
   Powders and Grains 2009, Proc. 6th Intl. Conf. on Micromechanics of Granular Media,    
      edited by M. Nakagawa and S. Luding, American Institute of Physics, Proceedings 1145, 2009, p. 9-16 

Elements of an Improved Model of Debris-flow Motion 
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Abstract.  A new depth-averaged model of debris-flow motion describes simultaneous evolution of flow velocity and 
depth, solid and fluid volume fractions, and pore-fluid pressure.  Non-hydrostatic pore-fluid pressure is produced by 
dilatancy, a state-dependent property that links the depth-averaged shear rate and volumetric strain rate of the granular 
phase.  Pore-pressure changes caused by shearing allow the model to exhibit rate-dependent flow resistance, despite the 
fact that the basal shear traction involves only rate-independent Coulomb friction.  An analytical solution of simplified 
model equations shows that the onset of downslope motion can be accelerated or retarded by pore-pressure change, 
contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely 
be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions 
and pore pressure concurrently evolve toward steady states.    
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INTRODUCTION 

Debris flows are geophysical phenomena inter-
mediate in character between rock avalanches and 
flash floods. They commonly originate as water-laden 
landslides on steep slopes and transform into liquefied 
masses of fragmented rock, muddy water, and organic 
matter that disgorge from canyons onto valley floors.   
Typically including 50 to 70 percent solid grains by 
volume, attaining speeds >10 m/s, and ranging in size 
up to ~109 m3, debris flows can denude slopes, 
inundate floodplains, and devastate people and 
property.  Notable recent debris-flow disasters resulted 
in more than 20,000 fatalities in Armero, Colombia in 
1985 and in Vargas state, Venezuela in 1999. 

Scientific study of debris-flow behavior began 
more than 100 years ago [1], and experimental and 
theoretical investigations advanced significantly as the 
20th century drew to a close [2-6]. Several groups 
subsequently developed computational models of 
debris-flow motion by using depth-averaged, shallow-
flow equations generalized from those of the Savage-
Hutter model of granular avalanching [7,8]. The most 
fundamental generalization involved modeling the 
effects of intergranular liquid, called pore fluid in the 
geophysical  and geotechnical literature [9, 10].  

Pore-fluid pressure plays a crucial role in debris 
flows because it counteracts normal stresses at grain 
contacts and thereby reduces intergranular friction and 

enhances bulk flow mobility [6].  Typically, two-phase 
debris-flow models assume that pore-fluid pressure 
has both a hydrostatic component and a non-
hydrostatic component that is established by initial 
conditions and dissipated diffusively in response to 
debris compaction driven by gravity [11].  These 
models lack a key ingredient, however: explicit 
evolution of solid and fluid volume fractions coupled 
to changes in flow dynamics.   Such evolution is a 
fundamental feature of unsteady grain-fluid flows [6].  
It is particularly important during the initial stages of 
debris-flow motion, when it is responsible for pore-
pressure feedbacks that influence the balance of forces 
governing downslope acceleration [12].  As a result of 
these feedbacks, an initially static mass can either 
creep stably or mobilize into a high-speed flow [13].  

In this paper I summarize the elements of a new, 
depth-averaged debris-flow model that accounts for 
coupled evolution of flow dynamics and volume 
fractions by combining approaches previously used to 
model landslides [13], debris flows [11], submarine 
granular avalanches [14], and other dense granular 
flows [15]. The model's structure is also consistent 
with a long-established tenet of critical-state soil 
mechanics [16]:  solid and fluid volume fractions 
evolve toward values that are equilibrated to the 
ambient state of effective stress and deformation.  
Dilatancy, pore pressure, and frictional resistance 
evolve as a consequence. 
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CONCEPTUAL FRAMEWORK 

To emphasize physical concepts and minimize 
mathematical complexity, I restrict attention to one-
dimensional motion of a two-dimensional debris flow 
descending a rigid, impermeable plane uniformly 
inclined at the angle θ  (Figure 1).  The flow moves 
downslope as an evolving surge that has a 
characteristic length, L, characteristic thickness, H, 
and characteristic grain diameter, δ . The fact that the 
flow has these three length scales, and that 
L H δ>> >> is typical, plays an important role in 
model formulation. 

The model assumes that the debris consists of 
incompressible solid grains of mass density 

sρ occupying the volume fraction m mixed with 
incompressible fluid of mass density fρ occupying the 
volume fraction 1 , such that the mixture bulk 
density is: 

m−

 (1 ) .s fm mρ ρ ρ= + −  (1) 
The depth-averaged value of m is a dependent variable 
in the model, although much of the theoretical 
development is applicable even if m is a function of y. 
The other dependent variables are v, the depth-
averaged flow velocity in the x (downslope) direction, 
and h, the flow thickness in the y direction.  Additional 
quantities that evolve in the model do so as specified 
functions of m, v, and h.   

The model focuses on the macroscopic, depth-
averaged mechanics of a debris flow as a whole, but it 
relates macroscopic behavior to grain-scale behavior 
in a rudimentary way through use of a dimensionless 
state parameter.  This parameter, originally identified 
by Savage [17] and later dubbed the Savage number 
[6], represents a ratio of grain-scale inertial stresses 
caused by shearing to bulk-scale intergranular stresses 
caused by gravity.  Here I express this ratio as: 

 
2 2

,s

e

S
ρ γ δ
σ

=
�

 (2) 

where γ�  is the characteristic shear rate and eσ  is a 
characteristic value of the intergranular effective 
normal stress.  The effective stress is defined as 

e pσ σ= − , where σ is the total normal stress in the 
mixture and p is the pore-fluid pressure. Most 
definitions of S use σ in place of eσ  because they 
apply to dry grain flows, but here I use eσ because 
pore fluid can significantly affect grain-contact 
stresses in debris flows.  Considerable recent work 
relating the small-scale and large-scale mechanics of 
dense granular flows emphasizes the importance of S, 
but does so by  employing its square root, called the 
"inertia number" [15,18]. 

  
FIGURE 1.  Schematic illustrating coordinate system and 
basic attributes of a debris-flow surge descending a uniform 
slope. 

MATHEMATICAL MODEL 

The model emphasizes motion of the granular solid 
phase and treats fluid flow in a frame of reference that 
moves with the solids. Formally, this approach is 
predicated on the assumption that fluid flow relative to 
the solids is very slow relative to svG , the velocity of 
the solids themselves [6].  Thus, if the fluid's velocity 
in a fixed reference frame is , then its apparent 
velocity (i.e.,  specific discharge or volume flux per 
unit area) relative to the solids is , 

and the model assumes that 

fvG

( )(1f sq v v m= − −
G G G )

(1 )m−G G
sq v<< . On the 

other hand, conservation of mass requires that: 
 .sv q∇ = −∇

G Gi i  (3) 
The left-hand side of (3) plays a key role in evaluating 
depth-integrated bulk mass conservation, and the right-
hand side plays a crucial role in evaluating inter-phase 
drag and attendant pore-pressure evolution. 

Depth-Averaged Conservation Laws 

The depth-integrated mass-conservation equation 
for a grain-fluid mixture with variable m may be 
expressed as [19]: 

 0

0

( ) ( )

1 ,

h

s

h

h hv v dy
t x

dm dy D
m dt

∂ ∂
+ = ∇

∂ ∂

= − =

∫

∫

Gi
 (4) 

where / / sd dt t v= ∂ ∂ + ∇
G i is a material time derivative 

in a frame of reference that moves with the granular 
phase, and D summarizes the depth-integrated granular 
dilation rate. The net specific discharge of fluid 
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through the free surface at y=h equals −D, because (3) 
and (4) together imply that .  At the 

surface of debris flows such discharge is seldom 
detectable, but pore-pressure gradients associated with 

can be large even when the discharge is negligible. 
(See the section below on Basal Pore-fluid Pressure.)  
The model's mass and momentum conservation 
equations assume that any discharged fluid leaves the 
flow but remains available for reincorporation. 

0
( )

h
D q= − ∇∫

Gi dy

qG

The depth-integrated x-direction momentum-
conservation equation for the grain-fluid mixture may 
be expressed as [19]: 

 

2( ) ( )

sin cos ,

hv hv v
t x

gh gh (1 ) bed

vh v vD
t x

ph h
x x

τθ κ θ κ
ρ ρ

∂ ∂
+ =

∂ ∂
∂

= − −

∂ ∂⎡ ⎤+ +⎢ ⎥∂ ∂⎣ ⎦
∂

− −
∂ ∂

 (5) 

where is the basal pore-fluid pressure,bedp κ is a solid-
phase longitudinal normal-stress coefficient (of order 
1) that depends on granular friction [6,7,8,9,11], 
andτ is the basal shear traction resisting downslope 
motion.  On the first line of (5), the term  
accompanies  because it accounts 
for the effects of mass flux through the free surface 
that occurs when D is nonzero.  

vD
[ / ( / )]h v t v v x∂ ∂ + ∂ ∂

The derivation of (5) involves some assumptions 
closely analogous to those of standard shallow-water 
theory [9]. Specifically, it assumes that there is 
negligible differential advection of x-direction 
momentum (caused by variation of velocity as a 
function of y), and it assumes that p varies linearly as a 
function of y (with  at  and bedp p= 0y = 0p =  
at ). Errors resulting from these assumptions can 
be eliminated by inserting appropriate numerical 
correction factors (of order 1) in the terms containing 

and .  Such correction factors play no 
fundamental role in development of the model, 
however, and I omit them here for the sake of clarity. 

y h=

/v x∂∂ /bedp∂ ∂x

 Equation (5) reduces to the standard momentum 
equation used in shallow-water theory if ρ is constant 
and the granular mass is completely liquefied by high 
pore-fluid pressure, such that coshbedp gρ θ=

bedp

 applies.  
On the other hand, it reduces to the Savage-Hutter 
granular avalanche model [7] if . If 0= 1κ =  
applies, the granular-avalanche and shallow-water 
models collapse to the same form, but in general 

may vary  from about 1/4 to 4 in deforming granular 
materials. (See the section below titled Longitudinal 
Normal Stress Coefficient.)  As a result, the effects of 
variations in longitudinal normal stress described by 
(5) can be more complex than those described by 
standard shallow-water theory.   

κ

Constitutive Relations 

Although (4) and (5) govern evolution of v and h, 
and (1) provides a formula for ρ , these equations also 
contain m, ,bedp τ , andκ ,  which are as yet undeter-
mined.  Evaluation of these quantities (as well as 

eσ and the dilatancy angle ψ that relates volume 
change to shearing) involves a combination of physical 
reasoning and constitutive postulates.  

Volume Fraction and Dilatancy  

The solid volume fraction m and dilatancy angle ψ  
olve in an interdependent way, because volume-

fraction change depends, in part, on dilation caused by 
shearing, while the dilatancy angle itself depends on 
the ambient volume fraction relative to a volume 
fraction that is equilibrated to the current shear rate 
and state of stress.   The depth-integrated dilation rate 
D (defined kinematically in (4)) results from 
mechanical processes summarized by:   

ev

 
0

tan .
h

ed
D v dy

dt
σ

ψ α= − ∫  (6) 

Here α is the debris' poroelastic compressibility, and 
the term containing α describes the depth-integrated 
rate of compression (negative dilation) caused by 
changes in effective stress, eσ .  This term can be 
nonzero even if 0v = . On the other hand, the term 

tanv ψ  describes the rate of dilation caused by 

shearing at the depth-integrated rate 
0

h
dy vγ =∫ � . The 

dilatancy angle ψ can be positive, negative, or zero, 
depending on the current value of the volume fraction 
m. 

An additional constitutive equation is required to 
link the current value of ψ to the current value of m.  
To establish this linkage I employ a rationale similar to 
that in [14], and postulate that ψ satisfies:  

 
1

0

1 2
0

1tan [ ]

1 [ ( )]

h

eq

h

crit

C m m dy
h

C m m C S dy
h

ψ = −

= − −

∫

∫ ,
 (7) 

where and are positive constants to be 
determined by experimentation or calibration, is 
the solid volume fraction in equilibrium with the state 
represented by S, and is the value of that 
applies in a static critical state with and ambient 
effective stress 

1C 2C

e

eqm

eqmcritm
0S =

σ . To define S in (7), I use the depth-
averaged value / hvγ =�  in (2), yielding: 
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22

.s

e

v
S

h
ρ δ
σ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (8) 

Taken together, (6), (7) and (8) describe 
simultaneous evolution of ψ , m, and S in response to 
evolution of v, h, and eσ , but they also can be 
combined with the definition of D in (4) to form a 
single differential equation describing evolution of  m:  

 1 2[ ( )] e
crit

ddm vC m m m C S m
dt h dt

.
σ

α= − − − +  (9) 

Although the model ultimately treats m and eσ as 
depth-averaged quantities, (9) applies even if they are 
not depth-averaged.  The difference between the 
depth-averaged and depth-dependent interpretations of 
(9) hinges on the interpretation of the material time 
derivatives and /dm dt /ed dtσ . The depth-averaged 
interpretation assumes th 0yat / /em y σ∂ ∂ = ∂

/ sm t v∂ ∂ +
∂
m∇
= , 

such that / dt reduces from dm G i
/ed dt

 to 
, and likewise for /m t∂ ∂ + /m x∂ ∂v σ . 

Basal Pore-fluid Pressure 

To evaluate in (5), I first consider  and 
decompose it into a hydrostatic component that 
balances the pore-fluid weight and a nonhydrostatic or 
"excess" component, denoted by : 

bedp ( )p y

p′
 ( ) ( ) cos ( ) .fp y g h y p yρ θ ′= − +

0p
 (10) 

In an ideal steady flow, ′ =
p′
; otherwise dilation or 

contraction produces nonzero , and evolution of 
is coupled to evolution of m.  p′
Following [6], I postulate that the gradient of p′  

depends linearly on the specific discharge of fluid 
relative to the granular solids.  That is, I use a Darcian 
drag rule: 

 ( ) ,k mq
μ

′= − ∇
G

  A general equation describing evolution of p′  
results from substitution of (11) into (3) and then (3) 
into (4):  

 
0 0

1 .
h hdm kD dy p

m dt μ
⎛ ⎞′= − = ∇ ∇⎜ ⎟
⎝ ⎠

∫ ∫ i dy  (12) 

According to (12), p′ evolves diffusively in response 
to changes in m, but only the depth integral of  the 
diffusive flux is relevant with respect to the depth-
integrated dilation rate, D. 

To simplify evaluation the depth integral on the 
right-hand side of (12), I assume that k itself is a 
depth-integrated parameter and then invoke a scaling 
argument like that used in [11].  Because the length 
scale in the x direction is L and the length scale in the y 
direction is H (Figure 1), it follows that 2 2/ ~ 1/x L∂ ∂

2/ y′

, 
whereas . Thus, because H<<L is 
typical, I infer that 

2/ ~ 1/y H∂ ∂ 2

2 2 2/p x p′∂ ∂ << ∂
2 2)( / )p y′

∂ , leading to 
the approximation ( /k μ ∂ ∂ for the integrand 
on the right-hand side of (12).  Evaluation of the 
integral then reduces (12) to 

 .
y h

k pD
yμ =

′∂
=

∂
 (13) 

This equation does not include 0( / )[ / ]yk p yμ =′∂ ∂  
because the no-flux basal boundary condition 
stipulates that 0[ / ] 0yp y =′∂ ∂ =

p

. Thus, (13) uniquely 

relates the gradient of ′ at the free surface to D, but it 
provides no explicit information on the desired 
quantity, bedp′ .  

p  (11) 

where is the hydraulic permeability of the 
granular aggregate, which decreases as m increases, 
and

( )k m

μ is the pore-fluid viscosity, assumed to be 
constant.  For debris-flow materials, values k~10-11 m2 
and μ ~0.1 Pa-s are typical [6], implying that values 
of associated with reasonable values of qG p′∇  (which 
are no larger than gρ G ) are smaller than 10-5 m/s.  The 
great dissimilarity of this velocity and typical debris-
flow velocities (~10 m/s) provides justification for 
analyzing fluid flow in a frame of reference that moves 
with the granular solids and for neglecting fluid flux 
through the free surface at . y h=

To obtain an equation for , I invoke an 
additional boundary condition and use a polynomial  
approximation of a pore-pressure diffusion solution. 
The boundary condition specifies that no 
excess pore pressure exists at the free surface, because 
the pressure there remains atmospheric.   
Consequently, 

bedp′

0=( )p h′

( )p y′ must satisfy this condition along 
with (13) and [ / 0] 0=yp y′∂ ∂ = .  Moreover, ( )p y′  
should mimic pore-pressure distributions associated 
with diffusive fluxes.  A distribution that satisfies all 
these criteria is given by [11]: 

 
61( ) 1 1 .

6
y yp y Dh

k h h
μ ⎡ ⎤⎛ ⎞ ⎛ ⎞′ = − − − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (14) 

Substitution of (14) in (10) produces a profile of 
that differs only slightly from the linear profile 

assumed  in the derivation of (5).  
( )p y

Evaluation of (10) and (14) at y=0 provides an 
equation for :   bedp
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 5cos .
6bed f

Dhp gh
k
μρ θ= −  (15) 

Although (15) does not indicate any explicit time-
dependence, time-dependence of  is implicit in its 
dependence on the evolving values of h and D.  

bedp

 Alternative expressions for  result if a 
distribution different from that given by (14) is 
present.  Physically reasonable alternatives must 
satisfy (13) and the relevant boundary conditions, 
however, and such alternatives involve no change in 
the general form of (15) and only a modest change in 
the numerical coefficient 5/6.  Therefore, I infer that 
(15) is a suitable approximation.  

bedp
( )p y′

 Lower and upper bounds exist for viable values of 
predicted by (15). For example, if dilation occurs 

rapidly enough that 5 /
bedp

[6 cos ]fD k g 1μ ρ θ >

0

os ] 1

, (15) 
predicts that . This result implies that 
cavitation of pore fluid occurs, violating the 
assumption that the debris is fully saturated with 
liquid.   On the other hand, if negative dilation (i.e., 
contraction) occurs rapidly enough that 

bedp <

) cf g5 /[6 (D kμ ρ ρ θ < −

bedp
os

−

ch

, (15) predicts that 
more than suffices to counteract the weight of the 

overlying debris. This result implies that unbalanced 
forces exist in the y direction, violating another model 
assumption. Although these violations are not 
prohibited by physical phenomena, computationally it 
may be advisable to limit  to the range  

bedp

0 bedp gρ θ≤ ≤  to avert inconsistencies in 
solutions.  Investigation of the need for such a stop-
gap approach awaits numerical implementation of the 
model.  

Effective Normal Stress 

Following the usual conventions of shallow-flow 
theory, I assume that the total normal stress in the y 
direction, σ , is due simply to the bed-normal 
component of the weight of the overlying debris:  

 
( ) ( )cos

[ (1 )] ( )coss f

y g h y
m m g h y .

σ ρ θ
ρ ρ θ
= −

= + − −
 (16) 

A more complete formulation would include 
modification of the weight as a consequence of debris 
acceleration normal to the bed [20], but as is 
customary in most shallow-flow theories, I assume 
that such acceleration is negligible.  

An equation describing the effective normal stress 
e pσ σ= − is obtained by combining (16) with (10), 

yielding:  

 
( ) ( )cos ( )

[ ] ( )cos (
e

s f

y g h y p y
mg h y p y) .

σ ρ θ
ρ ρ θ
= − −

′= − − −

e

 (17) 

The value of σ at 0y = has particular importance in 
the model because it affects the basal shear traction, 
τ .  By combining (15) and (17), this basal value of 

eσ  may be expressed as:  

 
cos

5[ ] cos
6

e bed bed

s f

gh p

Dhmgh
k

.

σ ρ θ

μρ ρ θ

= −

= − +
 (18) 

Although (18) does not demonstrate any explicit time-
dependence, e bedσ  has implicit time-dependence 
through its dependence on m, h and D.    

Basal Shear Traction  

Following the rationale in [6], I assume that the 
basal shear traction (sometimes called basal shear 
stress) τ obeys the Coulomb friction rule, modified to 
account for the effect of basal pore-fluid pressure: 

 tan ,e bed bedτ σ φ=  (19) 
where bedφ is the Coulomb friction angle of the granular 
phase in contact with the bed. Equation (19) could be 
generalized to include dependence of bedφ on evolving 
values of S, ψ , or perhaps other quantities [14,15,18], 
but here, for the sake of parsimony, I treat bedφ as a 
constant. Even with a constant value of bedφ , however, 
τ can express rate-dependent flow resistance owing to 
its dependence on e bedσ .  This rate-dependent effect 
arises from the rate-dependent component of , 
which is ~

bedp
/ kDhμ as shown in (18).  The presence of 

even a modest dilation rate D can result in 
considerable rate-dependence owing to the typical 
values k~10-11 m2 and μ ~0.1 Pa-s.  

Deformation of the pore fluid associated with the 
bulk shear rate γ� could also produce a rate-dependent 
contribution to τ  (i.e., ~ μγ� ).  Generally, however, 
such shear resistance is minimal in comparison to 
granular shear resistance in debris flows [21], and 
here, in keeping with the goal of parsimony, I omit it. 

A final important point regarding (19) is that, 
although the Coulomb friction rule is classically a 
quasi-static relationship, a Coulomb-like propor-
tionality between normal and shear stress also applies 
in rapidly shearing mixtures of grains and fluid. 
Bagnold [22] identified this proportionality, and his 
central findings were later duplicated and articulated 
more thoroughly by others [23].   A current consensus 
is that (19) applies in most dense, granular shear flows, 
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although  bedφ may vary as a function of S or some 
other measure of shear intensity [15,18].  

Longitudinal Normal Stress Coefficient 

The final quantity requiring evaluation isκ , a 
proportionality coefficient that relates the longitudinal 
normal stresses communicated by the solid grains, xσ  
to the effective intergranular normal stress eσ : 

 
0

1 .
h

x

e

dy
h

σ
κ

σ
= ∫  (20) 

Here the integral demonstrates that is inherently a 
depth-averaged quantity.  If , then the depth 
integral of the longitudinal normal stress gradient is 

κ
1κ =

( / )gh h xρ ∂ ∂  and the implied stress state is 
hydrostatic, as assumed in conventional shallow-water 
theory.  On the other hand, if  the longitudinal 
stress gradient differs.   

1κ ≠

I obtain the value of by following the reasoning 
originally employed in the Savage-Hutter granular 
avalanche theory [7,8], in which a Mohr's stress 
diagram is used to derive as a function of 

κ

κ bedφ and 

intφ , the Coulomb friction angle for internal shearing.  
For shearing that occurs both internally and along the 
bed, the Mohr's construction implies [6]: 

 
2 2 1/ 2

int
2

int

1 [1 cos (1 tan )]
2 1

cos
bedφ φ

κ
φ

− +
= −

∓
,  (21) 

where the "−" in ∓ applies to "active" or extensional 
longitudinal deformation in which / 0v x∂ ∂ > , 
whereas the "+" in applies to "passive" or 
compressional longitudinal deformation in which 

.   If , then the value of 

∓

=/v x∂ ∂ < 0 0/v x∂ ∂ κ is 
indeterminate, although is perhaps a reasonable 
assumption. 

1κ =

Once an appropriate value of is obtained, the 
depth average of 

κ
xσ is expressed simply as the depth 

average of , which is approximated very closely 
by .  A more exact value can be obtained 
by integrating (17) to find its depth average, but this 
step is probably unwarranted because (17) is itself an 
approximation owing to its dependence on (14).  

eκσ

e bed(1/ 2)κσ

EXACT SOLUTIONS OF SIMPLIFIED 
EQUATIONS 

Some important physical implications of the model 
are revealed by considering hypothetical special cases. 
One significant special case assumes that 0ψ = . Then 
the model couples evolution of h and v to evolution of 

through use of a depth-averaged diffusion 

equation [11]. Here I describe two additional special 
cases, for which analytical solutions demonstrate 
implications of 

bedp

0ψ ≠ .  

Accelerating Slab with Constant Dilatancy 

If all variations with respect to x are neglected, the 
model describes downslope motion of a uniform slab 
of debris that is free to accelerate.  Furthermore, if 
dilation is due to a constant ψ , such that dependence 
of ψ on eσ  and m is neglected, then the governing 
equations (4), (5), and (9) reduce to: 

 tan ,dh
dt

v ψ=  (22) 

 tan ,dm m v
dt h

ψ= −  (23) 

 
2

( )
sin cos tan

5 tan tantan .
6

s f
bed

bed

mdv g g
dt

v v
k h

ρ ρ
θ θ φ

ρ
μ ψ ψφ

ρ

−
= −

− −
 (24)  

Equations (22) and (23)  show that the thickness h and 
volume fraction m of the slab evolve in a simple 
manner that depends on the dilation rate tanv ψ .  
Equation (24), on the other hand, shows that evolution 
of v depends on a balance between the gravitational 
driving term sing θ  and three resisting terms with 
distinct physical origins. The first resisting term arises 
from the product of the y component of the buoyant 
weight of the debris and basal friction coefficient, 
tan bedφ . The second resisting term contains v and 
arises from modification of basal friction by excess 
pore pressure generated by dilation.  The third 
resisting term contains and arises from the mass and 
momentum change associated with dilation (i.e., the 
term  in (5)).   

2v

vD
As a consequence of its three resisting terms, (24) 

superficially resembles debris-flow momentum 
equations that use shear traction formulas of the form 

, where the coefficients a0, a1, and 
a2 are treated as calibration parameters [24,25].  In 
contrast, values of the analogous coefficients in (24) 
are derived using physical arguments.  The coefficient 
values can vary moderately in (24) but can vary 
greatly if 

2
0 1 2a a v a vτ = + +

ψ is allowed to vary as in (7). 
A key insight to model behavior is gained by 

considering a simpler form of (24) that results from 
assuming that ψ is small (<0.01) and that m and h are 

constant.   Then, normalizing (24) using  * /v v gL=  

and * / /Lt t g= and retaining only those terms likely 
to be of order 1 or larger reduces the equation to  
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 * * ,
*

dv A Bv
dt

= −  (25) 

where A and B are constants defined by 

 
( )

sin cos tan ,s f
bed

m
A

ρ ρ
θ θ

ρ
−

= − φ  (26) 

 
/5 tan tan .

6 ( / ) bed

L g
B

k
ψ φ

μ ρ

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 (27) 

  
A solution of (25) satisfying the initial condition 

is .  This result 
implies that if B>0, v* approaches the stable, steady 
value  as time proceeds, but if B<0, v* 
grows unstably. 

*(0) 0v =

* =

* ( / )[1 exp( *)]v A B Bt= − −

/ Bv A

The divergent behaviors of solutions of (25) 
indicate that the phenomena determining the sign and 
magnitude of B have great physical importance. The 
sign of B is determined by the sign of tanψ , such that 
positive dilation leads to stable, steady motion 
regulated by negative feedback associated with 
viscous pore-fluid flow. On the other hand, negative 
dilation (contraction) produces unstable, positive 
feedback comparable to that of a negative viscosity 
coefficient.   

The magnitude of feedback effects in (25) is 
determined mostly by the term in brackets in (27), 
which may be viewed as a timescale ratio. The 
numerator of this ratio is the timescale for debris 
dilation, and the denominator is the timescale for 
modification of effective basal normal stress by excess 
pore-fluid pressure caused by dilation.  Typical values 
of this timescale ratio are >>1 as a consequence of 
very small values of k (typically < 10-8m2), implying 
that feedback caused by pore-pressure change can be 
very strong.  Indeed, such feedback might overwhelm 
all other aspects of debris-flow dynamics were it not 
for the fact that ψ itself evolves.  

Steady, Uniform Flow with Evolving 
Dilatancy 

The physical implications of an equation similar to 
(9), which governs evolution of m in the presence of 
evolving ψ , have been discussed previously [14].  
These implications can be illustrated by considering an 
imaginary case of steady, uniform flow in which 
dilation occurs but v, h, and eσ  are constant.  Then 

is also constant, and use of this 
expression in (9) reduces the equation to  

2eq crm m C Sit= −

 ( eq
dm Cm m m
dt

= − −

 1
vC C
h

=  (29) 

A solution of (28) satisfying the initial condition 
0(0)m m= is 

 
1

0

1 1 exp( )eq
eq

eq

mm m Ct
m m

−
⎡ ⎤⎛ ⎞

= − − −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (30) 

which implies that m relaxes toward with a 
characteristic time 1/ . Moreover, as , it 
follows that  

eqm
m →eqm C

0
eqm

ψ → , leading ultimately to a perfect 
steady state in which m is in equilibrium with the 
ambient value of S.  This result shows that the 
unconditional stability or instability of solutions of 
(25) tell only a fraction of the story implied by the 
model equations.  Better understanding of the full 
implications awaits numerical computations. 

CONCLUDING DISCUSSION  

The new model I propose attempts to remedy a 
fundamental deficiency of previous depth-averaged 
debris-flow models.  It does so by including the effects 
of evolving volume fractions and dilatancy, along with 
consequent pore-pressure feedbacks.  Inclusion of 
these effects requires use of three constitutive 
parameters not used in previous debris-flow models, 

crit , C1, and C2.  These parameters appear in equation 
(7), which relates the volume fraction, m, dilatancy, 
m

ψ , and Savage number, S.  Thus, (7) may be regarded 
as the principal new postulate in the model.  It is 
consistent with concepts of critical-state soil 
mechanics as previously employed elsewhere [14].  

A shortcoming of the new model is its lack of 
explicit accounting for grain-size segregation. Such 
segregation is pervasive in debris flows, and it leads to 
development of coarse-grained snouts and lateral 
margins with δ and k values much larger than those of 
adjacent, finer-grained debris [6,21].  Representation 
of segregation effects therefore requires manipulation 
of δ and k values, whereas a more satisfactory model 
would describe the process of segregation. 

)  (28) 

where C is a constant defined as 

As an aid to numerical implementation, Tables 1-3 
summarize the model's symbols and their meanings.  
The model's governing differential equations are (4), 
(5), and (9), which describe simultaneous evolution of 
h, v, and m (Table 1). These equations may all be 
expressed in a Lagrangian form that employs the 
material time derivative d and as 
a result, they can be solved using either an Eulerian or 
Lagrangian numerical method. A Lagrangian 
formulation offers advantages because embedded 
within (4), (5), and (9) are eight functions describing  

/ / ( /dt t v x= ∂ ∂ + ∂ ∂ ,)  
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