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[1] Analyses of mass and momentum exchange between a debris flow or avalanche and an
underlying sediment layer aid interpretations and predictions of bed-sediment entrainment
rates. A preliminary analysis assesses the behavior of a Coulomb slide block that entrains
bed material as it descends a uniform slope. The analysis demonstrates that the block’s
momentum can grow unstably, even in the presence of limited entrainment efficiency.
A more-detailed, depth-integrated continuum analysis of interacting, deformable bodies
identifies mechanical controls on entrainment efficiency, and shows that entrainment
rates satisfy a jump condition that involves shear-traction and velocity discontinuities at the
flow-bed boundary. Explicit predictions of the entrainment rate E result from making
reasonable assumptions about flow velocity profiles and boundary shear tractions. For
Coulomb-friction tractions, predicted entrainment rates are sensitive to pore fluid pressures
that develop in bed sediment as it is overridden. In the simplest scenario the bed sediment
liquefies completely, and the entrainment-rate equation reduces to E = 2m1gh1 cos q(1�l1)/�v1,
where q is the slope angle, m1 is the flow’s Coulomb friction coefficient, h1 is its
thickness, l1 is its degree of liquefaction, and �v1 is its depth-averaged velocity. For values of
l1 ranging from 0.5 to 0.8, this equation predicts entrainment rates consistent with rates of
0.05 to 0.1 m/s measured in large-scale debris-flow experiments in which wet sediment
beds liquefied almost completely. The propensity for bed liquefaction depends on several
factors, including sediment porosity, permeability, and thickness, and rates of compression
and shear deformation that occur when beds are overridden.

Citation: Iverson, R. M. (2012), Elementary theory of bed-sediment entrainment by debris flows and avalanches, J. Geophys.
Res., 117, F03006, doi:10.1029/2011JF002189.

1. Introduction

[2] Researchers have long recognized that debris flows
and avalanches can gain much of their mass and destructive
power by entraining material as they descend steep slopes
and channels [e.g., Stiny, 1910; Heim, 1932; Takahashi,
1978, 1991; Hungr et al., 1984, 2005]. Entrainment is
defined in this paper as incorporation of solid and fluid
boundary material that does not appreciably change the bulk
composition of a flow, whereas bulking is defined as incor-
poration of material that increases a flow’s solid volume
fraction [e.g., Scott et al., 2005; Fagents and Baloga, 2006;
Berzi et al., 2010; Doyle et al., 2011]. Entrainment can result
from scour of bed material or collapse of channel banks, and
it can cause flow mass to grow many-fold before deposition
begins on flatter terrain downstream [e.g., Pierson, 1980;
Benda, 1990; Pierson et al., 1990; Berti et al., 1999; Wang
et al., 2003; Godt and Coe, 2007; Breien et al., 2008]. In
this paper, deposition is treated as negative entrainment.

[3] Diverse field and laboratory studies have assessed bed-
sediment entrainment by debris flows and avalanches [e.g.,
Sassa, 1985; Voight and Sousa, 1994; Abele, 1997; Egashira
et al., 2001; Rickenmann et al., 2003; Hungr and Evans,
2004; Papa et al., 2004; Berger et al., 2011; Mangeney
et al., 2010; Iverson et al., 2011; Reid et al., 2011; S. W.
McCoy et al., Sediment entrainment by debris flows: In situ
measurements from the headwaters of a small catchment,
submitted to Journal of Geophysical Research, 2012], and
diverse numerical models have included entrainment terms in
simulations of evolving flow behavior [e.g., Brufau et al.,
2000; Pitman et al., 2003; McDougall and Hungr, 2005;
Chen et al., 2006;Mangeney et al., 2007; Tai and Kuo, 2008;
Bouchut et al., 2008; Armanini et al., 2009; Crosta et al.,
2009a; Le and Pitman, 2010]. Nevertheless, as summarized
by Hungr and Evans [2004] and Bouchut et al. [2008], the
theoretical basis for evaluating entrainment rates has
remained tenuous. Consequently, models of debris-flow and
avalanche dynamics typically have excluded the effects of
entrainment [e.g., Denlinger and Iverson, 2001, 2004] or
have relied on ad hoc rules or empirical calibrations to eval-
uate entrainment terms [e.g., McDougall and Hungr, 2005;
Armanini et al., 2009].
[4] Here, to aid mechanistic prediction and interpretation

of bed-sediment entrainment, I analyze the phenomenon in
two ways. First I present a heuristic slide-block model aimed
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at clarifying the role that bed-sediment inertia and entrain-
ment efficiency play when slide-block mass and momentum
evolve simultaneously. I then formulate a three-layer, depth-
integrated, continuum-mechanical model of mass and
momentum exchange between a flow, an erodible bed, and a
stable substrate. A depth-integrated approach has inherent
limitations, but it holds some advantages over more-detailed
approaches because it combines the effects of boundary
conditions, mass fluxes, and momentum fluxes into conser-
vation equations that encapsulate the mechanics of individual
layers as well as the three-layer system as a whole. A depth-
integrated analysis also facilitates evaluation of jump dis-
continuities, which play a crucial role at the interfaces
between adjacent layers.
[5] New analyses of the entrainment process are warranted

in view of results of recent field and laboratory studies, which
have demonstrated that entrainment beneath debris flows and
avalanches generally occurs by progressive scour rather than
mass failure of bed material [Mangeney et al., 2010; Berger
et al., 2011; Iverson et al., 2011; Reid et al., 2011; McCoy
et al., submitted manuscript, 2012]. The latter three studies
have additionally shown that entrainment rates are sensitive
to pore fluid pressures that develop in bed sediment as it is
overridden. Thus, a primary goal of the analyses here is to
provide a theoretical basis for interpreting and predicting
factors that determine entrainment rates and their dependence
on pore pressures and effective-stress states in bed sediment.
A secondary goal, which cannot be separated from the first, is
to assess coupling between entrainment and flow dynamics.

2. Entrainment Velocity

[6] Neither of the analyses presented here considers
detailed, grain-scale mechanics, but both analyses include
constraints imposed by momentum conservation as the bed
exchanges arbitrarily small elements of mass with the over-
riding flow. By definition, these elements of bed material

must attain the basal flow velocity in order to be entrained
[cf. Gray, 2001]. In this context “erosion,” “scour,” and
“entrainment” are synonymous, because the analyses assume
that material along the flow-bed interface has little or no
velocity before it is entrained, and has the basal flow velocity
after it is entrained. Intermediate velocities necessarily occur
as small elements of bed material accelerate to merge with
the flow, but they cannot be resolved by slide-block or
depth-integrated continuum analyses.
[7] The presence of an erodible bed can make basal slip

velocities difficult to assess because the location of the
boundary between the flow and bed may be indistinct – as
documented for idealized flows of nearly identical grains
[Komatsu et al., 2001; Armanini et al., 2005; Larcher et al.,
2007; Crosta et al., 2009b]. For flows of poorly sorted geo-
logical debris, however, distinctions between infinitesimal
and finite slip velocities can hinge largely on the scale at
which the flow-bed interface is observed (Figure 1). For
example, continuum-scale velocity fields constructed using
measured trajectories of large particles in experimental debris
flows indicate that the flows have finite basal slip velocities
[Johnson et al., 2012]. From this perspective entrainment
analyses that consider the role of finite basal slip velocities
appear appropriate. Such analyses also demonstrate that
entrainment-rate data, interpreted in the context of momen-
tum conservation and bed stress states, can help constrain
basal slip velocities when they are not directly observable.

3. Slide-Block Analysis

[8] This analysis considers behavior of a single body (i.e.,
a slide block) that encompasses all mass in motion as the
block descends a slope covered with entrainable bed mate-
rial. By definition, the evolving block mass includes material
actively undergoing entrainment, but does not include bed
material prior to the onset of its entrainment (Figure 2). This

Figure 1. Schematic vertical cross-sectional views of shear
deformation that might occur as a flow of poorly sorted
debris interacts with entrainable bed material. Red curves
and arrows depict alternative views of the same deformation.
(a) Viewed at the scale of the smallest grains, shear deforma-
tion is distributed in a zone of finite thickness. (b) Viewed at
a scale exceeding that of the largest grains, shear deformation
is focused along a discrete slip surface.

Figure 2. Schematic illustration of a Coulomb slide block
of mass m(t) and velocity v(t) descending a plane inclined
at the angle q. Expanded view shows that the block gains
mass at a rate dm/dt by exerting a basal force that accelerates
static bed material.

IVERSON: BED-SEDIMENT ENTRAINMENT BY DEBRIS FLOW F03006F03006

2 of 17



definition precludes analysis of the behavior of slide blocks
that lose mass through deposition, as clarified below.
[9] Newton’s second law states that the evolving slide-

block momentum obeys

dðmvÞ
dt

¼ F; ð1Þ

where t is time,m is the slide-block mass, v is its velocity, and
F is the sum of external forces acting on the block. If the
block descends a plane inclined at a uniform angle q, and its
descent is resisted by basal Coulomb friction characterized
by a friction coefficient m, then F is given by

F ¼ mg′; ð2Þ

where

g′ ¼ gðsin q� m cos qÞ ð3Þ

summarizes the net effect of gravitational acceleration, g. The
net force F can be represented as F = mg′ because, like
the gravitational driving force, the Coulomb friction force is
proportional to mg.
[10] Use of a Coulomb friction rule for bed sediment

undergoing entrainment assumes that the sediment imme-
diately beneath the slide block attains a state of limiting
equilibrium before entrainment begins. Gravity suffices to
produce this limiting equilibrium state if q equals the sedi-
ment’s angle of repose. If q is less than the angle of repose, a
limit-equilibrium state can result from reduction of frictional
resistance that occurs as the slide block overrides the bed [cf.
Mangeney et al., 2007]. Such a reduction might be caused by
bed deformation that increases pore fluid pressure and
thereby reduces the effect of mg m cos q, for example [e.g.,
Hungr and Evans, 2004]. Modeling pore pressure effects
on bed-sediment resistance is beyond the scope of the
slide-block analysis, but is emphasized in the continuum-
mechanical analysis that follows.
[11] Coulomb friction coefficients for landslides, debris

flows, and bed sediment are commonly assumed to be con-
stant, and constant friction represents an important baseline
case. On the other hand, evidence from diverse experiments
with dense grain flows and grain-fluid suspensions indicates
that Coulomb friction increases systematically as the shear
rate increases [e.g., MiDi GDR Group, 2004; Forterre and
Pouliquen, 2008; Boyer et al., 2011]. This shear-rate effect
cannot be fully incorporated in a slide-block model, but it can
be represented in a rudimentary way by expressing the basal
friction coefficient as the sum of a constant component m0
and a velocity-dependent component mV (v/V),

m ¼ m0 þ mV
v

V
; ð4Þ

where mV and V are constants. More specifically, V is a
velocity scale quantified in the analysis that follows.
[12] Substituting (2), (3), and (4) into (1) yields a slide-

block momentum equation that can be written as

m
dv

dt
¼ mðG� GvÞ � v

dm

dt
; ð5Þ

where the forcing terms on the right–hand side include con-
stants defined as

G ¼ gðsin q� m0 cos qÞ; ð6Þ

G ¼ gmV cos q=V : ð7Þ

The term �v(dm/dt) arises in (5) as a consequence of
momentum conservation, but it can be interpreted more pre-
cisely as the reaction force experienced by the slide block as it
exerts force to overcome the inertia of static bed material while
accelerating that material to the ambient block velocity v.
This effect of inertia constitutes an internal force because
the slide-block definition includes all material in motion.
By contrast, the action of an additional external force (i.e.,
a resistive force exerted by stationary bed material) would
be required to cause deposition of basal slide-block material
(i.e., dm/dt < 0). Such externally driven mass loss differs
fundamentally from internally driven mass loss that occurs
when a rocket forcibly ejects matter to propel itself [Hungr,
1990; Erlichson, 1991]. As a result, “rocket equations” sim-
ilar to (5) are inappropriate for analyzing motion of debris
flows or avalanches that lose mass through deposition [cf.
Cannon and Savage, 1988; Van Gassen and Cruden, 1989].
[13] The physical implications of (5) can be investigated by

first considering some special cases in which constraints are
placed on m and/or v. For example, if dm/dt = 0, then the
entire net driving force m(G � Gv) causes slide-block accel-
eration, and (5) has solutions that describe maximum veloc-
ities attainable by slide blocks at any particular time. For the
initial condition v = v0, one of these solutions applies if
friction is exclusively rate-independent (i.e., G = 0):

v

v0
¼ 1þ Gt

v0
: ð8Þ

Another solution applies if rate-independent and rate-
dependent friction coexist:

v

v0
¼ G

Gv0
þ 1� G

Gv0

� �
expð�GtÞ: ð9Þ

Whereas (8) indicates that the slide-block velocity increases
constantly, (9) shows that rate-dependent friction causes the
velocity to asymptotically approach the steady state v = G/G.
A fixed fraction of G/G is therefore a logical choice for the
velocity scale V in (4) and (7).
[14] In more-general cases with dm/dt > 0, the slide-block

behavior described by (5) can be more complex. The impli-
cations of dm/dt can be identified most readily by first
rewriting (5) as

dm

dt
¼ m

v
G� Gv� ðdv=dtÞ½ �: ð10Þ

If the block velocity is constant (v = v0 and dv/dt = 0) and the
initial condition is m = m0, then the solution of (10) shows
that m grows exponentially:

m

m0
¼ exp

G� Gv0
v0

� �
t

� �
: ð11Þ
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This unbounded growth of m occurs in the presence of a
constant v because the entire net force F =m(G� Gv0) acts to
cause entrainment, while the net force itself grows in pro-
portion to m.
[15] The behavior described by (11) reveals a fundamen-

tal asymmetry in the dynamics of Coulomb slide blocks
entraining mass: a constant m implies stable growth of v, as
described by (8) and (9), whereas a constant v implies
unstable growth of m. (The mathematically stable case with
G > G/v0 in (11) lacks physical relevance because it implies
that mass loss occurs, violating the assumptions used to
derive (5)). Equation (11) also demonstrates that a constant
slide-block velocity cannot be accompanied by a constant
dm/dt. Thus, no physically valid entrainment rule can have
the seemingly plausible form dm/dt ∝ v.
[16] On the other hand, equations (10) and (11) provide

a basis for proposing an entrainment formula in which
dm/dt ∝ m/v. The basis is established by first considering
an ideal case in which frictional resistance is zero (i.e.,
G = G0 = g sin q, G = 0) and the driving force F = mG0 is
allocated entirely to entrainment, implying that v is constant.
Then (10) reduces to

dm

dt

� �
max

¼ G0
m

v0
; ð12Þ

where [dm/dt]max is the maximum entrainment rate that can
occur without causing deceleration and eventual stoppage
of the slide block. Because (12) describes an upper-bound
condition for sustainable entrainment, it is reasonable to
postulate that a more-general entrainment formula can have
the analogous form

dm

dt
¼ aG

m

v
; ð13Þ

where a is an entrainment-efficiency parameter. The value
of a must satisfy 0 ≤ a ≤ 1, but it need not be constant.
Indeed, if the value of a evolves so that it always obeys
a = 1 � [(dv/dt + Gv)/G], then (13) simply restates (5),
resulting in indeterminate behavior.
[17] Although a constant a is not mandatory, the behav-

ior of slide blocks with constant entrainment efficiency is
instructive. This behavior can be clarified by finding solu-
tions of the two-equation system, (5) and (13), for cases in
which a is constant. One solution applies if friction has
no rate-dependence (i.e., G = 0):

v

v0
¼ 1þ ð1� aÞGt

v0
; ð14Þ

m

m0
¼ v

v0

� � a
1�a

¼ exp
a

1� a
lnðv=v0Þ½ �

� �
: ð15Þ

In this case a regulates slide-block velocity and mass growth
in a straightforward way. If a = 1/2, for example, normalized
values of v and m grow at identical linear rates: v/v0 =
m/m0 = 1 + (Gt/2v0). In this special case the net driving force
is allocated equally between the two growth phenomena.
In general, however, equal force allocation is unnecessary,
and balanced growth of v and m does not occur. For a < 1/2,
linear growth of v outpaces nonlinear growth of m, whereas
the opposite is true for a > 1/2. If a → 1, then m → ∞, and
this singular behavior reinforces the evidence of instability
expressed by (11).
[18] A different solution of (5) and (13) applies if a is

constant and rate-dependent friction exists (G > 0):

v

v0
¼ ð1� aÞG

Gv0
þ 1� ð1� aÞG

Gv0

� �
expð�GtÞ; ð16Þ

m

m0
¼ v

v0

� � a
1�a

exp
aGt
1� a

� �
¼ exp

a
1� a

lnðv=v0Þ þ Gt½ �
� �

: ð17Þ

This solution indicates that exponential growth of m is
inevitable for any nonzero value of a. Physically, this
behavior results from v approaching the steady state v =
(1� a)G/G, implying that an increasing percentage of the net
driving force is allocated to mass growth. Therefore, some-
what paradoxically, velocity stabilization by rate-dependent
friction exerts a destabilizing effect on mass and momentum
growth. For small values of a and G, however, a seemingly
stable near-balance between the slide-block velocity and
entrainment rate can persist for a considerable time before
conspicuous acceleration of mass growth begins (Figure 3).
This behavior temporarily mimics that of an equilibrium
relationship between v and dm/dt, although no true equilib-
rium is possible.
[19] Despite its simplicity, the slide-block analysis illus-

trates several important principles that apply to motion and
mass entrainment resisted by rate-independent and/or rate-
dependent Coulomb friction. Perhaps the most fundamental
principle is that bed-sediment inertia produces an inverse
relationship between the slide-block velocity and mass-
entrainment rate, if all other factors are equal. Subsequent

Figure 3. Graphs of slide-block behavior represented by
equations (16) and (17) with parameter values a = 0.1 and
Gv0/G = 0.3. Here normalized time is defined as t* = tG/v0,
normalized velocity is defined as v* = v/v0, and normalized
mass is defined as m* = m/m0.
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sections of the paper present a continuum mechanical anal-
ysis that reinforces this principle and also demonstrates
how boundary shear tractions influence the entrainment
efficiency parameterized above by a.

4. Depth-Integrated Continuum Analysis

[20] A more-thorough analysis considers mass and
momentum exchange between three continuous layers, one
representing a flow with a free upper surface, one rep-
resenting an entrainable bed-sediment layer, and one rep-
resenting a deeper substrate that cannot be entrained owing
to its high strength (Figure 4). This configuration is similar
to that of large-scale entrainment experiments involving
tabular layers of nearly homogeneous sediment on a uniform,
concrete slope [Iverson et al., 2011; Reid et al., 2011]. The
analysis employs a Cartesian coordinate system in which x
points in the downslope direction, y points in the cross-slope
direction, and z points upward, normal to the slope. To
emphasize essential mechanical principles and minimize
mathematical complexity, it assumes that variations of all
quantities in the y direction are negligible, and that tem-
poral and spatial variations of the bulk density r of the flow
and bed material are negligible. A derivation of the depth-
integrated balance equations used in the analysis shows how
the effects of these variations can be included, however
(Appendix A).
[21] Like most depth-integrated theories, the analysis

assumes that the z-momentum balance everywhere reduces to
an equation describing one-dimensional static equilibrium,

∂szz=∂z ¼ �rg cos q; ð18Þ

where szz is the z-direction total normal stress (reckoned
positive in compression), g is the magnitude of gravitational
acceleration, and q is the slope angle. Treatment of the
z-momentum balance in such a simple way may be inap-
propriate in some instances, particularly if flows traverse
irregular terrain [Denlinger and Iverson, 2004]. Here, however,

this simplification sharpens the focus of the analysis
by isolating the effects of the x momentum component on
entrainment.

4.1. Balance Equations for Individual Layers

[22] Under the assumptions summarized above, the depth-
integrated mass balance and x-momentum balance for each
layer reduce to (Appendix A):

∂h
∂t

þ ∂ðh�vÞ
∂x

¼ �Etop þ Ebot ð19Þ

r
∂ðh�vÞ
∂t

þ ∂ðbh�v2Þ
∂x

� �
¼

Zztop
zbot

SFdz� rvtopEtop þ rvbotEbot ð20Þ

where h is the layer thickness in the z direction, �v is the
depth-averaged velocity of the layer, SF is the sum of
external forces per unit volume acting on the layer, and
the subscripts top and bot denote the upper and lower
boundaries of the layer, respectively. In (19) Etop and Ebot

describe z-direction boundary-migration rates caused by
transfer of mass through the upper or lower boundary. At
each location E is reckoned positive downward in order
to emphasize boundary migration that occurs during bed-
sediment entrainment by an overriding layer. In (20) the
boundary momentum-flux terms � rvtopEtop and rvbotEbot

arise mathematically from use of the mass-conservation
equation during depth integration of the momentum-
conservation equation (Appendix A). Physically, these
momentum-flux terms account for the possibility that mass
entering a layer through its boundary has a nonzero
x-velocity component (vtop or vbot), and thereby transfers
some x-momentum with it. Of course, momentum must be
conserved during such a transfer – a matter addressed below
by considering interactions between adjacent layers.
[23] Equation (20) also contains a Boussinesq momentum-

distribution coefficient, b, which accounts for the effects
of nonuniform advection of x-momentum as a function of
z within each layer. The coefficient is defined mathemati-
cally by

b ¼ 1

h�v2

Zztop
zbot

v2dz ð21Þ

where v is the local x-velocity component. Values of b
determined from (21) range from b = 1 for a flow with all
motion concentrated as basal slip to b = 4/3 for a flow with
a linear velocity profile and no basal slip. Depth-averaged
single-layer models of debris flows and avalanches com-
monly assume that b = 1, with little consequent error, but
nonuniform velocity distributions can play an important role
in momentum exchange that accompanies mass exchange
between layers.
[24] An explicit expression for the force per unit area SFdz

in (20) can be obtained in a standard way by considering
the driving effect of gravity and resisting effect of Cauchy
stresses [e.g., Malvern, 1969]. Application of Leibniz’ theo-
rem [Abramowitz and Stegun, 1964, pp. 11] during depth

Figure 4. Schematic cutaway view of a debris flow or
avalanche crossing a nearly tabular, erodible sediment bed
overlying a strong substrate inclined at the angle q. A Carte-
sian coordinate system used to analyze the flow is oriented
such that x points down the fall line and z points upward, nor-
mal to x.
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integration of the resulting stress-gradient terms ∂txx /∂x
and ∂tzx /∂z then yields

Zztop
zbot

SFdz ¼ rgh sin qþ
Zztop
zbot

∂txx
∂x

þ ∂tzx
∂z

� �
dz

¼ rgh sin qþ ∂ð�txxhÞ
∂x

� txxtop
∂ztop
∂x

þ txxbot
∂zbot
∂x

þ tzxtop � tzxbot: ð22Þ

In this equation the longitudinal normal stress txx, its depth-
averaged value �txx, and its boundary values txxtop and txxbot
are reckoned positive in tension, a convention that is neces-
sary in order to establish the correct signs of the boundary
shear-traction terms, tzxtop and tzxbot. To reconcile this
tension-positive sign convention with the compression-
positive convention of the normal stress szz in (18), I define

sxx ¼ �txx; ð23Þ

and then use (23) to rewrite (22) as

Zztop
zbot

SFdz ¼ rgh sin q� ∂ð�sxxhÞ
∂x

þ sxxtop
∂ztop
∂x

� sxxbot
∂zbot
∂x

þ tzxtop � tzxbot: ð24Þ

Taken in order, the six terms on the right-hand side of (24)
account for (a) the downslope gravitational driving force,
(b) the depth-averaged longitudinal force due to longitudinal
thickness and normal-stress gradients, (c) the downslope
force due to the compressive longitudinal boundary traction
acting on upslope-facing facets of the layer’s upper surface,

(d) the upslope force due to the compressive longitudinal
boundary traction acting on upslope-facing facets of the
layer’s lower surface, (e) the boundary shear traction acting
on the upper surface of a layer, and (f) the boundary shear
traction acting on the lower surface of a layer.
[25] Considerable simplification of (24) results from

use of an assumption routinely employed in soil and
rock mechanics [e.g., Jaeger, 1969; Lambe and Whitman,
1979],

sxx ¼ syy ¼ kszz; ð25Þ

where k is a proportionality factor that can play the role of a
Rankine earth-pressure coefficient or elastic Poisson’s ratio.
If the value of k is constant within any particular layer,
as I assume here, then a derivation in Appendix B shows
that (24) reduces to

Zztop
zbot

SFdz ¼ rgh sin q� krgh cos q
∂H
∂x

þ ttop � tbot; ð26Þ

where H is the total thickness of the three-layer system
(Figure 5), and the subscript zx has been omitted from ttop
and tbot in order to simplify the notation. Collapse of the
three longitudinal stress-gradient terms in (24) into a single
term � krgh cos q(∂H/∂x) in (26) implies that the effect of
∂H/∂x is the same in all layers, except insofar as differing
layers have differing values of k and h.
[26] The simplification of (24) that leads to (26) indicates

that geometric details of the boundaries between adjacent
layers play no role in the theory, but this simplification is
contingent on the applicability of (18) and (25). Indeed, these
two equations represent the central assumptions that distin-
guish the elementary theory developed here from a more
comprehensive theory that would include the effects of
multidimensional, heterogeneous stress fields and thereby
resolve the effects of stress variations in the vicinity of
boundary irregularities. Such a theory would necessarily
involve its own set of constitutive assumptions, however.
[27] Substitution of (26) in (20) yields the x-momentum

equation I use to assess the relationship between flow
dynamics and entrainment,

r
∂ðh�vÞ
∂t

þ ∂ðbh�v2Þ
∂x

� �
¼ rgh sin q� krgh cos q

∂H
∂x

þ ttop � tbot

� rvtopEtop þ rvbotEbot: ð27Þ

Except for the presence of ttop and rvtopEtop, (27) has a form
like that of a single-layer, depth-averaged flow momentum
equation that accounts for possible mass and momentum
fluxes through the basal boundary.
[28] A clear relationship between (27) and the slide-block

momentum equation (5) can be established if b = 1, implying
that v(z) is constant. For this special case, expansion of the
derivatives on the left-hand side of (27) produces some terms
that are identical to those on the left-hand side of (19),
and use of (19) to cancel these terms introduces a new term,
�r�vEtop + r�vEbot, in (27). Combining this term with the

Figure 5. Schematic illustration of velocity profiles v(z),
depth-averaged velocities, boundary shear tractions, and
thicknesses in a three-layer model of flow interaction with
an erodible bed and strong substrate. A velocity and shear-
traction discontinuity at the flow-bed boundary influences
the downward boundary migration rate (E) due to entrain-
ment of bed sediment.
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boundary momentum-flux terms �rvtopEtop and +rvtopEtop

on the right-hand side of (27) then converts (27) to

rh
d�v

dt
¼ rgh sin q� krgh cos q

∂H
∂x

þ ttop � tbot þ rEtopð�v� vtopÞ
� rEbotð�v� vbotÞ; ð28Þ

where d/dt = ∂/∂t + �v(∂/∂x) denotes a Lagrangian total time
derivative in a frame of reference that translates with the
material velocity �v. This Lagrangian form of the momentum
equation is correct mathematically but is “non-conservative”
physically because its left-hand side describes evolution of
�v rather than the conserved quantity rh�v . The importance of
this distinction can be clarified by considering a special case
in which the upper boundary is a free surface with ttop = 0
and Etop = 0, and the lower boundary is an eroding surface
with Ebot > 0 and vbot = 0. In this case the boundary
momentum-flux terms vanish from the Eulerian momentum
equation (27), but the Lagrangian equation (28) retains the
term �r�vEtop. The resulting form of (28),

rh
d�v

dt
¼ rgh sin q� krgh cos q

∂H
∂x

� tbot � r�vEbot; ð29Þ

is closely analogous to the momentum equation used by
McDougall and Hungr [2005] to analyze the effects of
entrainment, and is also closely analogous to the slide-block
momentum equation (5). Indeed, except for the term
�krgh cos q(∂H/∂x), (29) is identical to (5) if tbot is treated
as a Coulomb stress and (5) is divided by the basal area
DxDy to find that m(dv/dt)/(DxDy) = rh(dv/dt) and v(dm/dt)/
(DxDy) = rvEbot. The close correspondence of (5) and (29)
clarifies that, in a Lagrangian reference frame, the term
�r�vEbot accounts for the inertia of bed material that is
accelerated from rest to reach the ambient flow velocity �v.
Use of the term �r�vEbot to evaluate the effects of deposition
in a Lagrangian frame is inappropriate, however–for reasons
described in conjunction with (5).
[29] No term analogous to �r�vEbot appears in the Eulerian

momentum equation (27) because all inertial effects of
entrainment or deposition are represented by the left-hand
side of (27) unless mass passing through the upper or lower
boundaries carries some momentum with it [cf. Chen et al.,
2006; Sovilla et al., 2006]. A key advantage of (27) is that
it can represent inertial effects more precisely than (28) or
(29) can, because it does not require the assumption of a
uniform velocity profile (i.e., b = 1). As shown below, the
role of nonuniform velocity profiles is critical when evalu-
ating interactions between adjacent layers.

4.2. Interactions Between Adjacent Layers

[30] Various special forms of (27) apply to the flow, bed,
and substrate layers (Table 1). To distinguish these special

forms, I use the subscript 1 to designate variables in the
overriding flow layer, the subscript 2 for the entrainable bed-
sediment layer, and the subscript 3 for the high-strength sub-
strate layer (Figure 5). The equations of Table 1 assume that
layer 1 experiences a negligible boundary shear traction on its
upper surface. Thus, the only boundary shear traction affecting
layer 1 is the resisting shear traction exerted by the top of the
underlying sediment bed, �t2top. The magnitude of �t2top
may differ from that of the traction the base of the flow exerts
on the bed, +t1bot, owing to a stress-field discontinuity at the
flow-bed interface. (Such discontinuities occur commonly in
deforming Coulomb materials, for example [Jaeger, 1969]).
The sediment bed (layer 2) experiences the shear traction
+t1bot applied at its top surface by the overriding flow and also
a resisting basal shear traction applied by the strong substrate,
�t3top. The substrate, in turn, experiences the traction +t2bot
applied by the overlying bed sediment and the basal resisting
traction�t3bot at some arbitrarily great depth where z = 0 and
static stress equilibrium applies.
[31] The only nonzero entrainment rate included in the

equations of Table 1 is E at the flow-bed boundary, which is
the focus of this analysis. Recall that E is reckoned positive
if the boundary migrates downward as mass is transferred
from the bed-sediment layer to the flow layer. Thus, if the
mass involved in this transfer has nonzero momentum rv2top
per unit volume, the momentum flux into the flow per unit
area is rv2topE, as shown in Table 1. Similarly, if mass is
transferred from the flow to the bed during deposition (E < 0),
the bed layer gains momentum at the rate � rv1botE.
[32] The flow and bed layers can exchange momentum

only if a velocity contrast exists along their interface, and
momentum must be conserved during such an exchange.
This requirement has ramifications that can be assessed by
first adding the equations for layers 1 and 2 to obtain a
momentum-conservation equation for the two-layer system
as a whole. The right-hand side of the two-layer equation
contains several forcing terms that must cancel one another
because �t3top accounts for the only external force (aside
from gravity) that acts on the two-layer system. This
cancellation of terms yields �t2top + t1bot + rv2topE �
rv1botE = 0, and the two-layer momentum equation thereby
reduces to

r
∂ðh1�v1 þ h2�v2Þ

∂t
þ ∂ðb1h1�v1

2 þ b2h2�v2
2Þ

∂x

� �
¼ ðh1 þ h2Þrg sin q

� ðh1k1 þ h2k2Þrg cos q ∂H∂x � t3top: ð30Þ

The terms canceled from (30) can be rearranged to obtain

t1bot � t2top
� 	þ rE v2top � v1bot

� 	 ¼ 0: ð31Þ

Table 1. Special Forms of Equation (27) That Apply in Each Layer Illustrated in Figure 5

Layer Left-Hand Side of (27) Right-Hand Side of (27)

1 (flow) r
∂ðh1�v1Þ

∂t
þ ∂ðb1h1�v1

2Þ
∂x

� �
rgh1 sin q � k1rgh1 cos q

∂H
∂x

� t2top + rv2topE

2 (erodible bed) r
∂ðh2�v2Þ

∂t
þ ∂ðb2h2�v2

2Þ
∂x

� �
rgh2 sin q � k2rgh2 cos q

∂H
∂x

+ t1bot � t3top � rv1 botE

3 (strong substrate) 0 rgh3 sin q � k3rgh3 cos q
∂H
∂x

+ t2bot � t3bot

IVERSON: BED-SEDIMENT ENTRAINMENT BY DEBRIS FLOW F03006F03006

7 of 17



Importantly, the expressions in brackets in (31) can describe
jumps (i.e., finite changes) in shear tractions and velocities
that may exist at the flow-bed interface. If such jumps do
not exist, then there is little reason to treat layers 1 and 2
as mechanically distinct, and equation (30) contains all the
pertinent depth-integrated information about momentum
conservation in the two-layer system. If jumps do exist,
however, then equation (31) contains crucial information that
supplements the flow- and bed-layer equations of Table 1.
[33] A result similar to (31) has been obtained previously

by applying general Rankine-Hugoniot jump relationships to
bed-erosion problems [Fraccarollo and Capart, 2002], but
here (31) is derived directly from depth-integrated conser-
vation laws. In the present context (31) is the only relevant
jump condition, because the normal-stress distribution
described by (18) is continuous across the boundary, and the
mass distribution is continuous across the boundary by virtue
of the constant bulk density r assumed for the flow and bed
material [cf. Chadwick, 1976, pp. 114–120].

5. Entrainment-Rate Equations and Predictions

[34] Rearrangement of (31) shows that momentum con-
servation demands that the bed-sediment entrainment rate
obeys

E ¼ t1bot � t2top
rðv1bot � v2topÞ : ð32Þ

The numerator of this equation can be interpreted as an
excess boundary shear stress, which expresses the difference
between the basal shear traction exerted by the flow (t1bot)
and the boundary shear resistance exerted by the bed (t2top).
The proportionality of E to t1bot � t2top is consistent with
some longstanding ideas about threshold conditions for
entrainment of bed sediment [e.g., Vanoni, 1975]. On the
other hand, the denominator of (32) indicates that E decreases

as the basal slip velocity v1bot increases – a result that con-
tradicts conventional wisdom but corroborates the results of
the slide-block analysis in section 3.
[35] Two other implications of (32) warrant mention. First,

the numerator of (32) implies that deposition rather than
entrainment occurs if t1bot < t2top, provided that v1bot > v2top.
Second, the denominator of (32) indicates that E → ∞ if
t1bot > t2top and v1bot = v2top, consistent with the view that
layers 1 and 2 behave as a single layer if there is no velocity
contrast at the flow-bed interface. The condition E → ∞
implies that downslope motion of the bed occurs en masse in
response to quasistatic forcing, as envisaged by Takahashi
[1978]. Indeed, this is the only style of bed motion that is
feasible in the absence of basal boundary slip that transfers
downslope flow momentum to the bed. In this case t2top
instantaneously jumps to t3top as bed acceleration penetrates
to a horizon at z = H � (h1 + h2), where a stronger substrate
prevents motion. The remainder of this section emphasizes
scenarios in which motion of the bed is localized at the flow-
bed interface and E remains finite, but the next section revi-
sits the possibility of deeper bed deformation.
[36] To further utilize (32) in assessments of finite

entrainment rates, it is helpful to relate v1bot to a more readily
observed quantity such as �v1. The relationship between v1bot
and �v1 depends on the flow velocity profile, v1(z), but for
flows of opaque geological debris, direct measurements of
v1(z) are at best problematic–and are perhaps impossible.
Distinctions between alternative velocity profiles that
involve various combinations of homogeneous simple shear
and basal slip have been made on the basis of particle
tracking studies, however [Johnson et al., 2012]. This family
of profiles can be represented mathematically by

v1
�v1

¼ 1� s1 þ 2s1
z� ðH � h1Þ

h1
; ð33Þ

where s1 is a fitting parameter that ranges from s1 = 0 if there
is no simple shear to s1 = 1 if there is no basal slip (Figure 6).
Equation (33) implies that v1bot = (1� s1)�v1. As a result, for a
broad range of plausible velocity profiles, (32) can be
expressed as

E ¼ t1bot � t2top
r½ð1� s1Þ�v1 � v2top� : ð34Þ

Johnson et al. [2012] showed that for large-scale experi-
mental debris flows, a good fit to particle-tracking data was
attained with s1 = 1/2, implying that the basal slip velocity
was half the mean flow velocity. The momentum distribution
coefficient defined by (21) can also be expressed in terms
of s1,

b1 ¼ 1þ ð1=3Þs12; ð35Þ

indicating that s1 = 1/2 corresponds to b1 = 13/12 (Figure 6).
Thus, the entrainment-rate predictions of (34) can be very
sensitive to small deviations of b1 from unity.
[37] An important special form of (34) applies for bound-

ary conditions analogous to those considered in the slide-
block model of section 3. In such cases the top of the

Figure 6. Graphs of equation (33), illustrating some alter-
native flow velocity profiles, v1(z). The parameter s1 specifies
the fraction of downslope motion accommodated by simple
shear deformation as opposed to basal slip. The parameter b1
is the corresponding momentum distribution coefficient.

IVERSON: BED-SEDIMENT ENTRAINMENT BY DEBRIS FLOW F03006F03006

8 of 17



bed-sediment layer is static prior to entrainment, and the
boundary shear tractions t1bot and t2top each obey a Coulomb
friction rule t = ms′zz that incorporates a standard definition
of effective normal stress,

s′zz ¼ szz � p; ð36Þ

where p is pore fluid pressure. Provided that the total normal
stress szz satisfies (18), boundary shear tractions that satisfy
t = ms′zz can be expressed as

t1bot ¼ m1ðszz 1bot � p1botÞ ¼ m1ðrgh1 cos q� p1botÞ; ð37Þ

t2top ¼ m2ðszz 2top � p2topÞ ¼ m2ðrgh1 cos q� p2topÞ; ð38Þ

where m1 and m2 are Coulomb friction coefficients for lay-
ers 1 and 2, respectively, and p1bot and p2top are boundary
pore fluid pressures for layers 1 and 2. By incorporating (37)
and (38), (34) becomes

E ¼ rgh1ðm1 � m2Þ cos qþ m2p2 top � m1p1 bot

ð1� s1Þr�v1 : ð39Þ

This equation indicates that E > 0 requires a contrast in
Coulomb friction coefficients (m1 > m2), a contrast in pore
fluid pressures (p2top > p1bot), or some combination of the
two.
[38] A contrast that leads to E > 0 in (39) can result from

rate-dependent friction that causes m1 > m2 to arise from
shearing of basal flow material, analogous to the behavior
represented in equation (4). Although no experiments have
been conducted to isolate this effect in realistic debris-flow
materials, recent ring-shear experiments with concentrated
mixtures of solid spheres and liquid show that rate-dependent
friction becomes significant if the value of a key dimen-
sionless parameter, Iv, exceeds about 10�4 [Boyer et al.,

2011]. Re-expressed here using the notation

Iv ¼ h _g1
s′zz 1bot

; ð40Þ

this parameter includes the pore fluid viscosity h (which
has values ranging from about 10�2 to 10�1 Pa-s in many
debris-flow mixtures), and the bulk shear rate _g1 (which
probably has values exceeding 10 s�1 at the base of many
rapid debris flows) [Iverson, 1997]. These values imply that
Iv > 10�4 may commonly apply in flows with basal effective
normal stresses that satisfy s′zz1bot ≤ 1 kPa . Partial debris-
flow liquefaction can produce basal effective normal stresses
this small [Iverson et al., 2010], providing the requisite
conditions to produce m1 > m2 in (39).
[39] Contrasts in boundary pore fluid pressure also can

promote entrainment. For example, if the top of the bed
sediment becomes completely liquefied by high pore pres-
sures (i.e., p2top = rgh1 cos q) and the value s1 = 1/2 is
adopted to describe the flow velocity profile, then (39)
reduces to

E ¼ 2m1gh1 cos qð1� l1Þ
�v1

; ð41Þ

where

l1 ¼ p1bot=rgh1 cos q ð42Þ

is a pore pressure ratio that indicates the degree of flow
liquefaction (0 ≤ l1 ≤ 1) [cf. Iverson and Denlinger, 2001].
Strength reduction due to growth of pore pressure in over-
ridden bed sediment also has implications for evolution of
flow momentum. The flow momentum equation of Table 1
contains only one resistance term, �t2top, which describes
the shear traction exerted by the underlying bed sediment.
With a nearly liquefied Coulomb bed (t2top ≈ 0), there is little
resistance to flow acceleration other than the inertial reac-
tion force that develops during entrainment of bed sediment.
Thus, the mass and momentum of a flow that liquefies its bed
can grow explosively [Iverson et al., 2011].
[40] Predictions of (41) can be compared with entrainment

rates of 0.05 to 0.1 m/s measured in large-scale experiments
in which wet sediment beds liquefied almost completely as
they were overridden by debris flows [Iverson et al., 2011;
Reid et al., 2011]. Applicable parameter values in these
experiments were m1 = 0.84, g = 9.8 m/s2, h1 ≈ 0.2 m, q = 31�,
and �v1 ≈ 12 m/s, and use of these values in (41) yields a graph
of E predicted as a function of l1 (Figure 7). The graph shows
that entrainment rates in the observed range of 0.05 to 0.1 m/s
result if l1 values range from about 0.5 to 0.8, consistent with
l1 values typically measured in experimental debris flows
[Iverson et al., 2010]. Furthermore, Figure 7 shows that
the full range of plausible entrainment rates extends upward
only to �0.23 m/s for the conditions in the experiments.
This upper bound on sustainable entrainment rates results
from constraints imposed by momentum conservation with
�v1 = 12 m/s.
[41] Predictions of (41) also can be compared with

entrainment-rate measurements at the Chalk Cliffs field site
in Colorado [Coe et al., 2008; McCoy et al., 2010]. There,
relevant parameter values when debris flows overrode wet
bed sediment at the upper monitoring station on June 12,

Figure 7. Graph of equation (41), illustrating entrainment
rates, E, predicted as a function of the degree of flow
liquefaction, l1, if other parameters are assigned values
commensurate with those in the debris-flow entrainment
experiments of Iverson et al. [2011] and Reid et al. [2011]:
m1 = 0.84, g = 9.8 m/s2, h1 ≈ 0.2 m, q = 31�, and �v1 ≈ 12 m/s.
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2010 were m1 = 0.97, h1 ≈ 0.88 m, q = 13�, and �v1 ≈ 3.9 m/s
(McCoy et al., submitted manuscript, 2012). Use of these
values in (41) yields entrainment rates ranging from E = 0 for
l1 = 1 to E = 4.2 m/s for l1 = 0. Independent constraints
on l1 did not exist for this Chalk Cliffs event, but adoption
of typical debris-flow values 0.5 ≤ l1 ≤ 0.8 leads to predicted
E values an order of magnitude larger than the measured
values of 0.14 m/s. This discrepancy is consistent with the
fact that full bed liquefaction did not occur at the Chalk Cliffs
site (McCoy et al., submitted manuscript, 2012). Under such
conditions, (39) may be a more-appropriate entrainment-rate
equation than (41), but (39) includes additional quantities
unconstrained by measurements at Chalk Cliffs.
[42] Further understanding of entrainment predictions

can be gained by establishing a precise relationship between
equation (39) and the slide-block entrainment-rate
equation (13). Making the substitutions m = rh1DxDy,
dm/dt = rEDxDy, and m0 = m2 in (13) converts it to the
equivalent continuum-mechanical form

E ¼ aGh
v

¼ a
rgh1 sin q� m2rgh1 cos q

rv
: ð43Þ

After setting s1 = 0 and v = �v1 in (39) to mimic block-style
motion, equation (39) matches (43) if the entrainment-
efficiency parameter a is defined as

a ¼ rgh1ðm1 � m2Þ cos q� ðm1p1 bot � m2p2topÞ
rgh1 sin q� m2rgh1 cos q

: ð44Þ

Equation (44) demonstrates that a depends on the ratio of
the excess boundary shear traction rgh1(m1 � m2)cos q �
(m1p1bot � m2p2top) to the net driving force per unit area at the
base of the slide block, rgh1 sin q � m2rgh1 cos q. At steady
state (i.e., with no slide-block acceleration) these two
quantities are equal, such that a = 1 and the slide-block
mass grows at the maximum sustainable rate indicated by
(14)–(17).
[43] The same interpretation of the numerator and

denominator of (44) applies if pore pressure effects are
absent, in which case (44) reduces to the simple form,

a ¼ m1 � m2

tan q� m2
: ð45Þ

This equation demonstrates that the relationship
tan q ≥ m1 ≥ m2 must be satisfied to ensure that 0 ≤ a ≤ 1.
Thus, as stated in section 3, the slide-block model implies
that sustained entrainment of dry, cohesionless Coulomb
material can occur only if the bed slopes steeply enough to
fail under static gravitational loading. On lesser slopes,
entrainment can be a transient process accompanied by flow
deceleration (as observed by Mangeney et al. [2010]), or it
can result from transient growth of pore fluid pressure that
weakens bed sediment as it is overridden.

6. Bed Deformation and Pore Pressure
Generation

[44] The potential for bed deformation that leads to pore
pressure growth depends partly on the weight of the over-
riding flow but also on downslope momentum transferred to
the bed by the flow. The effects of this transfer are evident in

the bed-layer momentum equation of Table 1, and are clear-
est if longitudinal gradients are neglected in the equation (i.e.,
∂/∂x = 0), reducing it to

r
∂ðh2�v2Þ

∂t
¼ rgh2 sin qþ t 1bot � t 3top � rv1botE: ð46Þ

In this case the kinematic boundary condition (A5) of
Appendix A reduces to E = � ∂h2 /∂t, and use of this rela-
tionship permits ∂ðh2�v2Þ=∂t ¼ h2∂�v2=∂t � �v2E to be substi-
tuted into (46). The resulting bed momentum equation can
then be rearranged to obtain

r Eðv1bot � �v2Þ þ h2ð∂�v2=∂tÞ½ � ¼ t1bot � t3top þ rgh2 sin q: ð47Þ

Consistent with (32), (47) reduces to E = [t1bot � t2top]/
rv1bot if the bed material is entirely static, because the values
�v2 = 0 and t3top = t2top + rgh2 sin q then apply. Otherwise,
(47) indicates that the net external force per unit area acting
on the bed layer, t1bot� t3top + rgh2 sin q, may accelerate the
layer at the depth-averaged rate ∂�v2 /∂t and also confer the
velocity v1bot to boundary material entrained by the overrid-
ing flow at rate E. Both phenomena can occur simulta-
neously, but (47) shows that increased values of ∂�v2 /∂t imply
diminished values of E, and vice versa. In the limit h2 → 0,
(47) reduces to the jump condition (31) because the identities
t3top ≡ t2top and �v2 ≡ v2top apply. In this case entrainment and
bed-layer acceleration are indistinguishable.
[45] The details of bed deformation that may occur prior

to entrainment cannot be resolved by a depth-integrated
analysis, but the potential for pore pressure growth during
bed deformation can be assessed by utilizing a constitutive
equation that specifies how changes in porosity, n, are related
to shear deformation and changes in the mean effective nor-
mal stress, �s′ [cf. Iverson, 2009; George and Iverson, 2011]:

1

1� n

dn

dt
¼ _g2 tan y � C

d�s′
dt

: ð48Þ

Here _g2 is the bed-sediment shear rate associated with �v2 > 0,
y is a dilatancy angle that describes the tendency of the
sediment to dilate (y > 0) or contract (y < 0) during irre-
versible shearing, C is the drained compressibility of the
sediment-fluid mixture (here assumed to greatly exceed the
compressibility of the solid and fluid constituents), and d/dt
is a total time derivative in a frame of reference that moves
with the deforming sediment. If shearing were to occur in a
closed container that prevents volume change, then (48)
would reduce to d�s ′ /dt = _g 2 tan y/C, implying that �s ′
would increase with time if shearing proceeded with y > 0.
This specious prediction demonstrates that y cannot be a
material constant. Rather, y must evolve and must become
zero during steady state shearing with no volume change – a
state known in soil mechanics as a critical state [Schofield
and Wroth, 1968]. With y = 0 or _g 2 = 0, (48) reduces to
the standard constitutive equation used to define compress-
ibility in soil consolidation theories, C ¼ �½1=ð1� nÞ�
ðdn=d�s′Þ [Bear, 1972, pp. 206], and with C = 0 or d�s′/dt = 0,
(48) reduces to a kinematic description of porosity change
due to diltatant shearing.
[46] Changes in porosity described by (48) imply corre-

sponding changes in r, because r = rfn + rs(1� n), where rf
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and rs are the mass densities of the fluid and solid con-
stituents of the bed sediment. For water-saturated sediment
with realistic ranges of rf, rs, and n values, however, implied
changes in r are less than about 10 percent. Thus, use of a
constant r is unlikely to produce significant errors in order-
of-magnitude assessments of pore pressure responses. Use of
a constant r also enables the mean effective normal stress in
(48) to be defined more explicitly. By combining (18), (25),
and (36), �s′ can be expressed as

�s′ ¼ sxx þ syy þ szz

3
� p ¼ 1þ 2k2

3
rgðH � zÞ cos q� p: ð49Þ

An unambiguous relationship between the porosity change
described by (48) and attendant pore pressure evolution can
be obtained if the sediment bed behaves as effectively water-
saturated. Experimental evidence indicates that such behav-
ior does not require complete saturation, but also indicates
that distinctly different behavior occurs when beds are rela-
tively dry [Iverson et al., 2011; Reid et al., 2011]. For a sat-
urated bed, mass-conservation equations for the bed’s solid
and fluid constituents may be combined with Darcy’s law for
pore fluid flow to obtain

1

1� n

dn

dt
¼ k

h
r2p; ð50Þ

where k is the Darcian permeability, and h is the pore fluid
viscosity. A generalized form of (50) accounts for the effects
of variations in k and h [Iverson, 2005], but here both
parameters are treated as constants in order to highlight
essential aspects of pore pressure evolution.
[47] Combination of (48), (49) and (50) yields a pore

pressure diffusion equation,

dp

dt
¼ k

Ch
r2pþ 1þ 2k2

3
rg cos q

dðH � zÞ
dt

� _g2 tan y
C

; ð51Þ

which shows how evolution of p in a Lagrangian frame of
reference depends on the diffusivity k/Ch and on two types of
forcing. One type of forcing arises from increases in flow
surface height H or from downward motion of the Lagrang-
ian z coordinate (d(H � z)/dt > 0), both of which lead to
gravity-driven pressurization of the pore fluid. The other type
of forcing involves pore pressure modification due to shear-
induced bed dilation at the rate _g2tan y . If y > 0, then pore
pressure tends to decline as a consequence of shearing,
whereas pore pressure tends to increase if y < 0.
[48] In the limiting case with k/Ch → 0, equation (51)

reduces to a description of undrained bed behavior. In this
case p changes instantaneously and uniformly in response to
compressional loading or shearing that causes pore-volume
change. Hutchinson and Bhandari [1971] first highlighted
the role of undrained compression that may occur when mass
movements override water-laden sediment, and Sassa [1985]
extended the concept to include undrained shearing of sedi-
ments beneath debris flows. Pore pressure responses during
undrained deformation can be muted by the influence of the
compressibilities of the individual solid and fluid con-
stituents [Skempton, 1954; Rice and Cleary, 1976], but this
influence is generally negligible in water-saturated, soil-like
materials at low confining stresses typical of Earth’s surface
[Lade and De Boer, 1997].

[49] If k/Ch → 0 does not apply, then the deforming bed
layer behaves as variably drained, and the effects of com-
pression and shearing on p depend on their rates relative to
the rate of diffusive dissipation of pore pressure [cf. Rudnicki,
1984; Iverson and LaHusen, 1989; Iverson et al., 1997]. The
magnitude of these rate effects can be quantified by identi-
fying the diffusion timescale as T = Chh22/k and the pressure
scale as P = rgh2 cos q, and then multiplying all terms of (51)
by T /P to obtain a normalized equation

dp�

dt�
¼ r2�p� þ 1þ 2k2

3

dðH� � z�Þ
dt�

� I2
tany
cos q

: ð52Þ

Here p* = p/P, t* = t/T ,r2* =r2h2
2,H* =H/h2, z* = z/h2, and

I2 ¼ _g2T=CP is a dimensionless parameter that involves the
timescale ratio _g2T and normalized characteristic pressure CP.
[50] Equation (52) indicates that the compression effects

expressed by d(H* � z*)/dt* > 0 are of the same order as the
diffusion effects expressed byr2*p*, whereas the magnitude
of shearing effects depends on the value of I2. Algebraic
substitutions show that this parameter can be defined in terms
of its primitive components as

I2≡
h2 _g2h
krg

: ð53Þ

Values of some of the components of I2 are readily estim-
ated for water-saturated sediment beds (h ≈ 10�3 Pa-s,
r ≈ 2000 kg/m3, g ≈ 9.8 m/s2), and use of these values and
a uniform simple-shear approximation _g2 ≈ 2 �v2 /h2 in (53)
reduces the expression for I2 to

I2 ≈ ð10�7m-sÞ�v2
k
: ð54Þ

Because values of k can range widely, from about 10�7 m2

for gravel to 10�17 m2 for silty clay [Freeze and Cherry,
1979], (54) implies that the value of I2 can also range widely.
[51] A graph of (54) indicates that if sand or finer sediment

is present in a bed that is overridden by a debris flow or
avalanche, slight shear displacements of the bed can play a
dominant role in generating pore fluid pressure. Indeed, with
sufficient fine sediment, I2 ≫ 1 applies even for depth-
averaged displacement rates as small as �v 2 = 10�6 m/s
(Figure 8). In this case behavior is effectively undrained.
Pore pressure generation can then produce very strong feed-
back (either positive or negative, depending on the sign of y)
that influences further bed deformation and acceleration of
the overriding flow. By contrast, shearing of beds composed
entirely of sediment that is gravel-sized or coarser is likely to
satisfy I2 ≪ 1 (Figure 8). In this case shear deformation is
almost perfectly drained and is apt to generate little pore fluid
pressure. Of course, if I2 ≈ 1, then intermediate responses
that are not well-characterized as either drained or undrained
are possible.
[52] Contractive shear displacements probably played an

important role in causing liquefaction and rapid entrainment
of wet bed sediment and explosive growth of debris-flow
momentum in the experiments of Iverson et al. [2011] and
Reid et al. [2011]. In these experiments loosely packed sed-
iment beds consisting of gravel and loamy sand had k values
in the range from 4 � 10�11 to 4 � 10�12 m2 [Iverson et al.,
2010]. According to Figure 8, these values imply that depth-
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averaged bed displacement rates of roughly 10�3 m/s suf-
ficed to produce I2 ≥ 10.

7. Discussion

[53] The preceding analyses show that, if all other factors
are equal, conservation of downslope momentum demands
that bed sediment entrainment rates decline as basal flow
velocities increase. Although conventional wisdom holds
that increasing a flow’s velocity generally enhances its
capacity for sediment entrainment, much of this wisdom
derives from experience with near-equilibrium fluvial sys-
tems. Understanding of these systems has a context that dif-
fers fundamentally from that considered here, because it
typically focuses on flows with macroscopic momentum that
does not respond to entrainment, rather than on flows with
fully coupled evolution of flow and bed momentum. The
sharp contrast between fixed-momentum and evolving-
momentum perspectives makes it worthwhile to recapitulate
the prediction E � 1/v1bot by using an analogy that appeals
to kinesthetic intuition. In this analogy a human plays the role
of a moving flow with evolving momentum.
[54] Consider a man descending a long version of a chil-

dren’s playground slide with a constant slope and constant
friction coefficient. If the man is unencumbered as he des-
cends, he has a constant acceleration and a basal slip velocity,
v1bot, that increases linearly with time. However, the man is
tasked with entraining static bricks that are positioned
alongside the slide. Each brick has the same fixed mass and
volume. Therefore, the entrainment rate is the local volu-
metric rate (per unit basal area) at which the man acquires
bricks and accelerates them to his speed. The man’s
momentum is unaffected by his entrainment of static bricks,
which have no momentum to contribute, but momentum
conservation dictates that his downslope acceleration

decreases in response to the force he exerts to perform the
entrainment.
[55] Next consider an ideal case in which the man and the

bricks are perfectly lubricated. Assume that the man has
assistants (whomay also be lubricated) positioned adjacent to
the slide. The assistants push bricks laterally onto the man’s
lap as he passes by, allowing him to acquire bricks without
exerting force or doing work. Nevertheless, to complete the
task of entrainment, the man must exert a force to accelerate
each brick and bring it up to his speed, counteracting the
force that each brick exerts on him. The time integral of this
force (i.e., the impulse) equals the mass of the brick multi-
plied by v1bot, which is the change in the brick’s velocity as it
comes up to speed. The man’s downslope acceleration,
integrated over the duration of the impulse, decreases in
proportion to the magnitude of the impulse, and if the brick’s
mass or the man’s speed is large enough, the impulse may
produce a net negative acceleration that slows the man down.
Whether or not slowing occurs, there is a tradeoff between
the man’s speed and the impulsive force he must exert
to accelerate each brick, and this tradeoff dictates that
E ∝ 1/v1bot. The tradeoff is a purely inertial phenomenon
that is independent of the work done by the man to acquire
bricks.
[56] In more-complicated circumstances the man or the

bricks may be imperfectly lubricated, or his assistants may be
absent, requiring the man to do additional work to pick up
bricks before accelerating them. The added force required to
do this work can be characterized, albeit imprecisely, as
friction. The effects of friction are analogous to those of
incomplete liquefaction of bed sediments, and they reduce
the man’s maximum rate of brick entrainment if all other
factors remain unchanged. A further complication exists if
the man is able to reduce his basal friction as he slides,
analogous to a debris flow or avalanche that can liquefy its
bed as it overrides it. Reduction of basal friction is the only
means by which the momentum of the man or an analogous
flow can grow more rapidly than it would in the absence
of entrainment. In such circumstances flow momentum can
grow unstably, however, because the net force available to
cause entrainment grows in proportion to the mass of the
entraining body [e.g., Iverson et al., 2011].

8. Caveats

[57] Although elementary mechanics establishes some
important relationships between momentum conservation and
bed-sediment entrainment, additional details remain unre-
solved, and some cannot be assessed using a depth-integrated
continuum model. Like many geomechanical models, the
depth-integrated continuum model presented here assumes
that bed-normal total stresses (szz) are lithostatic and that
longitudinal normal stresses are proportional to szz. These
assumptions lead to useful mathematical simplifications and
physical inferences, but they preclude assessment of the
effects of boundary irregularities–except insofar as these
effects can be parameterized by a boundary friction coeffi-
cient. If elements of bed material protrude a significant dis-
tance into an overriding flow, for example, shear tractions
along the boundary vary spatially. Furthermore, as the
flow impinges against such protuberances, it can transfer
x-momentum to the bed by a mechanism that involves

Figure 8. Graphs of equation (54), illustrating variation of
the parameter I2 as a function of hydraulic permeability k for
a range of depth-averaged bed displacement rates, �v2. Labels
along the horizontal axis identify textures of sediments that
typically exhibit the adjacent k values (adapted from Freeze
and Cherry [1979]). Shaded regions identify ranges of I2
values indicative of shear behavior that can be characterized
as “drained,” “undrained,” or “intermediate.”
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not only variable shear tractions but also variable normal
tractions–an effect commonly parameterized as form drag.
An inability to assess these effects of boundary geometry
represents a fundamental limitation of the depth-averaged
entrainment model presented here.
[58] From a practical viewpoint, perhaps a more significant

limitation results from the model’s focus on bed-sediment
entrainment and neglect of entrainment of bank material.
Rigorous modeling of bank entrainment, while very desir-
able, would be very challenging. It would entail formulation
of a multidimensional boundary-traction model (in which
depth averaging would likely be inappropriate), and would
also entail coupling the traction model with a three-
dimensional bank-failure model (because bank failures with
infinite lengths or widths would contribute infinite mass to
a passing flow). Moreover, a model of bank-material entrain-
ment by debris flows or avalanches would necessarily include
fully coupled evolution of flow momentum, distinguishing
it from models of morphological evolution of stream banks
that occurs under macroscopically steady flow conditions.

9. Conclusions

[59] Conservation of momentum constrains interpretations
and predictions of bed-sediment entrainment rates by debris
flows and avalanches that are free to accelerate as they
descend steep slopes. Both a Coulomb slide-block analysis
and a depth-integrated continuum analysis predict that, if all
other factors are constant, the entrainment rate E decreases as
the basal flow velocity v1bot increases. The largest sustainable
entrainment rates occur in conjunction with steady flow,
because the entire net driving force is then allocated to
entrainment rather than acceleration. These findings help
explain some key results of entrainment experiments in
which dry granular avalanches moved across sloping beds
covered with the same material [Mangeney et al., 2010]:
entrainment was more pronounced during relatively slow,
steady motion of avalanches than during rapidly accelerating
motion.
[60] Predicted entrainment rates depend not only on flow

velocities but also on excess boundary shear tractions.
Although no universal model of shear tractions exists, a
Coulomb model accounts for the effects of friction as well as
modifications of bed friction due to pore fluid pressure.
Entrainment-rate predictions are simplest if pore pressures in
bed sediment locally grow large enough to liquefy it when it
is overridden. Then the resisting Coulomb shear traction is
essentially zero, and entrainment can occur at the maximum
sustainable rate, expressed by E = [m1gh1 cos q(1� l1)]/v1bot
or by E = [2m1gh1 cos q(1 � l1)]/�v1 if the approximation
v1bot ≈ �v1 /2 is adopted. The latter equation predicts entrain-
ment rates similar to those measured in large-scale debris-
flow experiments in which wet bed sediments liquefied
almost completely when they were overridden [Iverson et al.,
2011; Reid et al., 2011].
[61] Growth of pore fluid pressure in wet bed sediment can

occur as a result of both compressional loading by an over-
riding flow and shear deformation of the bed in response to
transfer of downslope flow momentum. Loosely packed beds
that exhibit contractive shear behavior are especially sus-
ceptible to this type of pore pressure growth, which may lead
to liquefaction. An analysis of pore pressure generation and

diffusion shows that the propensity for liquefaction may be
very large, for example, if a water-saturated bed that contains
significant sand or finer sediment begins to creep downslope
at a depth-averaged rate greater than about 10�3 m/s as it is
overridden. Bed liquefaction also promotes flow momentum
growth, because it minimizes basal resisting forces that
impede downslope acceleration.
[62] Evolution of flow momentum during entrainment

illustrates a fundamental asymmetry in the relationships
governing growth of mass, velocity and momentum for
Coulomb bodies. Whereas a Coulomb body of constant
mass undergoes stable velocity growth while descending a
steeply inclined plane, a Coulomb body with constant
velocity can undergo exponential mass growth in the same
circumstances – provided that the frictional resistance of the
bed is low enough to allow entrainment. This unbounded
mass growth in turn implies unstable momentum growth.
Therefore, the maximum momentum attainable by Coulomb
bodies that entrain basal material is limited only by the
volume of steeply sloping, erodible material they encounter.

Appendix A: Depth Integration of Conservation
Equations

[63] The general differential equations describing con-
servation of mass and the x component of momentum in
a continuous material with variable bulk density r can be
written as

∂r
∂t

þ ∂ðrvxÞ
∂x

þ ∂ðrvyÞ
∂y

þ ∂ðrvzÞ
∂z

¼ 0; ðA1Þ

∂ðrvxÞ
∂t

þ ∂ðrvx2Þ
∂x

þ ∂ðrvxvyÞ
∂y

þ ∂ðrvxvzÞ
∂z

¼ rgx þ ∂txx
∂x

þ ∂tyx
∂y

þ ∂tzx
∂z

¼ SFx: ðA2Þ

where vx, vy, and vz, are, respectively, the x, y, and z com-
ponents of velocity, rgx is the driving force per unit volume
due to the x component of the material’s weight, and txx, tyx
and tzx are the components of the Cauchy stress tensor
that resist motion in the x direction. For a discrete layer of
material, depth averages of the dependent variables in (A1)
and (A2) are defined as

�rðx; y; tÞ ¼ 1

h

Zztop
zbot

rdz �vxðx; y; tÞ ¼ 1

h

Zztop
zbot

vxdz;

�vyðx; y; tÞ ¼ 1

h

Zztop
zbot

vydz �vzðx; y; tÞ ¼ 1

h

Zztop
zbot

vzdz;

ðA3Þ

where zbot(x, y, t) is the z coordinate of the layer’s basal sur-
face, ztop(x, y, t) is the z coordinate of the layer’s upper sur-
face, and h(x, y, t) = ztop � zbot is the layer’s thickness.
Subsequent equations assume that r varies only as a function
of x, y, and t, such that r = �r , and also assume that �r of
material potentially added to the layer locally equals �r of
the layer itself.
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[64] Integration of (A1) and (A2) through the layer thick-
ness from its base at z = zbot to its upper surface at z = ztop
involves use of kinematic boundary conditions that relate
vz(zbot) and vz(ztop) to the other velocity components at z = zbot
and z = ztop and to variations in the boundary positions:

vzðzbotÞ ¼ ∂zbot
∂t

þ vxðzbotÞ ∂zbot∂x
þ vyðzbotÞ ∂zbot∂y

þ Ebotðx; y; tÞ;
ðA4Þ

vzðztopÞ ¼ ∂ztop
∂t

þ vxðztopÞ ∂ztop∂x
þ vyðztopÞ ∂ztop∂y

þ Etopðx; y; tÞ:
ðA5Þ

Here Ebot and Etop are the z-direction boundary-migration
velocities (reckoned positive downward) due to passage of
material through the basal surface or upper surface of the
layer, respectively. Gray [2001] has shown that for (A4) and
(A5) to describe mass fluxes through these surfaces exactly,
Ebot and Etop must be multiplied by correction factors that
account for local differences between the slopes of zbot and
ztop and the slopes of the global coordinates, x and y. These
correction factors are negligible, however, if zbot(x, y, t) and
ztop(x, y, t) vary gradually enough to satisfy the conditions
[∂zbot /∂x]2, [∂zbot /∂y]2, [∂ztop /∂x]2, and [∂ztop /∂y]2 ≪ 1, and
here I assume that this is the case. Then (A5) shows that if a
static layer with vx = vy = vz = 0 is subject to upward surface
accretion (Etop < 0), the deposit’s surface height increases at
the rate ∂ztop /∂t = � Etop. The situation is more complicated
at the base of a moving layer, where either erosion or sedi-
mentation can occur and all of the terms in (A4) can evolve
simultaneously. Despite such complications, Ebot < 0 always
describes upward migration of the layer’s base due to sedi-
mentation, and Ebot > 0 describes basal lowering due to
erosion.
[65] Provided that r = �r , depth integration of the mass-

conservation (equation A1) from z = b to z = h yields

Zztop
zbot

∂�r
∂t

þ ∂ �rvxð Þ
∂x

þ ∂ �rvy

 �
∂y

þ ∂ �rvzð Þ
∂z

� �
dz

¼ h
∂�r
∂t

þ h�vx
∂�r
∂x

þ h�vy
∂�r
∂y

þ �r vz ztop

 �� vz zbotð Þ� 	

þ �r

"
∂
∂x

Zztop
zbot

vxdz� vx ztop

 � ∂ztop

∂x
þ vx zbotð Þ ∂zbot

∂x

þ ∂
∂y

Zztop
zbot

vydz� vy ztop

 � ∂ztop

∂y
vy zbotð Þ ∂zbot

∂y

#

¼ h
∂�r
∂t

þ ∂ �rh�vxð Þ
∂x

þ ∂ �rh�vy

 �
∂y

� �r vx ztop

 � ∂ztop

∂x
þ vy ztop


 � ∂ztop
∂y

� vz ztop

 �� �

þ �r vx zbotð Þ ∂ztop
∂x

þ vy ztop

 � ∂ztop

∂y
� vz ztop


 �� �

¼ ∂ �rhð Þ
∂t

þ ∂ �rh�vxð Þ
∂x

þ ∂ �rh�vy

 �
∂y

þ �rEtop � �rEbot ¼ 0: ðA6Þ

The third and fourth lines of (A6) illustrate the result of using
Leibniz’ rule [Abramowitz and Stegun, 1964, pp. 11] for
interchanging the order of integration and differentiation
during evaluation of

R
zbot
ztop[∂vx /∂x]dz and

R
zbot
ztop[∂vy /∂y]dz. The

final line of (A6) results from substituting the kinematic
boundary conditions (A4) and (A5) into the sixth and seventh
lines of (A6) in place of vz(ztop) and vz(zbot), and then can-
celling terms that sum to zero and making the identification
∂ (ztop � zbot)/∂t = ∂h/∂t. If �r is constant and Etop = Ebot = 0,
then (A6) reduces to the standard depth-averaged mass-con-
servation division used in many shallow-flow theories [e.g.,
Vreugdenhil, 1994; Pudasaini and Hutter, 2007].
[66] Depth integration of the momentum-conservation

(A2) equation proceeds in a manner similar to that of the
mass-conservation equation, and it yields

Zztop
zbot

∂ðrvxÞ
∂t

þ ∂ðrvx2Þ
∂x

þ ∂ðrvxvyÞ
∂y

þ ∂ðrvxvzÞ
∂z

� �
dz

¼ ∂
∂t
�r
Zztop
zbot

vxdz� �rvxðztopÞ ∂ztop∂t
þ �rvxðzbotÞ ∂zbot∂t

þ ∂
∂x

�r
Zztop
zbot

vx
2dz� �rvx2ðztopÞ ∂ztop∂x

þ �rvx2ðzbotÞ ∂zbot∂x

þ ∂
∂y

�r
Zztop
zbot

vxvydz� �rvxðztopÞvyðztopÞ ∂ztop∂y

þ �rvxðzbotÞvyðzbotÞ ∂zbot∂y
þ �rvxðztopÞvzðztopÞ � �rvxðzbotÞvzðzbotÞ

¼ ∂ð�rh�vxÞ
∂t

þ ∂ð�rh�vx2Þ
∂x

þ ∂ð�rh�vx�vyÞ
∂y

þ ∂
∂x

�r
Zztop
zbot

ðvx � �vxÞ2dz

þ ∂
∂y

�r
Zztop
zbot

vx � �vxð Þ vy � �vy

 �

dzþ �rvxðztopÞEtop � �rvxðzbotÞEbot

¼
Zztop
zbot

SFxdz: ðA7Þ

The momentum-exchange terms �rvx(ztop)Etop and ��rvx(zbot)
Ebot arise in the seventh line of (A7) as a result of using the
kinematic boundary conditions (A4) and (A5) to combine
several terms in the second through fifth lines of (A7), which
express contributions to the x-momentum fluxes at the flow
boundaries. The integrals in the sixth and seventh lines of (A7)
result from use of the identities

Zztop
zbot

vx
2dz ¼ h�vx

2 þ
Zztop
zbot

ðvx � �vxÞ2dz

Zztop
zbot

vxvydz ¼ h�vx�vy þ
Zztop
zbot

vx � �vxð Þ vy � �vy

 �

dz;

ðA8Þ

which show how the depth integrals of products are related
to the products of depth integrals. Physically, the integrands
(vx � �vx )

2 and (vx � �vx )(vy � �vy ) describe the effects of dif-
ferential advection of momentum due to variations of vx and vy

IVERSON: BED-SEDIMENT ENTRAINMENT BY DEBRIS FLOW F03006F03006

14 of 17

riverson
Highlight

riverson
Highlight

riverson
Sticky Note
plus sign is missing between terms

riverson
Sticky Note
subscripts are messed up.  All should be bot in this line.



with z [Vreugdenhil, 1994]. Depth-averaged flow theories
commonly account for these effects by introducing momentum-
distribution coefficients that multiply h�vx

2 and h�vx�vy , as
exemplified by equation (21) in the main text. The one-
dimensional depth-averaged conservation laws (19) and (20)
in the main text are obtained from (A6) and (A7) by utilizing
the momentum distribution coefficient b = (1/h�v x

2)
R
zbot
ztopvx

2dz,
neglecting all terms involving ∂/∂y, and assuming �r is
constant.

Appendix B: Evaluation of Depth-averaged Normal
Stresses to Reduce Equation (24) to Equation (26)

[67] If the position of the upper surface of the three-layer
system shown in Figure 5 is denoted by z = H, then the total
normal stress szz at any depth H � z below the surface is
found by integrating equation (18) to obtain szz = rg(H � z)
cos q. Furthermore, if at all depths the lateral normal stress
sxx is related to szz by a simple proportionality rule, sxx =
kszz (where k can be interpreted as a lateral earth-pressure
coefficient or elastic Poisson’s ratio), then

sxx ¼ krgðH � zÞ cos q: ðB1Þ

In the equations that follow, k is assumed constant within any
particular layer, although its value may differ between layers.
[68] The thickness of any layer is given by

h ¼ ztop � zbot; ðB2Þ

and (B1) implies that the depth-averaged lateral normal stress
within any layer is given by

�sxx ¼ sxxtop þ sxxbot

2
¼ krg cos q H � ztop þ zbot

2

� �
: ðB3Þ

Use of (B2) and (B3) and some algebraic rearrangement
then enables the product �sxxh, which appears in (24), to be
written as

�sxxh ¼ krg cos q Hðztop � zbotÞ � 1

2
ðztop2 � zbot

2Þ
� �

: ðB4Þ

Differentiation of (B4) with respect to x, followed by some
further algebraic rearrangement, then yields a useful form of
one of the terms in (24):

� ∂ð�sxxhÞ
∂x

¼ �krg cos q ðztop � zbotÞ ∂H∂x þ ðH � ztopÞ ∂ztop∂x

�

� ðH � zbotÞ ∂zbot∂x

�
: ðB5Þ

Two other terms in (24) can be evaluated directly through use
of (B1) to obtain

sxxtop
∂ztop
∂x

¼ krg cos qðH � ztopÞ ∂ztop∂x
; ðB6Þ

�sxxbot
∂zbot
∂x

¼ �krg cos qðH � zbotÞ ∂zbot∂x
: ðB7Þ

Addition of (B5), (B6) and (B7), followed by some algebraic
cancellations and use of the substitution ztop � zbot = h, then
shows that this combination of terms reduces to

� ∂ð�sxxhÞ
∂x

þ sxxtop
∂ztop
∂x

� sxxbot
∂zbot
∂x

¼ �krgh cos q
∂H
∂x

: ðB8Þ

Therefore, provided that equation (B1) is valid and k is
constant within any particular layer, substitution of (B8) in
equation (24) reduces it to equation (26).
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