanied by only centimeter-scale downward 
and southward (that is, inward) surface displacements at JRO1 
(Lisowski and others, this volume, chap. 15). The displacement 
pattern measured at all stations corresponds well with that 
predicted by an elastic half-space model that assumes pressure 
decrease within a vertically oriented, prolate spheroidal cavity 
with a mean depth of 8 km and volume loss ~2×107 m3 dur-
ing the period from October 1, 2004, to November 25, 2005 
(Lisowski and others, this volume, chap. 15). This apparent 
volume loss is less than one-third the volume of rock extruded 
during the same period, and little of the apparent volume loss 
occurred after the onset of nearly steady extrusion in Decem-
ber 2004, implying that magma recharge from a deep (>10 
km) source accompanied this phase of the eruption.

Conceptual Basis of Mathematical 
Model

The basic mechanical elements of the SPASM model 
are shown schematically in figure 6, and table 1 defines all 
mathematical symbols used in development and analysis of 
the model. The model assumes that magma flows into the 
base of a feeder conduit at a steady volumetric rate Q. The 
conduit is assumed to originate about 8 km beneath the Mount 
St. Helens crater, a depth inferred from hypocentral locations 
of pre-2004 earthquakes apparently associated with magma 
movement (Moran, 1994; Moran and others, this volume, 
chap. 2). Ascent of magma at the top of the conduit is resisted 
by force exerted by a near-surface plug of solidified magma, 
owing to its weight mg and boundary friction F. Seismic and 
petrologic data collected during the 2004–5 eruption imply 
that the plug extends to a depth <1 km, and as a baseline value 
I assume that it extends to a depth ~500 m. The plug mass m 
can change with time as a consequence of basal accretion of 
congealing magma at mass rate B , where  is the magma 
bulk density, and as a consequence of surface erosion by spal-
ling and avalanching at mass rate r E , where r is the bulk 
density of the plug rock. The conduit volume can change with 
time as a result of motion of the base of the plug and changes 
in magma pressure that cause elastic deflection of the con-
duit walls. The magma pressure and density can change in 
response to the changing balance between the steady magma 
influx and changing conduit volume. The resulting mathemati-
cal model represents the simultaneous evolution of the upward 
plug velocity u, magma pressure against the base of the plug 
p, and conduit volume V, which are influenced by concurrent 
evolution of m and .
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Implicit in the SPASM model is a “top-down” perspective 
of eruption dynamics. The model focuses on observed surface 
and near-surface phenomena associated with eruptive behavior 
but does not consider phenomena associated with unobserved 
changes that might occur in a deep magma reservoir. Instead, 
in the SPASM model, variations in extrusion rate are postu-
lated to arise naturally as a consequence of the dynamics of 
the solid plug responding to steady forcing. Unsteady forcing 
due to unsteady magma influx would complicate behavior 
exhibited by the SPASM model but would not change its fun-
damental character.

The SPASM model is one-dimensional and does not 
explicitly consider the effects of conduit and plug geometry. 
This simplification poses both an advantage and disadvantage. 
The advantage derives from the fact that predictions of the 
SPASM model are independent of geometrical effects and are, 
in a general sense, applicable to any geometry. The disadvan-
tage is that SPASM yields no insight concerning the effects of 
geometrical complications such as variations in the shape of 
the magma conduit, vent, or growing lava dome.

Many previous eruption models have used a one-dimen-
sional approach similar to the one used here, and some models 
have invoked stick-slip motion as a phenomenon responsible 
for cyclical eruptive behavior (for example, Denlinger and 
Hoblitt, 1999; Voight and others, 1999; Ozerov and others, 
2003). The SPASM model, however, is the first to demonstrate 
how stick-slip behavior arises as a natural consequence of 
system dynamics. Indeed, a key feature of the SPASM model 

is that forces need not be balanced; therefore, the model can 
exhibit dynamical behavior not possible in eruption models 
that assume balanced forces (for example, Mastin and others, 
this volume, chap. 22).

Mathematical Formulation
The most fundamental equations used to derive the 

SPASM model express conservation of mass and linear 
momentum of the solid plug and conduit fluid. These conser-
vation laws are supplemented by constitutive equations defin-
ing magma compressibility, conduit wall-rock compliance, and 
the frictional force acting where the plug contacts the conduit 
walls. In this section the conservation and constitutive equa-
tions are presented and reduced to a set of three simultaneous 
differential equations that describe behavior of the magma-
conduit-plug system as a whole.

Conservation of Linear Momentum of Solid Plug

Changes in the upward momentum of the solid plug are 
described by Newton’s second law of motion, expressed as 

dum   u     p A  m g  F
dt dt

+ = − −
dm ,                 (1) 

where m is the plug mass, u is the vertical (upward) plug 
velocity, g is the magnitude of gravitational acceleration, and p 
is the magma pressure against the base of the plug, which has 
area A in horizontal projection. Upward motion of the plug is 
driven by the basal magma-pressure force pA and resisted by 
the plug weight mg and boundary friction force F. Implicit in 
equation 1 is the understanding that F would change sign (that 
is, friction would reverse its direction of action) if u were to 
change sign. A detailed specification of F is provided in the 
section on “Constitutive Equations,” below.

Conservation of Mass of Solid Plug

Mass change of the solid plug depends on the rate of 
mass accretion at the base of the plug, B , and the rate of 
mass loss at the surface of plug due to erosion, r E , where B 
is the volumetric rate of magma conversion to solid rock and 
E is the volumetric erosion rate of the plug surface. Magma 
solidification may involve a change in mass density from 
to r . Summing these effects yields the mass-conservation 
equation 

r
dm     B E    
dt

= − =   ,                              (2) 

where  is a convenient shorthand for   r E. For the sake 
of simplicity,  is assumed constant, although this assumption 
is readily relaxed in numerical analyses if warranted. With 
constant , equation 2 yields the explicit solution

Figure 6.  Schematic diagram illustrating the 
conceptual framework of the SPASM model.
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Symbol Dimensions Definition

A L2 Horizontal cross-sectional area of base of plug

B L3/T Volumetric rate of magma solidification at base of plug

C M/T Dimensional measure of rate dependence of plug friction force

c none Dimensionless measure of rate dependence of plug friction force

c
1
, c

2
none Arbitrary constants of integration

D none Dimensionless parameter summarizing effects of frictional damping

E L3/T Volumetric rate of erosion of surface of plug

F ML/T2 Friction force on margins of plug

F
0

ML/T2 Value of F at static limiting equilibrium

F(u
0
) ML/T2 Value of F at the steady equilibrium extrusion rate u

0

F* none F/F
0

G none Dimensionless parameter summarizing effects of gravity

g L/T2 Gravitational acceleration

H
con

L Vertical height of magma-filled conduit

H
plug

L Vertical height of extruding solid plug

K none Dimensionless parameter summarizing effects of plug mass change

m M Plug mass

m
0

M Static or steady equilibrium value of m

p M/LT2 Magma pressure against base of plug

p
b

M/LT2 Magma pressure at base of conduit

p
i

M/LT2 Value of p at onset of a stick event

p
0

M/LT2 Value of p at static limiting equilibrium

p
ref

M/LT2 Reference value of p used in magma compression equation

Q L3/T Volumetric rate of magma influx at base of conduit

R none Dimensionless parameter equal to 1− ρ/ρ
r

R
0

none Value of R when ρ = ρ
0

R* none R/R
0

S none Dimensionless parameter summarizing rate dependent plug friction

Ŝ none Dimensionless parameter summarizing static plug friction

T T Oscillation period

t T Time

t
0

T Natural time scale of oscillations, defined in equation 25

t* none t/t
0

u L/T Vertical extrusion velocity

u
0

L/T Value of u at steady equilibrium

u
ref

L/T Reference value of u used in friction equation

u´ L/T u−u
0

u* none u´/u
0

u
i
* none Initial value of u*

V L3 Volume of magma-filled conduit
V

0
L3 Static or steady equilibrium value of V

V´ L3 V−V
0

V* none V´/V
0

Table 1.  Definitions of mathematical symbols.



21.  Dynamics of Seismogenic Volcanic Extrusion Resisted by a Solid Surface Plug, Mount St. Helens, 2004–2005    433

Symbol Dimensions Definition

V
i

L3 Value of V at onset of stick event

W L3/T Parameter defined in equation 53

X none Dimensionless parameter defined in equation 44

Y none Dimensionless parameter defined in equation 44

Z none Dimensionless parameter defined in equation 44

α
1

LT2/M Elastic bulk compressibility of magma

α
2

LT2/M Elastic compliance of walls of magma-filled conduit

η M/LT Magma viscosity

κ M/T Rate of change of plug mass

λ none Parameter that relates plug weight to boundary normal stress

μ
0

none Static friction coefficient

ν none Dimensionless parameter defined in equation 34

ρ M/L3 Bulk density of magma

ρ
0

M/L3 Value of ρ at static limiting equilibrium

ρ
r

M/L3 Bulk density of plug rock

ξ none Rescaled time variable defined in equation 34

Table 1.  Definitions of mathematical symbols.—Continued

m = t + m0 		         (3) 

where m
0
 is the initial value of m.

Conservation of Linear Momentum of Conduit 
Fluid

Newton’s second law for upward motion of magma in the 
conduit takes a simple form if variations of magma properties 
and velocity with position are neglected: 
 
	

2

8b

con

 - ppdQ d      Q    A    g    Q 
dt dt H A

 
+ = − − 

  
.

 
	

      		                                             
(4) 

 

Here Q is the vertical (upward) volumetric flux of magma, 

bp  is the magma pressure at the base of the conduit, and η 
is the magma viscosity. Equation 4 is the fluid-mechanical 
equivalent of equation 1 and is also equivalent to the 
Navier-Stokes equation for one-dimensional laminar flow, 
integrated over the conduit cross-sectional area A and 
height conH . According to equation 4, upward motion of 
magma in the conduit is driven by the vertical pressure 
gradient ( ) /b conp  - p  H  and is resisted by the magma unit 
weight g  and viscous drag, represented by the last term 
in the equation. The form of this drag term is inferred from 
an elementary analysis of Poiseuille flow in a cylindrical 
conduit, although alternative drag terms (appropriate for 
other conduit geometries or magma rheologies) could be 
used without difficulty.

A simplified momentum equation is obtained by assum-
ing that the magma flux Q is independent of time and making 
the substitution / 0dQ dt =  in equation 4. Rearrangement of 
the resulting equation yields an explicit expression for Q, 
 

	 .8

b

con

  pp    g
HQ  A d     
dt A



  

−
−

=
+

		         (5) 
 

Equation 5 shows that maintenance of constant Q in the pres-
ence of changing conH , p, and  (all of which can occur in 
the context of the SPASM model) can imply that compensat-
ing changes occur in bp and/or η. The model assumes that 
such compensating changes may indeed occur, but it does not 
evaluate such changes explicitly. A complete evaluation could 
be accomplished by using equation 4 together with a mass-
conservation equation (see below) to model the dynamics of 
transient magma flow in the conduit (for example, Melnik and 
Sparks, 2002). However, such a model also requires specifi-
cation of a basal boundary condition (for example, magma-
chamber pressure) to drive magma inflow. Any such specifica-
tion involves assumptions that are arbitrary, and the SPASM 
model minimizes use of arbitrary assumptions by specifying a 
constant basal magma influx Q.

Conservation of Mass of Conduit Fluid

The mass of the fluid magma in the conduit is  V , where 
V is the conduit volume. Changes in  V  depend not only on 
changes in  and V but also on the influx of fluid mass at the 
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base of the conduit  Q and the loss of fluid mass at the top of 
the conduit B, which results from solidification at the base of 
the solid plug. These phenomena are summarized by the fluid 
mass-conservation equation

 
( ).dV d   V     Q  B

dt dt


 + = − 	                  (6) 

Both Q and B are treated as constants.

Constitutive Equations

Although the conservation equations for Q and m reduce 
to the explicit forms shown above, the remaining two conser-
vation equations (1 and 6) contain four dependent variables, 
u, p, V, and  and an as-yet-unspecified friction force F. Thus, 
three constitutive equations must be specified to attain math-
ematical closure.

Magma Compressibility
The first constitutive equation defines the compressibility 

of the fluid magma 1  as 

1
1 ,d  

dp





= 		         (7) 
 

and integration of equation 7 yields 0 1exp[ ( )]refp p  = −
  
, 

where 0  is the magma bulk density at a reference pressure

refp . Combination of equation 7 with the chain rule  
d  dt (d  dp)(dp  dt) yields an equation that relates magma 
density change to pressure change: 
 

1 .d dp   
dt dt


 = 		         (8) 
 

Below, this equation is used to replace density derivatives with 
pressure derivatives where advantageous.

Conduit Compliance
A second constitutive equation defines the bulk elastic 

compliance of the conduit walls  as 
 

2
0

1 ,
 

dV 
V dp


 

=  
 

		         (9) 
 

where the subscript 0 denotes conduit volume change under a 
condition of zero plug velocity (u=0) and zero plug accretion 
(B=0). The utility of equation 9 is increased by embedding 
the equation in a definition of the total rate of conduit volume 
change that occurs when u and B are nonzero,

0

.
 r

dV dV A u  B  
dt dt




 = − +      
	      (10) 

Here again, the subscript 0 denotes the rate of volume change 
that would exist if u=0 and B=0, whereas the terms Au and   
(r ) B describe conduit volume change due to upward plug 
motion and basal plug accretion, respectively. The factor  
r  accounts for the influence of density change from   to  
r  during magma solidification at the volumetric rate B.

To obtain a “systemic” constitutive equation for total con-
duit volume change, equation 9 is embedded in equation 10 by 
using the chain rule 00[ / [ / ] / ( / )]dV dp   =  dV dt  dp dt , yielding 
 

2 .
r

dV dp A u   B    V
dt dt





= − + 	      (11) 

 

The volume change described by equation 11 includes both an 
irreversible component and a reversible (elastic) component.

Plug Boundary Friction
The final constitutive equation defines the friction force 

F that acts where the plug contacts the conduit walls. This fric-
tion results from shearing of gouge, discussed briefly above in 
the section on “Gouge Properties” and in detail by Moore and 
others (this volume, chap. 20). Because friction might poten-
tially exhibit diverse behaviors, and because this diversity has 
significant ramifications for extrusion dynamics, I represent F 
with a functional form that is consistent with the key findings 
of Moore and others (this volume, chap. 20) but that compro-
mises between precision, generality, and simplicity: 
 

1
0sgn( ) 1 sinh .

ref

uF     u mg    c  
u

 −
 

= + 
  

	      (12) 
 

Here sgn(u) denotes the sign of u and stipulates that the 
frictional force always opposes motion; 0  is a static fric-
tion coefficient applicable when u=0; c is a parameter that 
describes the sign and magnitude of frictional rate depen-
dence; and refu  is a reference velocity that specifies the extent 
of nonlinearity of rate dependence (fig. 7). In the simplest 
case, with c=0, equation 12 specifies that the friction force 
has a constant value 0 0sgn( )F F u mg= = . If 0c ≠  and 

/ 1refu u   << , then equation 12 implies that friction depends 
almost linearly on slip rate ( 0 [1 / ]sgn( ) ref  c u uF u mg +≈ ), 
whereas for / 1refu u >> , equation 12 implies that rate depen-
dence of friction is essentially logarithmic  
( 0 [1 ln 2 / ]sgn( ) ref  c  u uF u mg +≈ ) (see Abramowitz and 
Stegun, 1964, p. 87). This logarithmic dependence mimics 
behavior observed in the steady sliding experiments of Moore 
and others (this volume, chap. 20). The fact that nearly loga-
rithmic behavior as well as other styles of frictional behavior 
may be represented by equation 12 is a significant advantage 
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in analytical studies. Another advantage is that the equation 
implies that the maximum friction force is finite at u=0 (that 
is, 0 0F F mg= = ± ), whereas purely logarithmic friction 
rules imply that friction is infinite at u=0.

As specified by equation 12, the friction force F is 
proportional to the effective normal force on the sides of the 
plug, mg , where λ is a numerical factor that scales this 
normal force to the plug weight, mg. This definition implies 
that the maximum plausible value of λ is about 2 (assuming 
μ

0
~0.5, as shown by the data of Moore and others, this volume, 

chap. 20), in which case sidewall friction suffices to support 
the entire plug weight. Realistic values of λ are likely to be 
considerably smaller than 2 and are dependent on the height of 
the plug in contact with the conduit walls and on the state of 
effective stress governing the normal traction on the plug mar-
gins. Although the effective stress state is unknown at Mount 
St. Helens, estimates of λ are constrained by the balance of 
forces implied by the right-hand side of equation 1 for the case 
of static limiting equilibrium: 0 0F F mg pA mg= = = − . 
Algebraic rearrangement of this balance shows that λ must sat-
isfy 0(1/ )[( / ) 1]pA mg = − . Therefore, because the magma 
pressure p is unlikely to deviate much from lithostatic pressure 
(for if it did, it would cause hydraulic fracturing or conduit 
collapse), λ is largely determined by the plug geometry, which 
determines the plug mass m and basal area A, as well as the 
depth where p operates.

Although friction described by equation 12 represents 
both the peak-strength effect and shear-rate effect observed in 
the experiments by Moore and others (this volume, chap. 20), 
it includes no provision for the hold-time (or “state evolution”) 
effect also observed in those experiments. In the context of 
equation 12, inclusion of such evolution would entail making

0 a time- or state-dependent quantity. This complication 
would introduce additional constitutive parameters, but it 

Figure 7.  Graph of equation 12, illustrating nonlinear variation 
of relative friction force as a function of normalized slip rate 

/ refu u  and rate-dependence parameter c. Parameter F0 is 
friction force at static, limiting equilibrium, 0 0 0F m g= .

would add little to understanding the mechanism of regularly 
occurring drumbeat earthquakes at Mount St. Helens. There-
fore, I have chosen to exclude state-evolution effects from the 
SPASM model.

Friction represented by equation 12 does include a 
simple yet fundamental type of state dependence, however. 
The factor sgn(u) in equation 12 stipulates that the static 
(zero-velocity) friction force can jump from a positive value 

0mg to a negative value 0mg≥ −  if the extrusion veloc-
ity u changes from a positive value to a negative value. If u 
subsequently becomes positive again, then the friction force 
again becomes positive. Such jumps ensure that friction 
opposes motion, and they have great implications for the 
dynamical behavior of the extruding plug.

Reduced Governing Equations

The equations described above can be reduced to a com-
pact system of three equations governing simultaneous evolu-
tion of the dependent variables u, V, and p. In this system the 
magma density  is eliminated as a dependent variable by using 
equation 8 to replace d  dt in equation 6 with dp  dt and then 
dividing all terms in the resulting equation by , yielding 

1 .dV dp V   Q B
dt dt

+ = − 	                      (13) 
 
Equations 11 and 13 are then combined and rearranged alge-
braically to obtain explicit equations for d  dt and dV  dt. These 
two equations accompany the equation of motion obtained by 
combining equations 2 and 12 with equation 1, thereby forming 
a system of three first-order differential equations, 

0

1 ( / ) ,ref
du g    pA  u  F u u
dt m t




 = − + − − +
        (14) 

 
 
 
	 [ ]

1 2

1/ , anddp V   Au RB Q
dt    

−= + −
+

		        (15) 
 
 
 
	 [ ]1

1 2

,dV    A u  RB Q   Q  B
dt


 

= + − + −
+

	        

(16) 
 
  

where R is a nearly constant coefficient defined by 
 

0
11 1 exp[ ( )].ref

r r

R p p


 
= − = − − 	        (17) 

 
The system of differential equations (14–16) contains four 
types of nonlinearities: one involving the quotient A u /V  in 
equation 15, one involving the nonlinear dependence of R on 
p shown in equation 17, one involving the potential for jumps 
in F described in the section above on “Plug Boundary Fric-
tion,” and one involving the dependence of F on 1sinh / refu u−  
shown in equation 12.
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The Forced, Damped Oscillator Equation

The physical implications of the governing equations 
become clearer when equations 14 and 15 are combined 
to form a single, second-order equation. Differentiating 
equation 14 with respect to t, employing the chain rule 

/ ( / ) ( / )dF dt dF du  du dt= , and substituting equation 15 into 
the resulting equation yields 
 

	

( )
2 2

0 2
1 2 1 2

( ) .
[ ] [ ]

u dF du A Q RBd Am  t    2       u     g    
du dt   + V  +  Vdt

  
   

  − + + + + = − +     
	  

 
 
	           ( )

2 2

0 2
1 2 1 2

( ) .
[ ] [ ]

u dF du A Q RBd Am  t    2       u     g    
du dt   + V  +  Vdt

  
   

  − + + + + = − +     
	                  (18) 

 
 

This equation has a form like that of equations governing 
behavior of forced, damped oscillators (Kreyszig, 1979, p. 82 
ff.), and it implies that the extrusion velocity u has a natural 
tendency to oscillate about equilibrium. This tendency arises 
from the interplay of plug inertia, an upward “spring force” 
due to compression of the magma and conduit, and the 
downward force due to gravity. Oscillations of u are compli-
cated by the presence of a time-dependent mass term 

0m t+ , variable damping implicit in /dF du, and variable 
forcing due to the presence of R and V in the last term of 
equation 18, as well as by coupling of equation 18 to equa-
tions 16 and 17. Of course, equation 18 is strictly valid only 
insofar as F is a continuously differentiable function of u, 
and this restriction must be borne in mind when interpreting 
solutions of equation 18.

Linearized Dynamics: Analytical 
Results

Analytical solutions of equation 18 are important for 
guiding interpretation and numerical solution of the full equa-
tion set, 14–16, despite the fact that analytical solutions can 
be readily obtained only for various special cases. Analytical 
results also aid identification of diverse eruptive styles that 
are represented by the governing equations but are difficult to 
identify through numerical solutions alone.

Static, Steady-State, and Pseudosteady-State 
Solutions

The most basic special cases involve assumptions about 
the extrusion velocity u. A very simple special case with great 
physical importance assumes a condition of static limiting 
equilibrium, in which 0u = and plug boundary friction just 
suffices to resist the upward force due to magma pressure. 

This case also assumes that the plug mass is constant (that is, 
0 = , 0m m= ) and that the magma influx rate Q and basal 

accretion rate B are zero. These assumptions lead to the static 
equilibrium solution, 

0 0
0 00 ,m g Fu p p V V

A
+= = = =

         
(19) 

 

which satisfies equations 14–16 as well as 18. Here 0p  is the 
limiting equilibrium magma pressure at the base of the plug, 0F  
is the friction force at static limiting equilibrium, 0 0 0F m g= , 
and 0V  is an arbitrary but constant conduit volume.

An equally important special case assumes that the plug 
mass is constant ( 0 = , 0m m= ) but that volumetric rate of 
basal plug accretion and volumetric rate of magma influx 
are finite and equal (B=Q). These conditions lead to an exact 
steady-state solution satisfying equations 14–16 as well as 18, 

     
0 0 0

0 0
( ) ,Q R B m g F uu u        p        V  V

A A
− += = = =

       
(20) 

 
in which 0u is the steady-state upward plug velocity,

0( )F u  is the steady-state friction force,  
1

0 0 0 0( ) [1 sinh ( / )]refF u   m g  c u  u −= + , and R
0
 is a constant 

value of R that applies when 0 =  (that is, 0 01 ( / )rR  = −
 
). 

The equation group 20 represents dynamic equilibrium of the 
steadily ascending magma-plug system, whereas transient 
states represent departures from this equilibrium. Below, 
analyses of these departures show that steady states can be 
stable in some circumstances and unstable in others.

In addition to the exact steady state described by equation 
group 20, pseudosteady states can exist in which the extru-
sion velocity u remains constant but the magma pressure p 
increases or decreases as the plug mass evolves according to

0m m t= + . A pseudosteady-state solution that satisfies equa-
tions 14–16 and 18 is 
 
 

0 01 2
2

1

( )( ) ( ) ( ) .Q R B m g F ug V gt u A Q Bu p V
A A A A g

   
 

− ++ + −= − = + =
  

				     
		 0 01 2

2
1

( )( ) ( ) ( ) .Q R B m g F ug V gt u A Q Bu p V
A A A A g

   
 

− ++ + −= − = + = 			        (21) 

Existence of this pseudosteady state requires that B≠Q and 
that R changes negligibly as p evolves. Despite these restric-
tions, the state described by equation group 21 has physi-
cal significance because it implies that essentially steady 
extrusion may occur in the presence of evolving plug mass 
and magma pressure, and it has mathematical significance 
because it provides a check on numerical results reported 
later in this paper. Additional pseudosteady states may, of 
course, exist if values of other parameters (for example, F

0
, 

A, 
1
, 

2
) evolve, but such evolution is not addressed explic-

itly in this paper.
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Linear Approximation of Transient States

Analysis of transient states is facilitated by linearization. As 
a first step, the dependent variables u and V in equation 18 are 
decomposed into sums of the steady-state values, defined in equa-
tion group 20, and transient deviations from steady state, denoted 
by primes:    
                             0 0( ) ( ).u u u t       V V V t′ ′= + = + 	      (22) 

Substitution of equation group 22 into 18 and elimination of 
terms that sum to zero yields a simplified, but still nonlinear, 
version of equation 18 that describes the behavior of transient 
deviations. One linearization of this equation results from the 
assumption that magma density changes are small in compari-
son to the steady-state density, which enables R to be approxi-
mated by its steady-state value 0 01 ( / )rR  = − . A second 
linearization involves the assumption that deviations in the 
magma-conduit volume are small in comparison to its steady-
state volume (that is, 0/ 1V V′ << ). Then neglect of small terms 
involving 0/V V′  decouples equation 18 from 16 and removes 
the associated nonlinearity. These two linearizations generally 
have little effect on model predictions because they involve 
physical effects that are typically very subtle.

The most significant linearization involves approximation 
of /dF du  in equation 18. If u remains positive, an exact, non-
linear expression for /dF du  follows from the definition of F in 
equation 12 and can be written as (see Abramowitz and Stegun, 
1964, p. 88) 

     

1/ 22

0 0 1 .

  

ref ref

m g  cdF u        
du u u


−

  
 = +  
   

	     (23a) 
 

Substituting 0u u u′= + in equation 23a and simplifying the 
result algebraically yields an approximation of 23a that is valid 
if velocity deviations from steady state are sufficiently small 
that 0 1u /u   ′ << and 1refu /u   ′ << : 
 

  

1/ 22

0 0 01 .
ref ref

m g  c udF          C
du u u


−

  
 ≈ + =     

	     (23b) 
 

Here C is a constant with the same sign as c but with dimen-
sions of mass/time. If friction is rate independent, then C=0, 
whereas C>0 indicates rate-strengthening friction and C<0 
indicates rate-weakening friction.

The linearized form of equation 18 results from making 
the substitutions shown in equations 21 and 23b and assuming

0R R= , 0 1V /V  ′ << , and 0 1u /u   ′ << , which yields 
 

   
 
			 

 

Except for the plug mass-growth factor 0/t m , all coefficients 
in equation 24 are constant, a property that facilitates analysis.

Natural Period of Oscillations

The form of equation 24 implies that if 0  =  (that is, 
the plug mass is constant), then u′  will oscillate freely with 
constant period 02T  t= , where 0t  is the natural time scale 
implied by the reciprocal of the coefficient that precedes u′  in 
equation 24:

	

1/ 2
0 0 1 2

0
[ ( )] .m Vt

A
 += 	                  (25) 

This result is demonstrated more formally in the section on 
“Solution for Undamped Free Oscillations” below, but T and 
the time scale 0t  are introduced here as a basis for normaliza-
tion of equation 24 and a first comparison of T and the typical 
interval between repetitive drumbeat earthquakes at Mount St. 
Helens. To facilitate this comparison, equation 25 is recast in a 
special form that is appropriate if the magma conduit and plug 
are approximated as right cylinders (not necessarily circu-
lar) with cross-sectional areas A and heights conH and plugH , 
respectively. In this case the oscillation period 02T t=  can be 
expressed as

1/ 2
1 22 [( ) ] .r con plugT H H   = + 	      (26) 

A graph of equation 26 for the values conH  = 8 km and r =
2,000 kg/m3 is depicted in figure 8. The graph shows how the 
free oscillation period T varies as a function of the plug height 

plugH  and lumped compressibility 
1
+

2
. For reasonable val-

ues of plugH and 
1
+

2
, the predicted T has values that range 

from about 10 s to several minutes. The similarity of these val-
ues to the observed recurrence period of drumbeat earthquakes 
during the 2004–5 eruption of Mount St. Helens helps support 
the hypothesis that the drumbeats were associated with oscilla-
tions of the extrusion rate u.

Normalized Oscillator Equation and 
Dimensionless Parameters

The quantity 0t  defined in equation 25 provides the 
appropriate time scale for normalization of equation 24, and 
this normalization leads to identification of the dimensionless 
parameters that control the linearized dynamics of the magma-
plug system. Substitution of the normalized time *

0/t t t=  and 
normalized velocity deviation *

0/u u u′=  into equation 24 
reduces the equation to 

        
(1+Κt∗)   d 2 u∗

dt* 2 + (2Κ+GS) du∗

dt∗ + u∗ = −KG ,
      

(27) 

in which K, S, and G are dimensionless parameters defined as 

0

0

, tK
m
= 		                   (28) 

 

0

0

, andCuS
m g

=  		       (29) 
 

0

0

.gtG
u

= 		                   (30) 
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Figure 8.  Graph of equation 26, illustrating predictions (from 
linearized theory) of variation of oscillation period T as a function 
of lumped compressibility 1 2 +  and plug height plugH .

It is also useful to define a dimensionless damping factor D, 
which is half the coefficient in the second term of equation 27: 
    
                    D =1

2
(2 + GS )=

t0
m0

 + C2
.	       (31) 

 

If K=0, this damping factor plays a role like that of damping 
factors in textbook examples of linear oscillators, and D=1 
constitutes critical damping (for example, Kreyszig, 1979, p. 
82 ff.). This interpretation changes only subtly for cases with 
K 0, as shown below.

A complete assessment of the magnitudes of the dimen-
sionless parameters defined above is provided in the section 
on “Normalized Nonlinear Equations and Control Parameters” 
below, but for present purposes it suffices to note that typical 
magnitudes of K, G, and S imply that a satisfactory approxi-
mation of equation 27 commonly results from neglecting the 
plug growth term *Kt as well as the effect of K on D. An even 
simpler but still relevant approximation is obtained by setting 
both K and S equal to 0 in equation 27. On the other hand, 
because solutions of equation 27 for nonzero values of these 
parameters imply diverse eruptive behaviors, which can differ 
qualitatively as well as quantitatively, I analyze the full spec-
trum of these behaviors before considering numerical solu-
tions of the nonlinear system of equations 14–16.

Solution for Undamped Free Oscillations

For the case in which K=0 and S=0 (implying constant 
plug mass and constant plug-margin friction), equation 27 
reduces to an elementary second–order equation describing 

undamped, free oscillations of the plug velocity. In this case 
the simplest nontrivial solution of equation 27 is 

* * *cos ,iu  u  t= 		        (32) 

which obeys the initial conditions * *
iu u=  and * */ 0du dt = . 

This solution demonstrates that the natural period of the plug’s 
velocity oscillations is 02T t= , as inferred in the section on 
“Natural Period of Free Oscillations” above. According to 
equation 32, sinusoidal oscillations with period T and ampli-
tude *

iu continue forever if an initial disturbance with magni-
tude *

iu causes them to begin, provided that K=S=0.

Solutions for Damped Free Oscillations—
Stability of Quasi-Steady Extrusion

Another class of solutions of equation 27 exists if  
K=0 but S0. Physically, these conditions imply that the plug 
mass is constant S0 and that plug-margin friction depends 
linearly on the extrusion rate. In such cases the behavior of 
solutions depends on the value of D(= S/2) relative to the 
transition value D=0 and critical values D=± 1, as summa-
rized in table 2. In all cases the solutions imply stable eruptive 
behavior if D>0 (that is, if rate-strengthening friction exists), 
because *u  decays with time essentially like *Dte− . On the 
other hand, if D<0 (that is, if rate-weakening friction exists), 
solutions containing the factor *Dte−  indicate unstable growth 
of *u . The instability can be manifested as either runaway 
acceleration or oscillations that grow with time, as shown by 
the solutions listed in table 2.

The solutions listed in table 2 can also be used to infer 
whether the steady eruptive state represented by equation 
group 20 is physically accessible from an initial static state 
that exists before the onset of a volcanic eruption. For all 
cases with D>0, transient deviations in velocity ( *u ) decay 
toward zero as time proceeds, implying that any transient 
state will eventually give way to a steady state. On the other 
hand, for cases in which D<0, dynamic steady states are 
inaccessible from an initial static state, because any transient 
motion grows without bound as time proceeds. Of course, 
this simple picture can change if K0 or if friction is non-
linear, as described in the section on “Nonlinear Dynamics: 
Numerical Results” below.

Solution for Damped, Forced Oscillations—
Effects of Plug Growth on Extrusion Stability

The most complicated solutions of equation 27 apply 
to cases in which the plug mass changes with time such that 

0 ≠  and none of the parameters K, S, and G is zero. For such 
cases, solutions can be obtained by a multistep process that 
involves a simultaneous change of dependent and independent 
variables to transform equation 27 into Bessel’s differential 
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D General solution of equation 27 Type of behavior

0 * * *
1 2sin cosu c  t   c  t= + Undamped oscillations with 

constant amplitude

   >0 but <1 * * 2 * 2 *
1 2[ cos ( ) sin ( )] Dtu c  t 1  D   + c   t 1 D   e−= − − Underdamped oscillations; 

unstable growth if D< 0

1 * * *
1 2( ) Dtu c c t  e−= + Critically damped oscillation; 

unstable growth if D< 0

>1
2 * 2 ** ( 1) ( 1)

1 2
D D t D D tu c e   + c e− + − − − −= Overdamped, no oscillations; 

unstable growth if D< 0

Table 2.  General solutions of equation 27 for cases with K=0 and D=S/2. All solutions contain arbitrary constants, 
c1 and c2, which are constrained by specifying initial conditions.

equation (appendix 1). Transformation of the well-known 
Bessel-equation solution back to the original variables *u  and 

*t  then yields the general solution 

[ ]*
1 2( ) ( ) ,

4
u KG  c J c Y



 
  = − + + 	       (33) 

in which 
*

2

2 12 .K D Kt          
K K

 
− += = 	       (34) 

Here 1c  and 2c  are arbitrary constants, and J  and Y  are 
Bessel functions of the first and second kind, of order ν (see 
Abramowitz and Stegun, 1964). Equation 33 describes diverse 
behaviors, partly analogous to those summarized in table 2. 
However, oscillations described by equation 33 have periods 
as well as amplitudes that evolve with time.

The relation between the solution for K 0 (equation 33) 
and the solutions for K=0 (table 2) has important physical 
implications. The relation is clarified by considering asymp-
totic approximations of J  andY  that are valid for 1 >>

 . 
(The condition 1 >>  implies * 1/t  K K>> − , a criterion 
that is typically satisfied as time proceeds if K>0. If K<0, the 
criterion will not be satisfied as time proceeds, and equation 
33 then implies that a singularity develops in which *u → ∞ . 
Physically, this singularity represents a “catastrophe” in which 
the plug mass reaches zero, liquid magma reaches the surface, 
and the governing equations no longer apply.) For 1 >>  the 
Bessel function approximations are (Abramowitz and Stegun, 
1964, p. 364) 

2( ) cos ( / 2 / 4), andJ     
     

 
≈ − − 	      (35) 

 
 

2( ) sin ( / 2 / 4).Y     
     

 
≈ − − 	       (36) 

Substituting these approximations into equation 33 and col-
lecting terms containing powers of   shows that, over time, 

*u  decays or grows according to 
1/ 4*

*
2

1 .
D/K

Ktu
K

−
 +∝  
  	

	       (37) 
 

The exponent 1/ 4 /D K−  in equation 37 plays a physical role 
analogous to that of D−  in solutions with K=0 (table 2). The 
physical meaning of equation 37 becomes clearer if equations 
29 and 31 are used to express the exponent in terms of physi-
cal parameters, yielding 

1 3
* 2 2

*
2

1 .

C   
Ktu

K


 − +   +∝  

 
	                   (38) 

 

The exponent in equation 38 shows that oscillations in u*   
will decay or grow depending on whether the criterion 

C─ >− 3─2
	  	                   (39) 

is satisfied. Several classes of behavior are implied by this 
result and are summarized in table 3.

The chief physical implication of the results summarized 
in table 3 is that extrusion stability can depend on a tradeoff 
involving the rate dependence of the frictional resisting force 
and the rate of change of plug mass. Stable eruptive behavior 
can occur in the presence of rate-weakening friction (C<0) 
if the plug mass increases at a sufficient rate. This behavior 
contrasts with that of a system with constant plug mass, which 
necessarily exhibits unstable behavior if C<0 and, therefore, 
D <  0 (table 2). Conversely, unstable behavior can occur in the 
presence of rate-strengthening friction (C  > 0) if the plug mass 
decreases at a sufficient rate.

Although further inferences can be drawn from the analytical 
results summarized by equations 38 and 39, for present purposes it 
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κ C Behavior of equation 33

κ = −(2/3)C C = −(3/2)κ Undamped, constant-amplitude oscillations

κ > 0 C > 0 Oscillations necessarily decay toward a steady state

κ > 0 C < 0 Oscillations grow if κ < −(2/3)C and decay if κ > −(2/3)C

κ < 0 C > 0 Oscillations grow if κ < −(2/3)C and decay if κ > −(2/3)C

κ < 0 C < 0 Behavior becomes singular

Table 3.  Summary of behavior of equation 33, which is general solution of equation 27 for cases with 
changing plug mass 0(K≠ , 0κ≠ ).

[Behavior for both rate-strengthening friction (C   >  0) and rate-weakening friction (C  <  0) is summarized.]

is more useful next to consider numerical solutions of the nonlin-
ear equation set 14–16. Nonlinearities produce important effects 
that are not revealed by analytical results that strictly apply only 
when transient disturbances are small (that is, 0/ 1u u′ << ).

Nonlinear Dynamics: Numerical 
Results

Results of the linear theory point to several questions 
to be addressed through numerical solution of the nonlinear 
system of equations 14–16. Do the bounds of stable versus 
unstable eruptive behavior and character of oscillatory eruptive 
behavior change when nonlinearities exist? More specifi-
cally, can nonlinearities result in stick-slip instabilities like 
those inferred to produce drumbeat earthquakes at Mount St. 
Helens? What controls the magnitude and frequency of stick-
slip events? Can such events occur repeatedly (that is, forever) 
until some attribute of the system changes? Can evolution of 
stick-slip periods and amplitudes yield inferences about evolu-
tion of system properties? Do complications such as plug mass 
change have significant effects? How sensitive are the sys-
tem’s dynamics to disequilibrium initial conditions? (Although 
the linear theory assumes that departures from equilibrium are 
always small, nature imposes no such constraint, and volcanic 
eruptions necessarily begin in disequilibrated states.)

Normalized Nonlinear Equations and Control 
Parameters

Guidance for investigating the behavior of numerical 
solutions comes from identification of dimensionless con-
trol parameters and their likely magnitudes. Behavior of the 
nonlinear equations is governed partly by the same dimension-
less parameters that govern linearized behavior, but additional 
parameters also play a role. The additional control parameters 
are identified by normalizing the nonlinear system of first-
order equations 14–16 through use of dimensionless variables 
defined as * * * *

0 0 0 0/ , / , / , /u u u p p p V V V t t t= = = = . 

Substituting these variables into equations 14–16 yields the 
normalized system 
 

*
* * *

* *

1 ˆ ˆ(1 ) ,
1

du G G S p Ku GSF
dt Kt

 = − + + − − +    
(40) 

 
* *

* *
*

1/ 1 ( 1) , andˆ(1 )
dp V u Z R
dt G S

−  = − + − +
	       (41) 

 
*

* *
* 1 ( 1) .dV X u Z R Y

dt
 = − + − +  	       (42) 

 

Here, G and K are dimensionless parameters defined exactly 
as in the linear model (that is, in equations 28 and 30). The 
dimensionless parameter Ŝ is related to S defined in the linear 
model (that is, in equation 29), but its definition is some-
what simpler because it involves 0F rather than the derivative

/C dF du= :
0

0
0

ˆ .FS
m g

= = 		        (43) 
 

The dimensionless parameters X, Y, and Z have no analog in 
the linear model and are defined as 

  

1 0 0 0 0

0 0 0

( ) .m u t Q B R BX Y Z
At V u A

 −= = =
      

(44)

 
The variables R* and F* in equations 40–42 are normalized ver-
sions of the density variable R defined in equation 17 and the 
friction force F defined in equation 12: 
 

 

*
0*

0 0

ˆ1 ( 1)exp (1 )( 1)
,

R XG S pRR
R R

 + − + − = =
   

(45) 
 
 
             ( )* * 1 *

0
0

sgn( ) 1 sinh [ ( / )] .ref
FF u c u u u
F

−= = +        (46) 
 

In the nonlinear version of the SPASM model, equations 45 
and 46 must be satisfied simultaneously with equations 40–42.
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Plausible ranges of the values of the dimensionless param-
eters in equations 40–46 for the 2004–5 eruption of Mount St. 
Helens are listed in table 4. The tabulated values imply that 
some of the terms in equations 40–46 will have little influ-
ence on numerical results. For example, relevant values of the 
denominator G(1+Ŝ) on the right-hand side of equation 41 are 
undoubtedly very much greater than 1, implying that *p will 
remain close to its static equilibrium value * 1p = . This infer-
ence, together with the inference that X<<1 (table 4), implies 
that the argument of the exponential function in equation 45 will 
remain close to zero, despite the large probable value of G(1+Ŝ). 
Therefore, R*=1 is typically a good approximation of equa-
tion 45, and this approximation implies that the term Z(R*−1) 
in equations 41 and 42 will have only subtle effects. Similarly, 
the term Y in equation 42 will have subtle effects because Y<<1 
(table 4). As a basis for prioritizing investigations, then, it is 
reasonable to assume initially that Y=Z=0.

With these simplifications in mind, equation 40 can be dif-
ferentiated and combined with equation 41 to obtain a second-
order equation, which can also be obtained through normaliza-
tion of the original oscillator equation 18. For the case in which 
R*=1 is a good approximation, the complete system of normal-
ized nonlinear governing equations thereby reduces to 
 
( )

2 *
* *

* *2

1 11 (2 ) , and
*

* *

d duuKt   K GS   u   K G
V Vdt dt

+ + + + = − (47) 
 

 
                                   

*
*( 1).dV X u

dt
= − 		       (48)  

Note that S rather than Ŝ appears in equation 47, and that the 
entire set of dimensionless parameters has collapsed to K, G, 
X, and S in equations 47 and 48. Moreover, the values of K and 
X are typically much smaller than 1 (table 4), and the effects of 
terms containing K and X are therefore apt to be modest. On this 
basis, computational investigations aimed at illuminating the 
physics represented by the SPASM model can focus principally 
on the effects of G and S, secondarily on the effects of K, and 
lastly on the effects of X, Y, and Z.

The strategy of focusing primarily on effects of G and S 
reduces the need to explore a large, multidimensional param-
eter space numerically, and it parallels development of the lin-
earized theory, in which D emerged as the key control param-
eter. Indeed, D defined in the linearized theory applies also to 
the nonlinear model, provided that D is viewed as a numerical 
index rather than a constant damping factor. For this purpose it 
is useful to define the index D as the value applicable when the 
slip rate equals the steady equilibrium rate (u = u

0
):

                (49) 

j
kl

2

2
1

1 2 1

2K + GSD

ct t0 00
uu
u

m0
0

u=u0
( ) =

++

=

ref ref

 

This equation is simply an algebraically expanded version of 
the definition given in equation 31, and I employ this defini-
tion of D to index numerical results.

It is also noteworthy that for cases in which K=0 and 

0 / 1refu u >> , equation 49 reduces to the simplified form 
 

,
	
	       (50)

 

which is commonly a satisfactory approximation. In the 
sparest distillation of the nonlinear SPASM model, then, 
numerical results can be expected to depend primarily on D 
as defined in equation 50, which in turn depends only on c, 
λ, and 0  if the equilibrium extrusion rate 0u  and oscillation 
time scale 0t are fixed.

Computational Method

Numerical solutions were obtained by using a standard 
fourth-order Runge-Kutta method described by Press and 
others (1986). To implement the Runge-Kutta algorithm, 
a double-precision FORTRAN program was written and 
executed on a personal computer with a 2.26-GHz processor. 
Constant time steps were used to generate all solutions and 
were typically 0.0001 to 0.01 s. Although some exploratory 
computations required hours of CPU time, no computations 
reported in this paper required more than several minutes of 
CPU time when using this constant-time-step approach.

The accuracy of numerical solutions was checked against 
exact analytical solutions for simple linear cases with constant 
values of D and K (table 2 and equation 33). For nonlinear 
cases, some aspects of numerical solutions were checked 
analytically by exploiting the fact that the governing equations 
14–16 yield nearly exact solutions for p and V for the special 
case in which u = 0. These solutions assume that R = R0, and 
they have the form 

, andiV  = V   Wt+ 		        (51) 
  

0

1 2

ln 1 ,
( )i

i

Q R B Wp       tp
W V 

 −= + + +  
	       (52) 

where
[ ]1

0
1 2

.W   R B  Q   Q  B
 

= − + −
+

	       
(53)

  
Here iV  and ip are the values of V and p at the beginning of 
any “stick” episode with u=0. The duration of stick episodes, 

stickT , may be calculated by solving equation 52 for t while 
setting p equal to the static limiting equilibrium pressure p

0 

necessary to trigger any slip episode, 

0 1 2

0

( )( )exp 1 .i i
stick

V p p  WT      
W Q  R B

   − += −  −   
	       (54) 
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Parameter Units Value(s) Comments on value(s)

Specified physical parameters
A m2 30,000 Calculated using Q/u

0
 and values tabulated here

B m3/s 0–10 Cannot differ greatly from Q

c none -0.01–0.01 Inferred from results of testing by Moore and others, (this volume, chap. 20)

C kg/s | C | < 5×1013 Calculated using equation 23 and values tabulated here

g m/s2 9.8 Typical value at Earth’s surface

m
0

kg 5×109–7×1010 Inferred from plug heights 100–1,000 m and A and ρ
r
 tabulated here

Q m3/s 1–2 Inferred from photogrammetric measurements of dome growth

R
0

none -0.5–0.5 Calculated from typical values of ρ
0 
and ρ

r
 tabulated here

t
0

s 0.4–150 Calculated from equation 25 and other values tabulated here

u
0

m/s 2×10-5–7×10-5 Inferred from measured linear extrusion rate

u
ref

m/s 7×10-8 –7×10-5 Smaller than u
0
 if friction rate-dependence is nonlinear

V
0

m3 3×106–3×108 Inferred from 8 km conduit height and conduit radii 10–100 m

α
1

Pa-1 10-8 –10-6 Typical values for silicic magma with 1–50 vol percent bubble content

α
2

Pa-1 ≤ 10-9 Typical values for fractured rock

κ kg/s | κ | < 4,000 Exceptions may occur during dome-collapse events

λ none 0.1–1 Inferred from plug geometry and plausible effective stress states

μ
0

none 0.4–0.5 Inferred from results of testing by Moore and others, (this volume, chap. 20)

ρ
0

kg/m3 1,200–2,400 Typical values for silicic magma with 1–50 vol percent bubble content

ρ
r

kg/m3 1,600–2,400 Inferred from measurements on dome-rock specimens

Derived dimensionless parameters
D none -107–107 Influence of D can be very significant

G none 6×104–2×107 Influence of G is very significant

K none | K | ≤ 10-4 Influence of K is subtle except in event of abrupt dome collapse

S none -7–7 Influence of S is significant

Ŝ none -0.5–0.5 Influence of Ŝ is significant if multiplied by G

X none 4×10-4 –8×10-10 Influence of X is subtle except perhaps where multiplied by G

Y none | Y | ≤ 10-4 Influence of Y is subtle

Z none | Z | < 0.5 Influence of Z may be significant, contingent on value of R*

Table 4.  Plausible values of SPASM model parameters applicable to the quasi-steady dome-building eruption of  
Mount St. Helens, 2004–2005.

[Derived dimensionless parameters determine model behavior and are formed from combinations of physical parameters.]

This equation is useful for checking computational results, and 
it also has a significant physical implication: the duration of 
stick episodes increases exponentially with 0 ip p− . From this 
result it may be inferred that plug displacements during slip 
events also increase exponentially with 0 ip p− , because the 
average extrusion velocity is fixed (as given by equation 20), 
and slip-event magnitude must therefore increase in proportion 
to stick duration. Although strict validity of equations 52 and 
54 rests on the assumption that 0R R= , computations that do 

not employ this assumption show that, nonetheless, equations 
52 and 54 generally provide good predictions.

Computational Results

Only a small number of computational solutions are 
presented here, but hundreds of additional solutions were 
computed and examined. Results chosen for presentation 
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Figure 9. Start-up behavior of solution computed for D 
= −0.01 with linear rate weakening. Initial condition is

/u Q A= , 0p p= , 0V V= . Oscillations of slip velocity (u), 
magma pressure (p) and conduit volume (V) are sinusoidal 
and match analytical predictions until u = 0 occurs and stick-
slip behavior begins.

highlight a range of physical effects that appear particularly 
important for understanding the origin of drumbeat earth-
quakes at Mount St. Helens. To a lesser degree, results were 
also chosen to illustrate the spectrum of behaviors possible 
within the framework of the SPASM model.

Behavior with D Close to Zero

The most basic nonlinear features of solutions 
appear even when departures from linear behavior are 
slight. In particular, stick-slip cycles develop in any case 
in which D<0, provided that a jump in F is imposed at 
u=0. Figure 9 illustrates this behavior for a case in which 

0.01D = − , B=Q, and F depends linearly on u (that is, 

0 0sgn( ) [1 / ]refF u m g   c u u= + ). The small value of D 
results from use of an unusually small value of λ, λ=0.01; 
physically, this value implies that frictional resistance and the 
damping it produces are small. The computation also used the 
initial conditions u=Q/A, 0V V= , and 0p p= , which imposed 
a slightly perturbed initial magma pressure (because the static 
equilibrium pressure 0p  slightly exceeds the steady equilib-
rium pressure) and used the parameter values K=0, Y=0, Z=0, 
X=5×10-6, T=10 s, 2,000

 
kg/m3, m

0
=3.6×1010 kg, 

μ
0
=0.5, c=−1.71×10-5, and u

ref
=0.1(Q/A)=6.66710-6 m/s. The 

fact that the value of u
ref 

is significantly smaller than that of 
the typical extrusion rate ( /Q A ) implies that effects of rate 
dependence in the friction rule are important.

Under the conditions described above, the computed 
extrusion behavior is initially identical to that predicted by the 
linear analytical theory, and u, p, and V each exhibit exponen-
tially growing sinusoidal oscillations until u=0 occurs (at t ≈
27 s in fig. 9). At that time F momentarily changes sign and 
thereby halts motion of the plug as it starts to descend. This 
event heralds the end of exponential oscillation growth and the 
onset of repetitive stick-slip cycles.

In both the sinusoidal and stick-slip cycles shown in 
figure 9, magma pressure oscillates ¼ cycle out of phase 
with slip velocity, and conduit volume oscillates ½ cycle out 
of phase with magma pressure. Although it may seem con-
tradictory that conduit volume decreases as magma pressure 
increases, this out-of phase response results from conditions 
at the base of the extruding plug, where solidification and 
accretion occur continuously at the volumetric rate B, even 
as plug velocity diminishes to less than the steady-state value 

/u Q A= =6.667×10-5 m/s. Indeed, as a rough approximation, 
conduit volume declines whenever the plug extrusion rate is 
less than the basal accretion rate. The conduit volume also 
responds elastically to pressure changes, but this effect is typi-
cally overshadowed by volume changes associated with plug 
motion and basal accretion.

Key elements of the solution presented in figure 9 are 
recast in a phase-plane diagram in figure 10, which shows 
how pressure deviations from the static equilibrium pressure 
p

0
 vary in concert with velocity deviations from the steady 

equilibrium velocity Q/A. As portrayed in the phase plane, 

the initial condition (u = Q/A, 0p p= , marked I.C. in fig. 
10) is unstable. This instability leads to an outwardly diverg-
ing clockwise spiral representing simultaneous oscillations 
of u and p that grow with time. (Note that arrows in phase-
plane diagrams throughout this paper point in the direction 
of advancing time.) When the spiral becomes large enough 
to encounter the condition u = 0, divergence ceases and the 
dynamics become locked in stick-slip limit cycles that repeat 
endlessly thereafter. If the initial condition is located else-
where inside the stick-slip limit cycle of figure 10, behavior 
nonetheless diverges smoothly until locking in the same limit-
cycle state. If friction exhibits rate-strengthening rather than 
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rate-weakening behavior (that is, D>0), then behavior con-
verges smoothly to a steady fixed-point equilibrium instead. 
An analogous fixed-point equilibrium is exhibited by eruption 
models that assume forces are always balanced (for example, 
Mastin and others, this volume, chap. 22).

Modification of the behavior depicted in figures 9 and 10 
by nonlinearity in the rate-weakening friction rule is illustrated 
in figures 11 and 12. Initial conditions and parameter values 
used to generate figures 11 and 12 were the same as those 
used to generate figures 9 and 10, but the nonlinear friction 
rule 1

0 [1 sinh / ]sgn( ) ref  c  u uF u mg −+=  was employed. 
Comparison of figure 11 with figure 9 demonstrates that the 
most conspicuous effects of the nonlinearity are to delay 
the onset of stick-slip behavior and shorten the duration of 
individual stick events. These effects are unsurprising, because 
the nonlinearity represented by the sinh-1 function increasingly 
suppresses rate weakening as the slip rate increases.

Comparison of the phase-plane diagrams shown in 
figures 10 and 12 demonstrates that the dynamical effects of 
linear and nonlinear rate weakening also differ in other ways. 
In both figures 10 and 12 the feature of greatest interest is 
the outer loop representing stick-slip limit cycles. In the limit 
cycles shown in both figures, the maximum positive magma 
pressure deviates by a factor of only 4×10-6 from the static 
equilibrium pressure (~107 Pa), and the maximum slip velocity 
is only slightly more than double the equilibrium slip veloc-
ity. The maximum velocity is somewhat larger in the case 
with linear rate weakening (fig. 10), however, because linear 
rate weakening enables a larger dynamic overshoot of slip 

Figure 10.  Phase-plane representation of simultaneous 
evolution of normalized slip velocity and normalized magma 
pressure computed for D = −0.01 with linear rate weakening. 
Initial condition (I.C.) is: /u Q A= , 0p p= , 0V V= . Arrows 
point in direction of advancing time.

in response to increasing magma pressure. (Here, “dynamic 
overshoot” means that inertia carries the moving plug upward 
past an equilibrium point in which forces are balanced.) This 
larger overshoot produces a commensurately larger decline in 
magma pressure in response to slip, and the magma pressure 
deviation at the onset of stick-slip limit cycles is about three 
times larger in the case with linear rate weakening than with 
nonlinear weakening (~6×10-6 versus 2×10-6). This difference 
in pressure deviation constitutes the single most important dif-
ference between the linear case (fig. 10) and the nonlinear case 
(fig. 12), because the duration of stick periods ( stickT ) increases 

Figure 11.  Start-up behavior of oscillatory solutions 
computed for D = −0.01 with nonlinear rate weakening. Initial 
condition is /u Q A= , 0p p= , 0V V= . Oscillations of slip 
velocity (u), magma pressure (p), and conduit volume (V) are 
sinusoidal until u = 0 occurs and stick-slip behavior begins.
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exponentially with this pressure deviation, as indicated by 
equation 54. Therefore, nonlinearity in the friction rule has a 
significant effect on predictions of the periods and amplitudes 
of stick-slip oscillations, and the nonlinear rule was employed 
to generate all results presented subsequently in this paper.

Effects of the Damping Index D
Some of the most important findings of this study are 

summarized in figure 13, which illustrates computational 
results obtained by employing the nonlinear friction rule and 
various values of D. Computations that generated these results 
used the same parameter values used to generate figures 9–12, 
except that here 0.2 =  was used, and varying values of c 
were used to generate D values ranging from −0.2 to −4. (The 
value 0.2 =  constitutes a “best-guess” value applicable to 
Mount St. Helens’ plug geometry and state of effective stress, 
and c values ranging from 1.7×10-5 to 3.4×10-4 were used to 
simulate subtle rate weakening similar to that observed experi-
mentally by Moore and others, this volume, chap. 20).

Displacement time series shown in figure 13A were com-
puted for a family of stick-slip cycles with various values of D, 
and in figure 13B the same results are depicted as limit cycles 
in the velocity-pressure phase plane. Initial conditions used to 
generate figure 13 assumed a static, limiting equilibrium state 
(u=0, 0p p= , 0V V= ) rather than the state with 0u u=  used 
to generate figures 9–12. Therefore, no divergent oscillations 
precede the development of stick-slip limit cycles.

Figure 12.  Phase-plane representation of simultaneous 
evolution of normalized slip velocity and normalized magma 
pressure computed for D = −0.01 with nonlinear rate 
weakening. Initial condition (I.C.) is /u Q A= , 0p p= , 0V V= . 
Arrows point in direction of advancing time.

Figure 13.  Stick-slip cycles computed for various values of parameter D with nonlinear rate weakening. All computations 
employed baseline parameter values Q=2 m3/s, B=Q, R0 =   0, K=0, Y=0, Z=0, X=5×10-6, T=10 s, and employed m0=3.6×1010 kg, λ=0.2, 
μ0=0.5, and uref=0.1(Q/A)=6.667×10-6 m/s to determine F. Varying values of c were used to obtain varying values of D. A, Time series 
representation of stick-slip displacements. B, Phase-plane representation of velocity-pressure limit cycles. Arrows point in 
direction of advancing time.
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The basic dynamics portrayed in figure 13B are simple. 
When basal magma influx produces pressure exceeding the 
static equilibrium value ( 0p ), it triggers slip at a rate that may 
slightly or greatly surpass the steady equilibrium rate (Q/A), 
depending on the value of D. When a combination of plug 
inertia and diminishing magma pressure no longer suffices to 
overcome the effects of gravity and friction, slip terminates 
and stick begins. Magma pressure then rebuilds until it triggers 
another slip event. Figure 13A shows that periods of stick-
slip cycles with D= −0.2 differ little from the T=10 s period 
predicted by linear theory (that is, equation 25), but periods 
increase as D values range further from 0. For D values suf-
ficiently far from 0, periods increase almost in direct propor-
tion to the magnitude of D, and the amplitudes of slip events 
increase accordingly. Maximum slip speeds and associated 
pressure deviations during stick-slip cycles also increase in 
proportion to the magnitude of D (fig. 13B), bolstering the 
inference that D values encapsulate most of the important 
controls on system dynamics.

Stick-slip cycles computed with D= −2 closely resemble 
those thought to be responsible for generating drumbeat 
earthquakes at Mount St. Helens. With 2D = − , individual slip 
events entail about 5 mm of displacement in about 5 s and 
maximum slip rates of ~1.7 mm/s. Attendant fluctuations in 
magma pressure are <0.02 percent of p

0 
(fig. 13B), equivalent 

to only ~2.4 kPa or <0.2 m of static magma pressure head. 
This result implies that a remarkably delicate shift in the bal-
ance of forces distinguishes periods of slip from those with 
no slip. Multiplied by 30,000A =  m2, the ~2.4 kPa pressure 
change also serves as a proxy for the force drop responsible 
for generating seismicity (~7×107 N).

Details of Baseline Case with D = −2
Deeper exploration of the dynamics computed with 

D = −2 provides further insight to physical phenomena that 
may be responsible for drumbeat seismicity at Mount St. Hel-
ens. Figure 14 illustrates details of repetitive earthquake cycles 
computed with D =−2. The histories of slip velocity, magma 
pressure, and conduit volume shown in figure 14 illustrate 
abrupt decreases in magma pressure and increases in conduit 
volume during slip events and also illustrate gradual changes 
of these quantities between slip events. As noted above, 
magma solidification at the base of the plug causes the volume 
of the fluid-filled conduit to decline between slip events, 
despite the fact that magma pressure rises.

Perhaps the most intriguing result illustrated in figure 
14 involves the history of shear force along the plug mar-
gins. The shear force is large (~3.5×1010 N) because it must 
overcome the effects of both gravity and friction to move the 
massive plug upward, but the force drop during each slip event 
is comparatively small (~7×107 N) (fig. 14E). (This drop in 
shear force is closely related to the stress drop that occurs in 
conjunction with tectonic earthquakes, but force drop is, in 
fact, a more fundamental quantity. The force drop represents 
the product of the stress drop and the area of the slip surface—

a product that appears directly in earthquake energy budgets 
(for example, Scholz, 2002, p. 184). Shear force might be 
concentrated in a relatively small patch of gouge bounding the 
extruding plug at Mount St. Helens, or it might be distributed 
evenly within the gouge; from the standpoint of force drop, 
this distinction makes no difference.) Standard estimation 
methods indicate that such a 7×107 N force drop, accompanied 
by 5 mm of slip (figs. 14A, E), implies about 2×105 J of seis-
mic energy radiation (Scholz, 2002, p. 185), whereas the work 
done against friction during the slip events depicted in figure 
14 is the total shear force times displacement, which yields 
an estimate of 2×108 J. These results are consistent with prior 
findings that only a small fraction of the work done during 
fault slip produces seismic radiation (McGarr, 1999).

The temporal pattern of the drop in shear force accompany-
ing slip events also has significant implications. As slip acceler-
ates, the shear force declines smoothly owing to the effects of 
rate-weakening friction (fig. 14E). Similarly, as slip decelerates, 
the force smoothly rises as friction gradually increases. When slip 
stops, however, the shear force drops abruptly because it suddenly 
returns to a static equilibrium value imposed by the plug weight 
and magma-pressure force, which has declined during slip. Before 
this reequilibration, the shear force is out of equilibrium with 
these static forces because rate-weakening friction allows slip to 
dynamically overshoot the equilibrium point. The net effect is that 
almost the full force drop (~7×107 N) occurs abruptly at the end of 
the slip cycle, and it thereby provides an impulse capable of radiat-
ing high-frequency seismic energy.

Sensitivity of Behavior to Variations of 
Parameters Within D

Values of D encapsulate the effects of most of the 
important parameters affecting stick-slip dynamics, but it is 
nevertheless necessary to examine whether variations in values 
of these individual parameters have significant effects. Results 
presented in figures 15 and 16 show that the behavior com-
puted for D= −2 is quite insensitive to variations in c, λ, and 

0 / refu u . For example, if values of c and λ range over orders of 
magnitude, while D is held constant, computed stick-slip limit 
cycles differ only slightly in a phase-plane diagram depicting 
coevolution of the normalized pressure deviation and normal-
ized slip velocity (fig. 15A). Differences exist exclusively in 
the magnitude of normalized pressure deviations, reflecting 
the fact that smaller λ values imply that less magma pres-
sure is needed to satisfy limiting equilibrium and trigger slip. 
Moreover, if the pressure deviations are “denormalized,” as 
shown in figure 15B, such differences disappear entirely, and 
results for all values of c and λ collapse onto a single curve 
in the phase plane. This finding demonstrates that values of c 
and λ individually are unimportant in the system’s dynamical 
behavior, provided that D is constant and the nonlinearity of 
the friction rule is unchanged.

Results shown in figure 16 illustrate the effects of 
changing the nonlinearity of the friction rule by allowing 
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Figure 14.  Time series depiction of concurrent changes in plug displacement, slip velocity, magma pressure, and conduit volume 
during earthquake cycles computed for baseline case with D = −2. Parameter values are same as those used to generate figure 
13, and c = −1.71×10-4 is used to obtain D = −2. Panels A–D illustrate behavior during seven consecutive slip events, and panels 
E–H show details on an expanded time scale. Panel E is distinct from other panels because it shows force drops accompanying 
slip events.

the value of 0 / refu u to range over four orders of magnitude 
while holding D= −2. To facilitate comparison with figure 13, 
figure 16 depicts results as both displacement time series and 
stick-slip limit cycles. These results show that reducing values 
of refu  (that is, increasing values of 0 / refu u ) produces stick-
slip cycles with increased interevent periods, increased slip 
displacements, increased slip velocities, and increased devia-
tions of magma pressure from its equilibrium value. However, 
effects of 0 / refu u ranging over four orders of magnitude (fig. 
16) are similar to the effects of D ranging from about −2 to −4 
(fig. 13), reinforcing the view that D values encapsulate most 
of the dynamical controls on system behavior. It is, however, 
unsurprising that effects of 0 / refu u are not captured entirely by 
values of D, as the effect of 0 / refu u is inherently nonlinear. For 
values of 0 / refu u smaller than 1, the periods of stick-slip oscil-

lations lengthen, but this behavior is not pursued here because 
it has little relevance to plug extrusion at Mount St. Helens.

Effects of Plug Mass Change (Nonzero K)
Continuous changes in plug mass are represented by 

nonzero values of K (and of κ, its dimensional equivalent). 
If the condition B=Q is assumed, nonzero values of K imply 
that the rate of mass loss due to surface erosion ( r E ) does 
not balance the rate of mass gain due to basal accretion ( B ), 
and the simplest example of such an imbalance occurs when 
the erosion rate is zero and the plug mass increases at the rate

B = . Figure 17 illustrates time-series behavior computed 
for this case (that is, κ=4,000 kg/s; K=1.78×10-7) with D= 
−2 and 0 / 10refu u = . Comparison of figure 17 with figure 14 
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Figure 15.  Sensitivity of stick-slip behavior with D = −2 
to variations in parameters c and λ in the nonlinear rate-
weakening friction rule. Other parameter values are same 
as those used to generate figure 14. Only phase-plane 
representations are shown, because time series are identical 
in all cases. Arrows point in direction of advancing time. A, 
Stick-slip cycles represented in terms of normalized pressure 
deviations. B, The same stick-slip cycles represented in terms 
of physical pressure deviations.

shows that stick-slip cycles computed with K>0 have slightly 
larger periods and amplitudes than those computed with K=0, 
an unsurprising finding in view of analytical results indicating 
that positive K values will cause growth of oscillation periods 
(see equation 33). However, in contrast to analytical predic-
tions, periods and amplitudes of stick-slip cycles computed 
with K>0 do not change with time.

The linear analytical model yields spurious predictions 
of the effects of positive K values because it neglects explicit 
coupling between magma-pressure change and conduit-vol-
ume change, which is included in the nonlinear computational 
model. Figure 17 shows that magma pressure rises slightly in 
each successive stick-slip cycle, because increased pressure 
is required to drive uplift of the increasingly massive plug. 
This increasing pressure is accompanied by slightly decreas-
ing conduit volume (fig. 17), because volume change due to 
compression of the highly compliant magma exceeds volume 
change due to conduit-wall deflection. Moreover, the percent 
decrease in conduit volume at the end of each stick-slip cycle 
is precisely the same as the percent increase in plug mass 
during the same cycle. Therefore, the effects of changes in 
conduit volume counterbalance the effects of changes in plug 
mass, such that the net effect of these changes on the oscilla-
tion period is zero. (As shown by equation 25, the time scale 
for the natural oscillation period, 0t , depends on the product 
of plug mass and conduit volume.) Numerical results show 
that the counterbalancing effect of mass changes and volume 
changes occurs for all positive K values—within reason. As 
suggested by analytical results, however, very large K or κ 
values (satisfying the criterion (2 / 3)C > − ) might stabilize 
extrusion and diminish oscillations. Such large κ values are 
physically unreasonable, because C scales with the large 
quantity 0 / refm g u (equation 23B), and mass accretion at a 
commensurately large rate is not plausible.

The magma pressure build-up depicted in figure 17 is 
further illustrated by its phase-plane representation in figure 
18. As shown in the phase plane, each stick-slip limit cycle 
is like the preceding cycle, except that each successive slip 
event begins at a successively larger magma pressure. In this 
example, use of the maximum plausible rate of mass increase 
(that is, 4,000B = = kg/s) causes magma pressure to 
double after about 115,000 stick-slip cycles, or about 113 
days. To within 1 percent, this result agrees with the pressure 
doubling time calculated by applying the analytical formula 
derived for pseudosteady-state extrusion (that is, equation 
21) for the case in which κ = 4,000 kg/s. The chief implica-
tion of these results is that if the plug mass increases signifi-
cantly, magma pressure can increase significantly without 
increasing the extrusion rate. Conversely, changes in extru-
sion rate need not be linked to changes in magma pressure if 
the plug mass changes.

Computational results obtained with K<0 differ in 
important ways from results obtained with K>0. Figure 19 
depicts results computed using a negative K value with the 
same magnitude as the positive K value used to generate 
figures 17 and 18 (that is, K= −1.78×10-7), and this value 
implies that the mass erosion rate, r E , is twice the rate of 
basal mass accretion, B . Comparison of figures 17 and 19 
shows that the negative K value produces changes in magma 
pressure and conduit volume with signs opposite to those for 
K>0 and also produces more frequent slip events (seven as 
opposed to six in 500 s). Slip events occur more frequently in 
the presence of diminishing plug mass, because less magma 
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Figure 16.  Sensitivity of stick-slip behavior with D = −2 to variations in 0 / refu u in the nonlinear rate-weakening friction rule. Other 
parameter values are the same as those used to generate figure 14. A, Time-series representation of stick-slip displacements. B, 
Phase-plane representation of velocity-pressure limit cycles corresponding to A. Arrows point in direction of advancing time.

pressure is necessary to trigger slip in each successive stick-
slip cycle. Importantly, the increased frequency of slip events 
is accompanied by an increase in the mean extrusion rate 
(which occurs with a constant magma supply rate, Q=2 m3/s), 
and this increase demonstrates the potential for runaway 
eruptive behavior. Moreover, decreasing plug mass eventu-
ally leads to a singularity in which fluid magma reaches the 
surface and the SPASM equations no longer apply (that is, 
the case with C<0 and κ<0 identified in table 3).

Runaway behavior is more evident in computational 
results obtained using negative K values with magnitudes 
much larger than the value −1.78×10-7 used to generate figure 
19. Unlike large positive K values, large negative K values 
are physically plausible, because the plug mass can decrease 
rapidly if large-scale spalling or avalanching erodes the plug 
surface. Figure 20 depicts displacement time series computed 
with negative K values having magnitudes 100, 1,000, and 
10,000 times greater than −1.78×10-7. (The value −1.78×10-3 
corresponds to mass loss at a rate of 4×107 kg/s or a volumet-
ric rate of about 20,000 m3/s—a rate high enough to remove 
the entire plug in less than one hour.) The key point illustrated 
by figure 20 is that, in the presence of significant mass loss, 
time-averaged displacement rates can be much larger than 
the steady equilibrium rate 0 /u Q A= = 6.667×10-5 m/s that 
prevails with K=0, and these high rates would likely lead to a 
change in eruptive style.

The unstable growth of extrusion rate that occurs with K= 
−1.78×10-3 is represented in the phase-plane diagram depicted 
in figure 21. The diagram shows that deviations from the equi-

librium magma pressure and equilibrium slip rate are exceed-
ingly large during each stick-slip cycle and that maximum 
slip rates increase during each successive slip cycle—while 
magma pressure successively declines. In such scenarios, then, 
extrusion occurs faster and faster until the plug is removed and 
liquid magma reaches the surface. The accompanying decline 
in magma pressure could also result in increased vesiculation 
and explosive potential, although this process is not repre-
sented by the SPASM model.

Effects of X
The dimensionless parameter X defined in equation 44 

mediates the interaction between extrusion rate and conduit 
volume change, as shown by equations 42 and 48, and it also 
affects magma pressure change through its influence on *R
(that is, equation 45). The physical meaning of X can be clari-
fied by writing its definition in a simplified, approximate form 
that is valid if 1 2 >> , which is almost certainly the case at 
Mount St. Helens: 

1/ 2

1 0
0

0

.mX u
V

 
≈  

 
			   (55)

 

This definition implies that, for systems in which 0u
and 1 are constant, variations in X can be viewed as scaled 
variations in 0 0/m V . Indeed, because values of 0 0/m V  can be 
changed while holding 0t and D constant, this strategy is used 
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Figure 17.  Time-series behavior of solutions computed with  
D= −2, u0/uref =10, and increasing plug mass specified by 
K=1.78×10-7 (that is, κ =4,000 kg/s). Other parameter values are 
same as those used to generate figure 14.

-

Figure 18.  Phase-plane representation of solution depicted 
in figure 17. Numbers shown in red denote time sequence of 
successive limit cycles. Arrows point in direction of advancing time.

to assess the effects of variations in X computationally. The 
condition K=0 is also assumed in this assessment.

Computations in which X is increased or decreased 
by one order of magnitude from its baseline value (5×10-6) 
show that stick-slip time series and phase-plane diagrams 
are identical for all values of X. However, figure 22 shows 
that some important details of the earthquake cycle change 
when X is increased by an order of magnitude (to 5×10-5) 
by simultaneously increasing 0m  and decreasing 0V  by one 
order of magnitude each from their baseline values, while 
retaining D = −2. Comparison of figure 22 with figure 14 (the 
baseline case) shows that, although the timing and magnitude 
of slip events is unchanged when X is increased by one order 

of magnitude, the accompanying magma pressure, pressure 
change, shear force, and force drop are each increased by 
one order of magnitude, whereas the conduit volume change 
is reduced by somewhat less than an order of magnitude. 
These effects are all logical consequences of the increased 
plug mass and reduced conduit volume that are imposed by 
increasing the value of X.

The most important fact illustrated by figure 22 is 
that the predicted magma pressure at the base of the plug 
(~1.3×108 Pa) is roughly an order of magnitude larger than 
the expected lithostatic pressure near the plug base (that is, 
at depths ~500 m). Such a large magma pressure is unreal-
istic, as it would probably cause hydraulic fracturing and a 
marked change in eruption style. This result implies that a 
value X≈5×10-5 is too large to be realistic. Similarly, if X is 
reduced to 5×10-7 while holding t0 and D constant, computed 
basal magma pressures are an order of magnitude smaller 
than the likely lithostatic pressure—a result that is also 
unrealistic. These findings imply that an X value similar 
to the baseline value (5×10-6) is probably appropriate for 
Mount St. Helens. Therefore, the computed drop in shear 
force accompanying slip in the baseline case (fig. 14) is also 
probably appropriate.

Effects of Y
The dimensionless parameter Y defined in equation 

44 represents the scaled difference between the magma-
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Figure 21.  Phase-plane representation of stick-slip limit cycles 
occurring with D = −2, u0/uref =10, and rapid decrease in plug 
mass (K = −1.78×10-3;  κ = −4×107 kg/s). Other parameter values 
are same as those used to generate figure 14. Arrows point in 
direction of advancing time.

Figure 20.  Comparison of displacement time series computed 
with D = −2, 0 refu u =10/ , and differing rates of decreasing plug 
mass specified by differing values of K. Other parameter values 
are same as those used to generate figure 14.
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Figure 19.  Time-series behavior of solutions computed with 
D= −2, 

 
u0/uref =10, and decreasing plug mass specified by K = 

−1.78×10-7 (that is, κ = −4,000 kg/s). Other parameter values are 
same as those used to generate figure 14.

influx rate Q and magma-solidification rate B. All results 
presented thus far assume that B=Q, which is necessary 
for the magma-plug system to long remain close to equi-
librium. Indeed, if BQ for a sustained period, a transition 
in eruptive behavior is inevitable. If B>Q, for example, 
the solidification front would propagate downward and the 
plug mass would increase unless mass loss due to surface 
erosion balances mass gain due to basal accretion. If such 
a balance were sustained, the plug would appear to sink 
progressively, even as extrusion continued, and friction 
on the plug margins would progressively increase. On the 
other hand, if B<Q, the solidification front would migrate 
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Figure 23.  Time series behavior of solution computed with D = −2, 
u0/uref =10, and excess basal accretion specified by B = 2Q = 4 m3/s 
and K = 1.78×10-7 (that is, κ = 4,000 kg/s). Here Y = −5×10−6. Other 
parameter values are same as those used to generate figure 14.
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Figure 22.  Details of an earthquake cycle computed with D = −2, 
u0/uref  =10, and X = 5×10-5 (one order of magnitude larger than the X 
value used to compute the baseline results shown in figure 14). Other 
parameter values are same as those used to generate figure 14.

upward. In the extreme case of B=0, any changes in plug 
mass would result exclusively from surface erosion, and the 
plug would eventually be pushed out the ground as liquid 
magma reached the surface. This scenario represents sin-
gular behavior analogous to that occurring with a negative 
mass-change rate (K<0). Below, I focus only on short-time 
behavior for cases with B>Q and B=0.

Behavior computed for a case with B=2Q=4 m3/s and 
K=1.78×10-7 (that is, κ=4,000 kg/s) is shown in figure 23; this 
case is exactly like that illustrated in figure 17 except that, 
here, growth of plug mass occurs as a result of basal accre-
tion in excess of Q. Thus, figure 23 depicts the response to 
growth of mass exclusively below the surface (with downward 
migration of the solidification front), whereas figure 17 depicts 

the response to growth exclusively above the surface (with no 
downward migration of the solidification front). The results 
shown in figures 23 and 17 are in most respects identical, except 
that the conduit volume decreases much more quickly in the 
case with basal accretion in excess of Q (fig. 23)—an obvious 
consequence of downward migration of the solidification front. 
Increasing pressurization of the conduit fluid accompanies 
this migration, and in the long run this combination of effects 
is unsustainable because magma pressure eventually would 
become large enough to fracture surrounding rock.
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Figure 24.  Time series behavior of solution computed with  
D = −2, u0/uref =10, and zero basal accretion (B = 0). Here  
Y = 5×10−6. Other parameter values are same as those used to 
generate figure 14.

Figure 25.  Displacement time series computed with varying 
values of R0 and Z (with accompanying variation of D and X). 
Other parameter values are same as those used to generate 
figure 14.

The limiting case with small B (that is, B=0) exhibits behav-
ior almost exactly like that computed for the baseline case with 
B=Q and K=0. Indeed, with B=0, graphs of the behavior for early 
times are indistinguishable from those shown in figures 13 and 14, 
except that conduit volume increases with each successive stick-
slip cycle (fig. 24). This increase is an obvious consequence of 
upward migration of the base of the plug, and although this migra-
tion affects plug dynamics negligibly in the short term, persistence 
of this migration eventually must lead to the singularity noted 
above (that is, magma reaching the surface).

Effects of Z
The dimensionless parameter Z defined in equation 44 

may be interpreted as a scaled version of the mass-density 
ratio difference, 0 01 ( / )rR  = − , which plays its most impor-
tant role in determining the mean (that is, time-averaged) 
extrusion rate, 0 0( ) /u Q R B A= −  given by equation 19. The 
mean extrusion rate is affected by Z because R

0 
determines 

the change in density that occurs as magma ascending at rate 
Q solidifies at rate B—such that an increase in density during 
solidification reduces the volumetric extrusion rate of the solid 
plug. Values of R

0
 plausibly range from about −0.5 to 0.5, and 

for the case with B=Q, these values yield 0u  values ranging 
from 0.5(Q/A) to 1.5(Q/A). Moreover, with B=Q, the defini-
tion of Z also reduces to 0 0/(1 )Z R R= − , so that Z depends 
exclusively on R

0
. Examples of displacement time-series 

solutions computed for this case, with various values of Z, are 
shown in figure 25.

Interpretation of figure 25 is complicated by the fact 
that with A and B held constant, values of Z cannot be varied 
independently of values of D and X (because Z, X, and D all 
depend on 0u , which in turn depends on 0R ). Therefore, the 
figure shows results of computations in which Z, X, and D 
vary simultaneously. Nevertheless, the effect of values of Z on 
the average extrusion rate is clearly evident in figure 25; large 
departures from the baseline value Z=0 yield similarly large 
departures from the average extrusion rate observed with Z=0 
(that is, 0 /u Q A= ). The period of stick-slip cycles remains 
nearly proportional to the magnitude of D (just as in the base-
line case illustrated in fig. 13), despite variations in Z. Unlike 
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Figure 27.  Phase-plane representation of extrusion behavior 
computed with an initial excess magma pressure (0.005 percent 
of p0) and D = 0.2. Parameter values are same as those used to 
generate figure 14, except that c = 1.71×10-5 is used to obtain D = 
0.2. Arrows point in direction of advancing time.

Figure 26.  Phase-plane representation of behavior computed 
with four disequilibrium initial conditions (that is, initial excess 
magma pressures 0.005 percent, 0.01 percent, 0.015 percent, and 
0.02 percent of p0), for each of two negative values of D. Parameter 
values are same as those used to generate figure 14, except that c 
= −1.71×10-5 is used to obtain D = −0.2. Arrows point in direction of 
advancing time. A, D = −0.2. B, D = −2.

the baseline case, however, the time series depicted in figure 
25 each involve slip events with about the same magnitude of 
displacement (~5 mm). This behavior indicates that, while D 
largely controls the system’s dynamics, the magnitude of slip 
events is additionally regulated by Z.

Effects of Initial Conditions
The preceding results were computed using initial 

conditions that assume a state of mechanical equilibrium, but 

volcanic eruptions presumably begin with an initial disequi-
librium state, such as that due to magma pressure in excess of 
the static limiting equilibrium pressure ( 0p > p ). This section 
summarizes results of computations that used a disequilibrium 
initial condition of this type.

All computations with 0p > p  predict that an initial pulse 
of rapid motion occurs until plug momentum is depleted, 
magma pressure relaxes, and static equilibrium is restored, and 
this behavior occurs irrespective of the sign or value of D (figs. 
26, 27). Pressure then rebuilds until it triggers a second stage 
of motion. For D<0 this stage consists of endlessly repetitive 
stick-slip limit cycles (closed loops in fig. 26) exactly like 
those produced with equilibrium initial conditions (for exam-
ple, fig. 13), whereas for D>0 the second stage converges to a 
fixed-point equilibrium representing a state with dynamically 
balanced forces (fig. 27). It is noteworthy, however, that cases 
with rate-strengthening friction (D>0) and rate-weakening 
friction (D<0) exhibit similar initial pulses if the initial pres-
sure disequilibrium is the same (for example, compare results 
for D=±0.2 in figs. 26A and 27).

A key point illustrated in figure 26 is that the maximum 
speed of the initial extrusion pulse and the magnitude of the 
associated pressure deviation increase almost linearly with 
increasing initial magma overpressure. Moreover, this trend 
is insensitive to the value of D, and linear extrapolation can 
therefore be used to infer the maximum extrusion speed (and 
pressure deviation) associated with any initial overpressure. 
With D= −2, for example, each increase of 0.005 percent in 
initial overpressure increases the maximum speed of the initial 
movement pulse maxu  by about max /( / ) 14u Q A = (fig. 26B). 
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In conjunction with the baseline value Q/A=6.67×10-5 m/s 
for Mount St. Helens, this result implies that a 0.005 percent 
magma overpressure (relative to the static limiting equilibrium 
pressure 0p ) would produce a maximum extrusion velocity 
of about 3 mm/s, and that an overpressure of 5 percent would 
produce a maximum extrusion velocity of ~1 m/s.

Magnitudes of displacements that occur during the initial 
movement pulses shown in figures 26 and 27 can be estimated 
from the maximum pressure deviation 0p p− , because the 
displacement during slip is proportional to the duration of the 
subsequent “stick time” (as shown by equation 54). By infer-
ence from equation 54, then, the displacement during the initial 
slip event increases like 1 2 0( )( )ip pe  + − . On this basis, extrapola-
tion from figure 26B shows that initial magma overpressures of 
even a few percent would lead to movement pulses of at least 
several meters, provided that D= −2.

Discussion
The SPASM model was developed to explain the relation 

between nearly steady solid-state extrusion and nearly periodic 
drumbeat earthquakes observed during the 2004–5 eruption 
of Mount St. Helens. Although this relation could result from 
a complicated interaction of numerous physical and chemi-
cal processes, the SPASM model aims for a parsimonious 
mechanical explanation that employs a minimum of postulates 
and variables. Some of the parsimony of the SPASM model 
derives from its central, simplifying assumption: that the 
volumetric flux of magma into the base of the eruption conduit 
(Q) is constant. This assumption is consistent with a top-down 
perspective of eruption dynamics, in which no time-dependent 
changes in a deep magmatic system are invoked to explain 
phenomena observed at Earth’s surface.

From a mathematical standpoint, the assumption of con-
stant Q enables the SPASM model to be reduced to a nonlinear 
system of three first-order ordinary differential equations. The 
relative simplicity of these equations facilitates both analytical 
and numerical studies of model properties. Indeed, the math-
ematical behavior of the SPASM model can be understood 
completely, and understanding of this simple model provides 
a steppingstone toward understanding behavior of Mount St. 
Helens during solid-state extrusion in 2004–5.

Analytical study of the SPASM model demonstrates that 
steady, solid-state extrusion is an equilibrium condition that 
can be satisfied exactly if the magma influx rate, Q, equals the 
rate of magma solidification at the base of an extruding plug, 
B, which in turn is balanced by erosion of the plug surface, 
E. In addition, pseudosteady states can exist in which the 
extrusion rate remains constant and changes in plug mass are 
accompanied by compensating changes in magma pressure. 
Such pseudosteady states cannot persist indefinitely, however, 
because changes in plug mass and magma pressure cannot 
continue without eventually causing a change in eruption 
style. Therefore, long-term steady-state extrusion at Mount St. 
Helens in 2004–5 probably involved a near-equilibrium state 

in which the plug mass effectively remained almost constant 
and B Q≈  applied.

Analysis of the SPASM model shows that, even when a 
near-steady eruptive state persists, extrusion velocities have an 
inherent tendency to exhibit short-term oscillations about the 
long-term equilibrium rate. These oscillations are an inevitable 
consequence of the interaction of plug momentum, a vari-
able upward force due to magma compression and pressure, 
and a downward force due to the plug weight. The oscilla-
tions are damped mostly by plug-boundary friction, and if 
friction exhibits rate-weakening behavior like that observed 
in experiments with fault gouge obtained from the surface of 
the Mount St. Helens plug, damping is negative and oscilla-
tion amplitudes grow unstably. Oscillation growth is neces-
sarily arrested, however, because friction has the potential to 
reverse its direction of action when the plug extrusion velocity 
declines to zero. Growing oscillations are thereby transformed 
to repetitive stick-slip cycles, and these cycles continue indefi-
nitely (that is, until a change in a parameter such as Q, B, or 
E occurs). According to the SPASM model, these repetitive 
stick-slip cycles are responsible for generating nearly periodic 
“drumbeat” earthquakes observed during solid-state extrusion 
at Mount St. Helens in 2004–5.

Properties of stick-slip cycles predicted by the SPASM 
model are controlled by a variety of factors, but both analytical 
and numerical results support the conclusion that the natural 
oscillation time scale 0t and dimensionless damping D exert 
the most important controls. The oscillation time scale is fixed 
by conduit and plug properties that affect elastic strain in the 
system, whereas nonlinearly rate-dependent friction causes 
damping to vary as a function of the extrusion velocity u. 
Nevertheless, computational results show that most effects 
of variable damping are encapsulated by D evaluated at the 
steady equilibrium extrusion rate, 0u u= . These results show 
that the amplitudes and periods of stick-slip cycles increase 
almost in proportion to the magnitude of D, provided that 0t
remains constant.

Computations using diverse values of D show that D= 
−2 produces stick-slip cycles most similar to those inferred 
to generate drumbeat earthquakes at Mount St. Helens 
throughout much of the 2004–5 eruption, and the dynam-
ics of these cycles are relatively insensitive to variations in 
values of the physical parameters that constitute D. With 
D= −2 , computed interevent periods are about 80 s, the slip 
distance per event is about 5 mm, maximum slip speeds are 
about 2 mm/s, and reduction of magma pressure during slip 
is about 2.4 kPa. This reduction in magma pressure is strik-
ingly small in comparison to the ambient, roughly lithostatic 
magma pressure (~1.3×104 kPa) inferred to exist at the base 
of the plug, about 500 m beneath the ground surface. The 
small size of magma-pressure fluctuations indicates that the 
system deviates little from mechanical equilibrium, even dur-
ing slip events. Moreover, changes in basal magma pressure 
during slip events can be multiplied by the inferred basal 
area of the plug (~30,000 m2) to provide a proxy for the force 
drop available to generate seismicity.
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A more refined assessment of the force drop during slip 
events is provided by SPASM output that shows how the shear 
force due to plug-boundary friction (F) evolves during slip. 
With D= −2, the computed force drop is about 7×107 N, and 
much of the force drop occurs abruptly, despite the fact that 
slip events have durations of ~5 s. This nearly instantaneous 
force drop occurs just as the slip velocity, u, decreases from a 
finite value to zero, and its abruptness results from the inter-
play of three phenomena: (1) owing to rate-weakening friction 
during slip, the upward-moving plug gains momentum that 
causes it to overshoot an equilibrium state in which forces are 
dynamically balanced; (2) as the upward-moving plug deceler-
ates, a potential for downward motion exists, because basal 
magma pressure has relaxed to a value smaller than its static 
equilibrium value; and (3) incipient downward motion of the 
plug is arrested immediately, however, because friction along 
the plug margin reverses direction so as to oppose motion. 
Friction adjusts just enough to stop motion and balance forces, 
of course, because friction can only oppose motion, not drive 
it. The abrupt adjustment of the friction force as plug motion 
ceases produces a sudden force drop that can radiate high-
frequency seismic energy. 

The mechanics that produce the stick-slip behavior and 
force drops predicted by the SPASM model are robust because 
they derive from basic physical principles, but the weakest 
link in the SPASM formulation involves the nature of friction 
and its rate dependence. Frictional properties of granulated 
solids such as fault gouge are poorly understood at a funda-
mental level, although some degree and type of rate weaken-
ing is generally observed in a variety of both idealized and 
geological granular media (for example, Nasuno and others, 
1997; Marone, 1998). Rate-weakening behavior has also been 
measured in tests of fault gouge collected from the surface of 
the extruding plug at Mount St. Helens (Moore and others, this 
volume, chap. 20). In the context of the SPASM model, the 
most crucial point revealed by these tests is that some degree 
of rate-weakening occurs as slip velocities increase from zero 
to a steady equilibrium value 0u . This weakening suffices to 
generate stick-slip behavior, regardless of subtler nuances of 
friction. If rate-strengthening friction develops at higher slip 
rates, for example, it will help arrest slip events but not prevent 
them. Therefore, the occurrence of stick-slip cycles appears 
almost inevitable.

Occurrence of stick-slip cycles large enough and abrupt 
enough to generate drumbeat earthquakes is also contingent 
on elastic properties of the magma-plug-conduit system. At 
least one elastic element in the system must be soft enough 
to strain significantly in response to driving forces that are 
smaller than those required to shear the fault gouge irrevers-
ibly (compare Rice and Ruina, 1983). (The shallow depths 
of drumbeat earthquakes implies that these driving forces are 
probably smaller than those causing fault slip at hypocentral 
depths typical of nonvolcanic earthquakes (that is, >1 km), 
because confining stress and frictional resistance are rela-
tively small at depths <1 km.) At Mount St. Helens, fluid 
magma underlying the extruding plug provides an exception-

ally soft elastic element, because its estimated 12 percent (by 
volume) exsolved gas content makes it orders of magnitude 
more compressible than solid rock. In essence, then, the 
magma serves as a spongy spring that compresses signifi-
cantly as it delivers the force to shear the plug-bounding 
gouge. Strain energy stored during magma compression is 
released in abrupt slip events that would be smaller and more 
frequent if the magma were stiffer. Therefore, the earthquake 
cycle described by the SPASM model differs from a typi-
cal tectonic earthquake cycle in two important ways: (1) in 
SPASM, strain energy is stored principally in a compressed 
fluid, not in a solid deformed in shear; repeated, nonde-
structive compression of “soft” fluid enables seismogenic 
plug slip to occur repeatedly at shallow depths; and (2) in 
SPASM, after slip has ceased, the plug is reloaded by forces 
due to gravity and magma influx. This reloading occurs 
very rapidly in comparison to reloading by tectonic strain 
accumulation, enabling drumbeat earthquakes to occur much 
more frequently than tectonic earthquakes.

Gradual evolution of the magnitude and periodicity of 
drumbeat earthquakes observed during the 2004–5 eruption 
of Mount St. Helens prompts questions about the cause. Can 
evolution of drumbeats be a harbinger of changes in erup-
tion rate or style? The SPASM model provides insight to this 
issue, but it provides no unequivocal answers. According to 
the model, amplitudes and periods of slip events can change 
in response to changes in values of any of the parameters 
that constitute D, even when magma ascent and solidifica-
tion rates are constant. Because D encompasses the effects of 
gouge frictional properties and the effective stress state, as 
well as the natural oscillation time scale 0t , evolution of any 
of a number of phenomena could be responsible for chang-
ing the character of drumbeats. Nonetheless, because field 
data can to some degree constrain changes in quantities such 
as plug mass or conduit volume, it is tempting to ascribe 
changes in drumbeats to unobserved changes in gouge prop-
erties or the state of effective stress. Computational results 
from SPASM indicate that rather subtle changes in these phe-
nomena can alter drumbeat properties significantly. Indeed, it 
is easy to imagine that the source of drumbeats could migrate 
around the periphery of the extruding plug as scattered 
patches of particularly strong gouge form, fail, and reform. 
A model more elaborate than SPASM would be required to 
analyze the details of such behavior.

The SPASM model does provide a clear picture of poten-
tial changes in eruption style that can occur if conditions far 
from equilibrium develop. One type of disequilibrium devel-
ops if the rate of magma accretion at the base of the extruding 
plug differs significantly from the rate of plug extrusion. If 
the accretion rate is less than the extrusion rate, liquid magma 
eventually will reach the ground surface. Magma pressure will 
simultaneously decline, and this decline could enhance magma 
vesiculation and explosive potential. On the other hand, if the 
plug accretion rate exceeds the extrusion rate, the solidifica-
tion front will propagate downward and magma pressure will 
increase, assuming that deep magma influx remains constant. 
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Increasing pressure could eventually trigger an exception-
ally large slip event or fracture surrounding rock, causing a 
transition in eruption style—or it could suffice to stop magma 
influx, thereby halting the eruption.

Effects of magma pressure exceeding the static limiting 
equilibrium pressure can be treated as disequilibrium initial 
conditions in the SPASM model. If excess pressure exists 
but is insufficient to fracture rock, a rapid pulse of plug 
motion occurs until static equilibrium is restored. If magma 
pressure exceeds the equilibrium pressure by even a few 
percent, SPASM predicts that this pulse can involve veloci-
ties of meters per second and displacements of many meters. 
Such a pulse could even eject the plug from the volcanic 
vent and instigate the type of transition in eruption style 
described above.

The fact that no rapid pulses of extrusion or transitions in 
eruption style occurred during the 2004–5 eruption of Mount 
St. Helens implies that the magma-plug system never devi-
ated much from equilibrium, even during the eruption onset. 
This behavior is, of course, very different from that during the 
cataclysmic eruption of Mount St. Helens on May 18, 1980. 
In that case explosive activity was caused by rapid depres-
surization of a shallow magma body triggered by a massive 
landslide. Without the landslide trigger, the 1980 eruptions of 
Mount St. Helens might have been relatively quiescent, much 
like the eruption of 2004–5.

Conclusion
The central conclusion of this study is that stick-slip 

oscillations are almost inevitable during an eruption in 
which steady ascent of compressible magma drives upward 
extrusion of a solidified plug with margins that exhibit rate-
weakening friction. Whether such oscillations are large and 
abrupt enough to generate repetitive earthquakes like those 
observed at Mount St. Helens depends on a host of factors, 
nearly all of which are encompassed within two quanti-
ties derived in this paper: the natural oscillation time scale 

1/ 2
0 0 1 2 0[ ( ) ] /t m V A = +  and the frictional damping index, 

which can be approximated as ( )0 0 0(1/ 2) /D c g t u ≈
 
. 

Large values of 0t  favor the occurrence of relatively large, 
infrequent slip events, because they imply that large elastic 
strains can be accommodated during magma compression. 
Large negative values of D have similar effects because 
they imply that effects of rate-weakening plug friction are 
significant, and rate weakening is responsible for “dynamic 
overshoot” during slip events. As a consequence, negative D 
values far from 0 cause the period between successive slip 
effects to exceed the period expected on the basis of 0t alone.

Computations using D= −2 predict the occurrence of 
stick-slip cycles with interevent periods of ~80 s, slip dis-
placements of ~5 mm, and force drops of ~7×107 N, and these 
properties appear consistent with those of events inferred to 
produce drumbeat earthquakes during the 2004–5 eruption of 

Mount St. Helens. Although individual modeled slip events 
last about 5 s, most of the accompanying force drop occurs in 
a fraction of a second, consistent with requirements for radia-
tion of high-frequency seismic energy.

Persistence of nearly periodic drumbeat earthquakes also 
requires that slip events are driven by nearly steady forcing. At 
Mount St. Helens this forcing was provided by nearly steady 
ascent of magma. Magma solidification at the base of the 
extruding plug apparently occurred at a rate nearly equal to the 
rate of magma ascent, enabling the system to remain close to 
equilibrium. Indeed, model results show that a near-balance 
between ascent rate and solidification rate is essential for 
maintaining persistent drumbeats.

The presence of a near-surface body of compressible 
magma that serves as a driving element may be necessary 
to generate repetitive, seismogenic stick-slip events at the 
shallow focal depths (<1 km) observed during the 2004–5 
eruption of Mount St. Helens. The strength of gouge at such 
shallow depths is relatively small (owing to relatively small 
normal stresses), and the gouge can therefore shear irrevers-
ibly before much elastic strain accumulates in a stiff adjacent 
body such as solid rock. Therefore, in the absence of a soft, 
near-surface magma body, stick-slip oscillations could still 
occur, but they would be reduced in size and period, perhaps 
to a degree that would make them aseismic. Moreover, near-
surface fluid magma can undergo repeated elastic compres-
sion and decompression without accumulation of irreversible 
damage that would likely accompany similarly repetitive 
strain in solid rock.

Lack of large movement pulses during the 2004–5 
eruption of Mount St. Helens reinforces the view that the 
magma-plug system remained close to equilibrium. Indeed, 
model results indicate that magma pressure exceeding the 
static equilibrium pressure by even a few percent was prob-
ably never present. An implication of this finding is that the 
dynamic equilibrium state exhibited during the eruption differs 
little from the static equilibrium state before the eruption 
onset. Therefore, the eruption trigger was likely very subtle, 
perhaps involving nothing more than weakening of the conduit 
cap rock by percolating water derived from late summer rains 
and glacier melt.
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Appendix 1. Solution of Equation 27 by Transformation to Bessell’s Equation
Conversion of the homogenous part of equation 27 into Bessel’s equation is accomplished by using a simultaneous change 

of independent and dependent variables, given by 
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Substitution of equation group A1 into equation 27 converts it into Bessel’s differential equation 
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where 
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The general solution of Bessel’s equation is 

1 2( ) ( ),w c J z c Y z = + 						      (A4) 

where 1c  and 2c  are arbitrary constants and J  and Y  are Bessel functions of the first and second kind, of order  (Abramowitz 
and Stegun, 1964). Equation 33 is obtained by transforming equation A4 back to the original variables *t  and *u  and adding a 
particular solution of the inhomogeneous version of equation 27, *u KG= − .
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