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43.1 Introduction

Debris flows are geophysical phenomena intermediate in char-
acter between rock avalanches and flash floods. They commonly
originate as water-laden landslides on steep slopes and transform
into liquefied masses of fragmented rock, muddy water, and
entrained organic matter that disgorge from canyons onto val-
ley floors. Typically including 50%-70% solid grains by volume,
attaining speeds >10 m/s, and ranging in size up to ~10° m3, debris
flows can denude mountainsides, inundate floodplains, and dev-
astate people and property (Figure 43.1). Notable recent debris-
flow disasters resulted in more than 20,000 fatalities in Armero,
Colombia, in 1985 and in Vargas state, Venezuela, in 1999.
Alternative terms such as mudflow, mudslide, debris torrent,
and lahar are sometimes used to describe debris flows, but the
terms “debris” and “flow” have precise geological meanings.
“Debris” implies that grains with greatly differing sizes are
present. The largest grains can exceed 10m in diameter, but the
presence of at least a few weight percent of mud-sized grains
(<62 um) is more critical because persistent hydrodynamic sus-
pension of these small grains effectively increases the viscosity of
the muddy water that fills pore spaces between the larger grains.
This enhanced viscosity promotes development of high pore-
fluid pressures that facilitate debris-flow motion by exerting

lubrication forces at grain contacts. The term “flow” implies that
slip at grain contacts is pervasive, and granular debris that is
liquefied by high pore pressures can appear to flow almost as
fluidly as water.

This chapter emphasizes the physical basis and mathematical
structure of models that analyze two-phase debris-flow behavior
by considering gravity-driven motion of granular solids that
transport pore fluid with evolving pressure. In this modeling
framework, granular rock avalanches represent a limiting class
of flows in which effects of pore-fluid pressure are negligible.
Differences between rock avalanches and debris flows can be gra-
dational, however: relatively dry rock avalanches can sometimes
engulf enough water to gradually transform to debris flows, for
example. A further complication is that debris flows can occur in
submarine environments, where water not only fills intergranular
pores but also surrounds the flows and thereby exerts buoyancy
and inertia forces. This chapter focuses exclusively on terrestrial
flows in which the effects of the surrounding air are negligible.

43.2 Observations and Data

Although debris flows can be difficult and dangerous to observe
directly, the chief qualitative features of debris-flow behavior can
readily be observed in extensive video documentation obtained
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FIGURE 43.1 Oblique aerial photograph of a lethal debris flow that
began as a rainfall-triggered landslide, Minamata, Japan, July 20,
2003. (After Sidle, R.C. and Chigira, M., EOS, 85, 145, 2004.) (Photo
by courtesy of R.C. Sidle, Reproduced by permission of the American
Geophysical Union.)

in the field and laboratory (e.g., Costa and Williams 1984; Logan
and Iverson 2007):

1. Debris flows exhibit unsteady, nonuniform motion, with
distinct starting and ending points in space and time.
Debris-flow models must, therefore, include explicit time
dependence.

2. Debris flows typically originate from discrete or distrib-
uted source areas that have slopes >30° mantled with soil
and fragmented rock. This debris becomes thoroughly
wet through introduction of surface water or ground-
water, commonly as a result of intense rain or snowmelt.
The water-laden debris starts to move downslope when
frictional forces no longer can resist driving forces, and it
then liquefies and begins to flow.

3. Many debris flows entrain additional sediment and water
as they descend steep slopes and channels. Entrainment
can occur by scour of bed material or collapse of stream
banks, and it can cause the mass of a debris flow to increase
10-fold or more before deposition begins on flatter terrain
downstream.

4. Abrupt, steep surge fronts generally form at the heads of
moving debris flows. Large grains accumulate at surge
fronts as a result of grain-size segregation and migration
within the debris, but large grains can also be scoured
from the bed and retained at surge fronts.

5. Water-saturated debris that trails surge fronts commonly
resembles watery, flowing concrete or roiling quicksand.
Thus, a debris-flow surge front commonly behaves as a
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“bouldery dam... pushed along by the finer, more fluiq
debris impounded behind...” (Sharp and Nobles 1953),

6. Lateral levees form where liquefied debris shoulders aside
high-friction debris at surge fronts, most commonly
where debris flows escape lateral confinement by overtop-
ping stream banks or discharging onto broad alluvial fans
or plains.

7. Depositional lobes form where the frictional resistance
imposed by coarse-grained flow fronts and margins is
sufficient to halt motion of the trailing, liquefied debris.
Bodies of fresh debris-flow deposits are generally too
weak for humans to traverse on foot, although the coarse-
grained lateral levees and distal margins of fresh deposits
commonly afford more secure footing.

8. Following emplacement, bodies of debris-flow deposits
gradually dewater and consolidate to a degree that allows
secure passage on foot. As desiccation proceeds, deposits
become nearly rigid, but this process commonly requires
several days to weeks.

Data that quantify many of the phenomena described above
come from nearly field-scale experiments conducted in the 95m
long, 2m wide USGS debris-flow flume (Iverson et al. 2010). A
set of eight of these experiments in which the debris consisted
of water-saturated sand and gravel containing 7% mud-sized
grains (<62um) yielded results that contrast with those from
a set of nine experiments that were identical in every respect,
except that the mud content was <1%. In each of the 17 experi-
ments, flow was initiated by suddenly releasing 10m? of thor-
oughly mixed, loosely packed debris from behind a vertical
headgate. The ensuing debris flows descended the 31° flume
and swept past two instrumented cross sections (located at x =
32 and 66 m downslope from the headgate) before discharging
onto a nearly flat runout surface and forming deposits at a third
instrumented cross section (located at x = 90m) (Figure 43.2).
Each instrumented cross section was equipped with an overhead
laser that measured the flow thickness and with bed sensors that
measured basal normal stress and pore-fluid pressure at fre-
quencies of 500 Hz.

Ensemble averages of the time-series data recorded at the
instrumented cross sections provide comprehensive summaries
of the behavior of the experimental debris flows. Each panel of
Figure 43.3 depicts simultaneous evolution of the ensemble-
averaged flow thickness, h, total basal normal stress, G,,,, and
basal pore-fluid pressure, p,,, for a particular instrumented
cross section and experiment set (identified as “SGM” for exper-
iments with 7% mud content and as “SG” for experiments with
<1% mud content). Vertical axes in Figure 43.3 are scaled so that
the three time series in each panel exhibit perfect superposition
if a liquefied state exists in which p,,, = ©,,;, = pgh (where g =
9.8m/s? is the magnitude of gravitational acceleration, and p =
2040kg/m? is a bulk density typical of water-saturated debris).

The most obvious implication of the data summarized
in Figure 43.3 is that the fronts of SGM debris flows move
downslope more rapidly than those of SG flows. The difference in
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FIGURE 43.2 Photographs of a 10m? experimental debris flow in the USGS flume. (a) View of flow descending the flume. (b) Sequential aerial
views of flow crossing runout surface and forming levees at base of flume. “t” denotes time elapsed since opening of headgate. Shadow is cast
by crossbeam suspending laser at x = 90m. (Reproduced from Iverson, R.M. et al,, J. Geophys. Res., 115, 2010, doi:10.1029/2009JF001514. With
permission of the American Geophysical Union.)
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FIGURE 43.3 (See color insert.) Ensemble averages of flow thicknesses, basal total normal stresses, and basal pore-fluid pressures measured at
three distances from the headgate (x = 32, 66, and 90 m) in two sets of experimental debris flows. (a—c) Data from eight SGM flows containing 7% mud.
(d-f) Data from nine SG flows containing <1% mud. (Reproduced from Iverson, R.M. et al., ]. Geophys. Res., 115, 2010, doi:10.1029/2009]F001514.

With permission of the American Geophysical Union.)
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speeds takes time to develop; however, the fronts of both types of
flows arrive at x = 32 m about ¢ = 4s after their release (cf. Figure
43.3a and d). This arrival time implies that all flows initially
attain speeds only slightly less than that of a frictionless body,
which theoretically reaches x = 32m at t = 3.56s when released
on a 31° slope. The large initial flow-front speeds result not from
near-zero friction, but instead from a strong downslope thrust
(roughly proportional to —oh/dx) that is produced during col-
lapse of the debris as the headgate opens. As this thrust dimin-
ishes, the effects of friction become more apparent: after t = 4s,
the SG flows begin to decelerate (arriving atx = 66mat ¢t~ 8.5s),
but the SGM flows continue to accelerate (arriving at x = 66m
at t = 7). The disparity in SG and SGM arrival times grows to
about 3s when the flows reach x = 90m (cf. Figure 43.3c and f).
Furthermore, after the debris flows issue from the mouth of the
flume, the SGM flows run out about twice as far as the SG flows
(Iverson et al. 2010).

The high mobility of the SGM flows may seem counterintui-
tive, given that mud increases the viscosity of the fluid phase
of the SGM, but relationships between the three time series in
each of the upper panels of Figure 43.3 reveal the cause. The
data in Figure 43.3a show that, after passage of a dilated, gravel-
rich flow front from t = 4 to 65 (wherein h averages roughly
twice the magnitude of G,,,/pg and p,,,/pg), the approximation
Dbed = Opea = Pgh holds reasonably well in SGM flows. This result
implies that the debris trailing the dilated front at x = 32m is
almost completely liquefied by high pore-fluid pressure that
reduces grain-contact stresses. Figure 43.3b and ¢ show that this
liquefaction persists at x = 66 and 90 m, although at these loca-
tions the rise in p,,, lags behind the rise in G,,, because a more
mature, coarse-grained flow front is present. Particularly note-
worthy is the nearly perfect data superposition of time series
in the final ~6s shown in Figure 43.3c, which indicates that
deposits behind the flow front are fully liquefied. Probing of the
deposits demonstrates that the liquefied debris spreads into a
thin puddle if it is not impounded by gravel-rich lateral levees
like those pictured in Figure 43.2b.

Pore-pressure behavior in the SG flows differs markedly from
that in the SGM flows. The differences first appear at x = 32m,
where p,,, remains significantly less than 0, during passage
of most of the flow (Figure 43.3d). The discrepancy between
Pseq a0d Oy, grows more persistent at x = 66m, and becomes
most pronounced in deposits formed at x = 90 m (Figure 43.3e
and f). Moreover, the SG deposits have p,.; < 0.5 Gpeqr imply-
ing that the debris has not only lost some pore pressure but
has also begun to dewater. Lack of sustained high pore pres-
sure in the SG debris accounts for its relatively low mobility.
Indeed, it may be appropriate to regard the behavior of the SG
flows as intermediate between that of rock avalanches and true
debris flows.

Irrespective of their differences, the SGM and SG flows both
exhibit rapid formation and persistence of gravel-rich snouts,
which are products of grain-size segregation. Videotapes of
the experiments reveal that within the first 4s of downslope
travel, gravel migrates to the surface of the flows and then
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advances to the snouts, where much of it is retained (Logan
and Iverson 2007). As the flows travel further downslope, the
maturing gravelly snouts develop the pore-pressure deficits
that are evident in Figure 43.3b through f. The pore-pressure
deficits arise because of the high hydraulic permeability of the
gravel, which makes it incapable of maintaining much pore
pressure. As a result, gravelly snouts exert more frictional
resistance than the liquefied, finer-grained debris that pushes
them from behind.

43.3 Physical Principles
Used in Modeling

The data summarized above illustrate the crucial role of evolv-
ing pore-fluid pressure in debris flows, and recent models have
emphasized that debris consists of a distinct solid phase and
fluid phase in which such pressure can exist (Iverson 1997,
Iverson and Denlinger 2001; Savage and Iverson 2003; Pitman
and Le 2005; Takahashi 2007; Kowalski 2008). The physical
principles used to construct two-phase models of debris-flow
dynamics involve concepts from continuum mixture theory,
soil mechanics, and fluid mechanics, which are described below.
Also described is the rationale for approximating two-phase
debris flows as one-phase granular flows with evolving porosi-
ties and pore-fluid pressures.

43.3.1 Continuum Conservation Laws

For each phase of a debris-flow mixture individually, as well as
for the mixture as a whole, the principle of mass conservation is
expressed by

dp -
L 4+V.pov=0, 43.1
VP 43.1)

where
p is the mass density
7 is the velocity vector
V - p¥ is the divergence of the linear momentum vector, pv.

Conservation of linear momentum is expressed by

aaLtv+V-pW=p§—V-T,

43.2)
where
g is the acceleration due to gravity
T is the stress (defined using a soil-mechanics convention in
which compression is positive, because granular debris
can sustain little or no tension)

Note that Tand 77 are each 3 x 3 tensors, implying that V- Tand
V - p¥¥ in (43.2) represent vectors rather than scalars obtained
from vector divergences (e.g., Gidaspow 1994).
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43.3.2 Density and Velocity Definitions

When mixture models are applied to debris flows, the solid and
fluid constituents are generally assumed to have fixed mass den-
sities, p, and py, respectively. The definition of the mixture bulk
density

p=p,(A-n+pm, (43.3)
consequently shows that variation of the mixture porosity
n wholly determines variation of p, provided that the debris
remains fully saturated with pore fluid. Although # ranges from
onlyabout 0.3 in the densest debris flows to 0.5 in the most dilute,
evolution of n plays a crucial role in debris-flow mechanics.
Like the mixture density, the mixture momentum is weighted
by the mass of solid grains p,(1 — ) and mass of pore fluid pn
per unit volume, but it also depends on the velocities of each
phase. Thus, the linear momentum of the mixture is defined as
p¥ = ¥V,p,(1 - n) + ¥,pn, where ¥, is the velocity of the solid grains
and ¥;is the velocity of the pore fluid. This definition of mixture
momentum implies that the mixture velocity is defined as

Vp(l—ny+Vipn
———————p .

y=

(43.4)

If separate momentum-conservation equations are written for
the solid and fluid phases, these equations sum to yield the
momentum-conservation equation for the mixture as a whole
only if the mixture velocity is defined as in (43.4).

Another velocity that plays a key role in debris-flow mechan-
ics is the pore-fluid velocity relative to the solid velocity, ¥, - ¥,
To an observer moving with the local solid velocity ¥,, the appar-
ent fluid velocity is the volumetric flux of pore fluid per unit area
of mixture, §:

g=n(V,-¥.). (43.5)
In porous media theory, § is known as the specific discharge
(Bear 1972).

The definition of § can be combined algebraically with
Equations 43.3 and 43.4 to obtain the important relationship

Pr
p

W

+1. (43.6)

=
<

s

For debris flows this relationship commonly reduces to ¥/¥, = 1,
because values p;/p = 1/2, ¥, > 0.1 m/s, and § < 0.1 m/s are typi-
cal. The approximation ¥/¥, = 1 allows the mixture momentum
to be approximated as p¥,, thereby reducing the two-phase flow
problem to an equivalent one-phase problem in which ¥, (or ¥) is
influenced by the solid-fluid interaction stress associated with 4.

43.3.3 Effective Stress and Pore-Fluid Pressure

The use of an equivalent one-phase formulation implies that
the stress T in (43.2) must account for all solid-fluid interaction
stresses, including those due to ¢ (Iverson 1997). A simple but
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nevertheless useful approach to this problem employs a key con-
cept from soil mechanics: the effective stress principle. This prin-
ciple states that the total stress tensor T can be decomposed into
components of stress borne by the solid and fluid phases, such that
T=T,+Ip+nTy, (43.7)

where

T, is the effective stress borne by the solid grains

p is the pressure borne by the fluid

Iis the identity tensor

T, is the deviatoric fluid stress that results from macroscopic

viscous shearing

The stresses T, and p are treated as if they act throughout the
entire mixture, whereas T, acts only within the fluid volume
fraction n. Separation of the fluid stresses in (43.7) into an iso-
tropic component p and deviatoric component T, is similar to
the convention used in fluid mechanics, but it differs owing to
the definition of p as a mixture-spanning quantity.

The most important ramification of (43.7) is that increases in
the pore-fluid pressure p imply attendant reductions in the mean
effective normal stress borne by the solid grains, o, (where o, is
a scalar equaling the mean of the diagonal components of the
tensor T,). This normal-stress reduction reduces intergranular
Coulomb friction and thereby facilitates debris-flow motion.

43.3.4 Coulomb Friction

Coulomb friction generates most of the shear stress in debris
flows and in other dense granular flows (Iverson 1997). In its
simplest form the Coulomb friction rule states that the maxi-
mum shear resistance attainable before intergranular slip occurs
is equal to the product of a constant friction coefficient and the
normal stress at grain contacts. Furthermore, as slip occurs, the
shear stress retains this limiting equilibrium value.

Two important modifications of the Coulomb friction rule per-
tain to debris flows. The first involves application of the effective-
stress principle (43.7), which states that 7, is the relevant normal
stress at grain contacts. The second modification accounts for the
observation that the intergranular friction coefficient tan ¢ can
evolve as the shear rate and effective normal stress evolve. (This
chapter expresses friction coefficients by using the tangent of the
friction angle, ¢, which is similar to the steepest angle of repose
attainable by a static, tabular layer of grains.) These modifica-
tions result in a Coulomb friction rule expressed in 1D form as

1= —Sgﬂ(V) [Gs - Ps]taﬂq)(s)’ (438)
where
7, is the shear stress on @ plane of slippage
-sgn(¥) denotes that this shear stress always resists motion
o, and p, are the total normal stress and pore-fluid pressure
acting on the same plane as T,
¢(S) denotes dependence of ¢ on the state parameter S
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Multidimensional versions of (43.8) can be formulated, but they
require considerable tensor algebra, a topic best reserved for
detailed treatises (e.g., Desai and Siriwardane 1984).

The importance of the dimensionless parameter S in (43.8)
has recently been emphasized by Forterre and Pouliquen (2008),
among others; and for application to debris flows, S can be
defined as

. 2
S= 9’—:1, (43.9)

where
v is the local shear rate (which has dimensions of )
8 is the characteristic diameter of grains involved in the
shearing
0, is the mean effective normal stress defined above (Iverson
etal. 2010)

Physically, S expresses the ratio of grain-scale inertial stresses
(caused by dynamic grain interactions during shearing) to bulk-
scale quasi-static stresses (caused by gravitational forces and
reduced by pore-fluid pressure). Experiments and simulations
indicate that tan ¢ increases smoothly as a function of S, although
variation of tan ¢ is probably less than twofold over the entire
domain § = 0 to S = . Remarkably, even in the limit § — oo,
which indicates a liquefied state in which granular momentum
exchange occurs by brief collisions rather than enduring friction
at grain contacts, T, obeys an equation analogous to (43.8), as first
demonstrated long ago by Bagnold (Hunt et al. 2002).

The Coulomb friction rule (43.8) applies to flow boundaries
as well as flow interiors. Values of tan ¢ along boundaries can
differ from those in interiors, however, and these differences can
be crucial because boundary slip can be responsible for a large
fraction of the total frictional energy dissipation in debris flows
(Iverson et al. 2010).

43.3.5 Dilatancy and Porosity Change

Granular materials like those in debris flows can exhibit poros-
ity change for several reasons. Mathematically, the rate of
porosity change is related to the dilatjon rate (i.e., the divergence
of the solid grain velocity, V - ¥) by

1 dn

= 43.10
1-n dt ¢ )

V-9

where d/dt = d/3t + ¥, - V is a total time derivative in a frame of
reference that moves with the granular velocity ¥, (Bear 1972).
If porosity change occurs in response to shearing, the phenom-
enon is known as dilatancy. In densely packed states, rotund
grains must move apart (exhibiting positive dilatancy) to attain
sufficient space to shear past one another, whereas in loosely
packed states they contract (exhibiting negative dilatancy) as
shearing occurs.
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In debris flows the net dilation rate depends on two interact-
ing effects: dilatancy associated with shearing and compres-
sion caused by increases in the mean effective normal stress, o,
Iverson (2009) proposed that the net dilation rate can be
expressed by a linear sum of these effects, yielding

o . do
Vv, =9y -o0—=, 43,
V,=fw-o % (43.11)

where y is the debris’ shear-induced dilatancy (a dimension-
less quantity commonly expressed as an angle, -n/2 < y <
7/2), and o is the debris’ compressibility (the reciprocal of a
bulk modulus). Note that if shearing of debris were to occur
in a closed container that imposes the condition V - ¥, = 0,
then (43.11) reduces to do,/dt = yy/o, which implies that o,
increases with time if shearing proceeds at a constant rate y
with constant y > 0. This specious prediction demonstrates
that W cannot be a material constant. Rather, it must evolve
and ultimately become zero during steady-state shearing with
no volume change. In soil mechanics this type of steady state is
known as a critical state.

Experiments show that the dilatancy Wy evolves in a man-
ner that depends on the current value of n relative to a value
n,, that is in equilibrium with the ambient state of stress and
shear rate, and that this dependence roughly obeys a linear rela-
tion, y = ~C,(n — n,,), where C, is a positive constant of order 1
(Pailha and Pouliquen 2009). Other experiments demonstrate
that the dependence of n,, on the ambient state of stress and
shear rate can be summarized as a dependence on S (Forterre
and Pouliquen 2008). Although the exact form of this depen-
dence has not been determined for debris-flow materials, the
relation y = ~C,[n — n,,(S)] can nevertheless be combined with
(43.10) and (43.11) to infer that a differential equation describing
evolution of n is (cf. Iverson 2009; Pailtha and Pouliquen 2009)

dn _ . a B o &
E?‘C'y(" Dln—n,(S)] -l —n) o (43.12)

The implications of (43.12) can be complicated, but some insight
can be gained by assuming that do,/dt = 0 and that yand S are con-
stants, such that n,_ is also a constant and evolution of n is decou-
pled from evolving debris-flow dynamics. Then an exact solution
of (43.12) demonstrates that n relaxes exponentially toward its
equilibrium value, n,,, with a relaxation time 1/(1 ~ n,))CyY. This
result implies that the speed of porosity relaxation is directly pro-
portional to the shear rate y—but only if changes in o, and § do
not intercede.

43.3.6 Excess Pore-Fluid Pressure
and Darcy Drag

Equation 43.12 indicates that porosity evolution depends not
only on shear-induced dilatancy but also on evolution of the
mean effective normal stress, ©, (and, thus, on evolution of
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pore-fluid pressure). Indeed, evolution of porosity implies that
relative motion of the solid and fluid phases must occur (i.e., ¥, -
¥, # 0), and this relative motion necessarily results in momen-
tum exchange that modifies pore-fluid pressure. In debris-flow
mechanics it is conventional to approximate the effects of solid-
fluid momentum exchange by using a simple linear drag rule
(Darcy’s law), which can be expressed as

. - k
q=n(vf—-v,)=—-EVPu (43.13)

where
q is the specific discharge defined in (43.5)
k is the hydraulic permeability of the granular assemblage
(a quantity with dimensions of length squared)
M is the viscosity of the pore fluid

The quantity p, is the “excess” pore-fluid pressure defined as p, =
P - psg(h — 2)cos 6, where p is the total pore-fluid pressure, and
psg(h - z)cos 6 is the hydrostatic equilibrium pressure at a slope-
normal height 2 in a debris flow of thickness h on a slope with
angle 6. Values of k for typical debris-flow materials range from
about 101 to 10-*m?, and values of u for muddy pore fluid range
from about 10-2 to 10Pa-s, so that k/p ranges from about 10-4
to 10-m? Pa s. As a consequence, (43.13) implies that very sig-
nificant excess pore-pressure gradients (Vp, ~ pyg ~ 10*Pa/m)
will develop in reaction to solid-fluid momentum exchange if
the magnitude of 4 exceeds 102m/s for debris flows with the
largest k/p values and if it exceeds 10-°m/s for debris flows with
the smallest /L values. The large excess pore-pressure gradients
associated with these § magnitudes tend to inhibit development
of greater § magnitudes, owing to the effects of pore-pressure
diffusion.

43.3.7 Pore-Pressure Diffusion

The relationship between the porosity change described by
(43.10) and the excess pore-pressure gradient described
by (43.13) implies that pore-pressure evolution is mathemati-
cally analogous to forced diffusion. This analogy is revealed by
first observing that, if the mixture remains saturated, mass con-
servation dictates that the divergence of the solid grain velocity
V - ¥,in (43.10) must be balanced by a counter-flow of pore fluid,
such that

V.5,=-V-j. (43.14)

Substitution of (43.13) and (43.14) into (43.10) then yields a fun-
damental equation that shows how porosity change is related to
the divergence of Vp,:

__I___d—’l =V-_I.(.Vpg.

43.15
1-ndt " ( )
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The porosity 7 can be eliminated from this equation by combin-
ing (43.15) with (43.10) and (43.11) to obtain an equation with
dgo,/dt on the left-hand side. For the case in which k/| is con-
stant, this equation reduces to

do,__k

= (43.16)
dt op

V? ,+i\"—,
P o

where k/o plays the role of a pore-pressure diffusivity (which
has dimensions of length squared per unit time). Finally, the
definition of effective stress (43.7) can be used to infer that
do,/dt = do/dt — dp,/dt — d[pg(h — z)cos 0]/dt, where G is the
mean total stress, and substitution of this relationship in (43.16)
enables the equation to be recast as a forced, advection-diffusion
equation for p,,

ap. k.

at op (43.17)

d v
V2p, = [0 —psg(h—z)cosB] - -
P o [0 —psg(h—z)cosO] o

The total time derivative dp,/dt = dp,/dt + ¥, - Vp, on the left-hand
side of (43.17) includes the effects of advection, and the forc-
ing terms on the right-hand side of (43.17) express the evolving
effects of the shear-induced dilation rate Yy, the mean total stress
o, and the hydrostatic pore-pressure component pyg(h — z)cos 6.
Note that if all of the time derivatives in (43.17) are zero and
Yy is constant, the equation reduces to the steady-state balance
(k/W)V?p, = 1y, which can alternatively be written as -V - § =yy.
This result shows that porosity creation during steady dilation is
balanced by a steady influx of fluid that fills the enlarging pores.

The forcing effects described by the right-hand side of (43.17)
can drive pore-pressure change, but p, can evolve even in the
absence of forcing owing to diffusion described by the left-hand
side of (43.17). Normalization of the left-hand side of (43.17)
shows that excess pore pressure relaxes diffusively with a char-
acteristic time h?oyu/k. This relaxation time includes not only the
pore-pressure diffusivity k/ajL but also the square of the debris-
flow thickness h, which is the length scale over which pore-pres-
sure diffusion typically occurs. Owing to this dependence on k2,
pore-pressure relaxation proceeds more slowly in large debris
flows than in small ones. Thus, once excess pore pressure devel-
ops, large debris flows can maintain lower Coulomb friction and
exhibit greater mobility than can small flows.

43.3.8 Disparate Relaxation Times
and Limits on Feedback

Equations 43.12, 43.15, and 43.17 indicate a strong interdepen-
dence between evolution of porosity, dilatancy, excess pore-fluid
pressure, and effective stress. They also show that a large dis-
parity exists between the characteristic timescales for porosity
relaxation in the absence of pore pressure (1/(1 - n,,)C,y com-
monly ~ 15) and for dissipation of excess pore-fluid pressure that
occurs in response to porosity change (h2ayu/k commonly > 10%s).
Such disparate values imply that the inherently fast process of
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shear-induced porosity change can rapidly generate pore-pres-
sure changes that inhibit further porosity change. Thus, in the
absence of changes in forcing (such as changes in bed slope that
drive changes in ), diffusive pore-pressure responses tend to sta-
bilize debris-flow motion by regulating pore-pressure feedback
that influences frictional resistance to flow.

Pore-pressure feedback may also be subject to lower and
upper bounds due to phenomena not explicitly represented in
(43.12), (43.15), and (43.17). For example, the effective lower limit
on pore-fluid pressure in debris flows is probably zero (i.e., the
atmospheric reference pressure). Negative pore pressures might
occur in dewatering debris, but they would result from surface
tension at air-water interfaces (i.e., meniscuses) in partly filled
pore spaces, and such delicate features seem unlikely to have
significant effects on agitated, coarse-grained debris. To date,
debris-flow models have ignored them. A practical upper bound
on pore-fluid pressure in debris flows is probably the liquefaction
pressure, p = O, which produces ¢, = 0. Higher pore pressures
theoretically could be produced by forced debris contraction,
but the propensity for contraction largely vanishes as ¢, — 0.

43.3.9 Effects of Grain-Size Segregation

The development and dissipation of excess pore-fluid pressure
described by (43.17) underscores the significance of grain-size
segregation in debris flows, because the value of k in (43.17)
depends strongly on the local grain grain-size distribution. As
discussed in Section 43.2, grain-size segregation leads to a char-
acteristic debris-flow architecture in which coarse-grained, high-
friction snouts that lack much pore pressure impede the motion of
trailing, liquefied, fine-grained debris. At present no satisfactory
model exists for predicting grain-size segregation in debris flows,
although recent advances in granular mechanics indicate that
progress may be forthcoming (Gray and Kokelaar 2010). A stop-
gap approach mimics the effect of grain-size segregation by speci-
fying a heterogeneous k distribution (Savage and Iverson 2003).

43.3.10 Boundary Erosion and Mass Change

As noted in Section 43.2, debris flows commonly gain mass as
they descend steep, erodible slopes and channels, and they begin
to lose mass and form deposits when they reach flatter terrain.
No precise criteria exist for determining where this transition
occurs, however, and no widely accepted formula exists for pre-
dicting the rate of mass change. Many debris-flow models, such
as the one described in the following, account for the effects of
mass change in conservation laws, but they take no account of the
forces necessary to cause the mass change. Better understanding
of the mechanics of mass change awaits further research.

43.4 Model Formulation and Analysis

Key steps in the development of most mathematical models of
debris-flow motion include depth integration of the govern-
ing equations and shallow-flow scaling that justifies neglect of
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some terms. Depth integration removes the explicit appearance of
one velocity component (here denoted by v,) and thereby reduces
the number of dependent variables. It also embeds, within the con-
servation equations, kinematic boundary conditions that describe
the position of the free upper surface and basal flow boundary,
thereby eliminating the need to track motion of these boundaries
separately. Finally, it readily incorporates mass-change terms that
describe fluxes of debris through the upper and basal boundaries.
Because of the need to specify the direction of depth inte-
gration (the z direction) a priori, the choice of a coordinate
system is crucial. Some models use an Earth-centered, orthogo-
nal Cartesian coordinate system with z vertical, which has the
advantage of being universal and independent of terrain geom-
etry. Such a system leads to complicated mechanical consider-
ations when computing motion across steep, irregular slopes,
however (Denlinger and Iverson 2004). Other models, including
the one presented here, use a z coordinate normal to the local
ground surface, such that the x coordinate is directed downslope
and the y coordinate cross-slope (Figure 43.4). This approach
simplifies the mechanics, but it requires use of curvilinear coor-
dinate systems to adapt it to natural terrain. This chapter omits
consideration of the complex mathematics associated with cur-
vilinear coordinates, and instead focuses on the mechanical
implications of depth-integrated conservation laws.

43.4.1 Depth-Integrated Conservation Laws
with Mass and Bulk-Density Change

Consider motion of a debris flow of variable bulk density p mov-
ing down a planar slope inclined at the angle 6 (Figure 43.4).
(Recall from (43.3) that a simple relation exists between varia-
tions in debris-flow bulk density and porosity, provided that the

FIGURE 43.4 Schematic vertical cross section of a debris flow
descending a uniform slope inclined at the angle 0. The x-z coordinate

" system and flow length scales H and L are defined. Magnified slice illus-

trates the dependent variables, v,, h, and p,,, as well as a local grain
length scale, 8. (Reproduced from Iverson, R.M. et al,, J. Geophys. Res.,
115, 2010, doi:10.1029/2009JF001514. With permission of the American
Geophysical Union.)
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flow remains saturated with pore fluid. Thus, a variable-bulk-
density model can be used in place of a variable-porosity model,
and it can be extended to include cases with variable satura-
tion.) The vector conservation laws (43.1) and (43.2) imply that
the scalar equations describing conservation of mass and the
downslope (x) component of linear momentum are

op , opv.) , 9pv,)  9pv.)
=0, 43.18
at ox dy * dz (4318)
a(pv,) apv?) a(pv,v},) N alpv,v,)
ot ox dy dz
Ot O _Ote _yp (43.19)

where v,, v,, and v,, are, respectively, the x, , and z components
of the debris velocity (either ¥ or ¥, as described in Section 43.3);
pg, = pgsin O is the x component of the debris weight per unit vol-
ume; 1, T,, and T,, are the components of the stress tensor act-
ing in the x direction; and ZF, is shorthand notation for the sum
of the weight and stress terms. Equations analogous to (43.19)
describe conservation of the y and z momentum components.

Depth averages of the dependent variables in (43.18) and
(43.19) are defined as

n n
Bx,3,6) = % j pdz T,(x )= % j v.dz
b b

1 n
v, (x,y.t) = %vadz v, (x, y,t)= %Jv,dz, (43.20)
b b

where z = b(x, y, t) is the position of the debris-flow base, z =
1(x, 1) is the position of the free upper surface, and h(x, y, ) =
1 - b is the flow thickness (Figure 43.4). Subsequent equations
are simplified by assuming that p varies only as a function of x, y,
and ¢, such that p = p. Similar assumptions are necessary in any
depth-integrated model.

Integration of (43.18) and (43.19) through the debris-flow
thickness from its base at z = b to its upper surface at z = 1
employs kinematic boundary conditions that relate v,(b) and
v,(n) to the other velocity components at z = b and z=1 and to
variations in the boundary positions:

ob ob ab
== — —- 43.21
v:(b) o +vx(b) E» +v,(b) % B(x,y:t), ( )
_an on an _
v.(n)= > +v,. () 3 +v,(m) % Alx,y,t).  (43.22)
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Here A and B are the boundary-migration velocities (positive
upward) caused by the possible entry of debris at the free upper
surface or basal surface of the flow, respectively. For example,
if a static heap of debris with v, = v, = v, = 0 is subject to upper-
surface accretion at a rate A > 0, (43.22) shows that the heap’s
height 1 increases at the rate 911/t = A. The situation is more
complicated at the base of a moving debris flow, where either
erosion or sedimentation can occur and all of the terms in
{43.21) can evolve simultaneously, but B > 0 always character-
izes upward bed migration due to sedimentation, and B < 0
characterizes bed lowering due to erosion. Subsequent equa-
tions assume that the bulk density of bed and bank material
potentially incorporated in the debris flow locally equals p of
the flow itself.

For the case with p = p, depth integration of the mass-conser-
vation Equation 43.18 yields

9p , 3pv,) a(pv,) . dpv.)
I[at ax * oy * oz d

+hv,a +p[v.(m) -v.(%)]

n
+p[aax !v,dz v,(n)a"w,(b)—

L]

Bt oo
+ay‘!'v,dz v,(n)

ob
—a—; + ‘V},(b) g}

_, 38, 3@h¥) , A@HT,)
Bt ox ay

5 o am_
p[v,(n) ™ +v,(M) 3 vz(n)]

+§[v,<b)%+v,(b)§-y’1—v,(b)]

_ k), 3pHY,) , APV, —PA+PB=0.

(43.23)
ot ox ay

The third and fourth lines of (43.23) illustrate the result of
using Leibniz rule for interchanging the order of integration

and differentiation during evaluation of I [ov,/0x)dz and
J [dv,/dy]dz. The last line of (43.23) results from substituting

the kinematic boundary conditions (43.21) and (43.22) into the
fifth and sixth lines of (43.23) in place of v,(n) and v,(b), and then
cancelling terms that sum to zero and making the identification
om — b)/ot = oh/dt. If A = B=0 and p is constant, then Equation
43.23 reduces to the form of the mass-conservation equation
used in standard shallow-water flow theory, oh/dt + d(h¥,)/ox +
o(hv,)/dy =0.

Depth integration of the x-component momentum-
conservation Equation (43.19) employs Leibniz rule and uses
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the kinematic boundary conditions (43.21) and (43.22) to cancel
many terms. For the case with p = p the integration yields

} a(pv ) a(pv, )+ a(avxvy) + a(avxvz) dz
) dy oz

1
T Y Y 1
=3 p‘,‘:v,,dz pv. (M) 3 +pv,(b) o

+~—pjvﬁdz Bl 5 )

n
- - om ab
i dz — bl (b, (b)—
+ 3 p!vxvy z—pv, (M, (1) 3 +pv.(b)v,(b) 5

+ Py (v () — Py, (b)v,(b)

_ (phv,) a(rahv,,’) N d(phv,v,)
ot ox dy

3 [ 3 _{
+a—x§-!.(v,—17x)2dz+a— ‘,‘: v,, v —v,)dz pv.(mA
+pv,.(b)B

n
= J‘Zdez. (43.24)

The integrals in the seventh line of (43.24) arise from the use of
the identities

1
vidz=hv? + I(v, -v,)dz
b

n
v,v,dz=hv,V +I(v,, —V,)(vy —V,)dz, (43.25)
b

o Sy ) O Sy 3

which show how the depth integrals of products are related to the
products of depth integrals. Physically, the integrands (v, — ¥,)?
and (v, - 7,)(v, - 7,) inr (43.24) and (43.25) describe the effects of
differential advection of momentum due to variations of v, and
v, with depth z. Most debris-flow models neglect these effects
and assume that v, = ¥, and v, = ¥,, and the same approach is
used here. Differential advection of momentum might play a
particularly important role, however, if erosion or deposition
occurs and velocity gradients near the bed are significant.

With neglect of the differential advection terms, (43.24)
reduces to

o(phv,) + a(b'hV,z) a(Pth
ot ox

) IEP dz+Pv, (A —Pvs(b)B.

(43.26)
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This equation can be manipulated into useful alternative formg
by expanding the derivatives on the left-hand side to obtain

__a_h o(hv,) a(hv,) —.19p -9dp _dp
v [at x| oy ] h|:8t+v" v ’ay

n
ov, _ dv, _ dv, — —
+ph[ ot TV ox +v Vy a}’ :| _!Zdez'*'PVx(ﬂ)A"PVx(b)B.

(43.27)

The second term in brackets in (43.27) can be replaced with the
depth-averaged total time derivative dp/dt, where d/dt = 9/3t +
v, dlox + v,a/ay, and the first and third terms in brackets can be
recombined to reduce (43.27) to

20w, awd) | 30.7)] ., 35
Pl T ax 3y "

n
=I2F,dz +Pv, (M)A v, (b)B. (43.28)
b

This form of the x-momentum equation is called “conserva-
tive” because the left-hand side represents evolution of a con-
served variable, x-momentum per unit area dxdy. The terms
pv. (M)A and pv,(b)B on the right-hand side of (43.28) account
for x-momentum carried into or out of the flow by material with
v, # 0 passing through its upper or lower boundaries.

An alternative, “primitive” form of the x-momentum equa-
tion is obtained by using (43.23) and d/dt as defined earlier to
replace the first term in brackets in (43.27) with —(h/ﬁ)(a-ﬁlt_it) +
A — B, and then replace the second and third terms in brackets
with dp/dt and dv /dt, respectively. These substitutions result in
cancelations that reduce (43.27) to

ph dv,

J.EF dz +pv,(M)A—pv,.(b)B—pv.A+pv,.B, (43.29)

Although (43.29) is correct mathematically, it describes evolu-
tion of ¥,, a variable that is not physically conserved. As a result,
the right-hand side of (43.29) contains the added terms —pv,A
and +p v B, which misleadingly appear to represent momentum
sources or sinks not present in (43.26), (43.27), or (43.28). In fact,
—-pv,A and +pv,B merely account for terms cancelled from the

left-hand side of (43.29), and this fact must be borne in mind if

Lagrangian numerical methods that employ (43.29) are used to
compute solutions.

n
LF, dz on the right-hand

sides of (43.24) and (43.26) through (,:13.29) employs Leibniz rule
during depth integration of the stress-gradient components,
which appear explicitly in (43.19). Three terms generated in this
integration vanish because they involve 1,,(1), 7,,(n) or U)

Evaluation of the forcing term I
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which all equal zero owing to the stress-free condition of the
upper flow boundary. The remaining terms yield

1 1
J.ZF,, dz = ﬁg,h—j[&c—“+ik—”+§f£:|dz
g ’ ax

dy 0z
- (T.h) b d(T,h) ob
=pghsin- 2=t ¢ )22 2T 1 ()2 +1,.(b).
pghsin®~ =" - T, (b) 3 Tyx(b) 3 + T (b)
(43.30)

Note that according to the sign convention used here, T,(b) < 0
when 1,,(b) resists distortion associated with [dv,/d2],., > 0.
Thus, in (43.30) and succeeding equations, the basal shear stress
T,,(b) helps resist the gravitational driving term pgh sin 6.

Simplification of (43.30) is possible if the bed surface remains
parallel to the x-y plane during erosion or sedimentation, such
that db/dx = 0 and 9b/dy = 0. Then (43.30) reduces to

+1,,(b).

A(Tuh) ATk @)
ox '

m
J'sz dz = Fghsin® -
b ay

Substitution of (43.31) in (43.28) enables the x-momentum equa-
tion to be written as

_| ohv,) = ohv2)  d(hv,v,)
p[ o | ox | oy

AT H) 3(Th)
dx dy

+ ﬁvx (TI)A - ﬁvx (b)Br

+ Vxhdfﬁ
dt

= pghsin® — + 7T, (b)

(43.32)

and the y-component momentum equation has a form exactly
analogous to that of (43.32). The z-component momentum equa-
tion is also closely analogous, but it is useful to write it explicitly
because of its critical role in scaling and stress evaluation:

ot owvz) 30w3)]. . dp
p[ o dy +v,h2t

d(T;h) 0(T,.h)
ox dy

+ Tzz(b) + 6"2(“)‘4 - ﬁvz (b)B

= ~pghcosO -

(43.33)

43.4.2 Scaling and the Shallow-Flow
Approximation

Further simplification of the depth-integrated momentum-con-
servation equations relies on the identification of characteris-
tic scales for all variables they contain. Scaling, in turn, leads to
identification of small terms that can be neglected. As illustrated
in Figure 43.4, the characteristic length of a debris flow can be
defined as L, and the characteristic thickness can be defined as
H, so that the length scale for the x and y coordinates is L and the
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length scale for the z coordinate is H. Similarly, the scale for b, 11,
and & (all measured in the z direction) is H. Because debris-flow
motion is driven by gravitational potential, the scale for the veloc-
ity components in the x and y directions is (gL)"2, and the scale
for the z-direction velocity component is (gH)"2. A z-direction
velocity scale B(gH)"2, which is adjusted by the arbitrary factor B,
applies to the erosion and sedimentation rates A and B, because
the magnitudes of these quantities are poorly constrained. Values
B < 1 seem probable in most circumstances, however. The time-
scale for debris-flow motion (L/g)"? is the downslope length scale
L divided by the downslope velocity scale (gL)!/2. The scale for p is
an equilibrium value, such as the initial static value, §,. Finally, the
scale for all stress components (T, T, Top> Ty T T, iS the equilib-
rium lithostatic stress, pgH. The use of these scales enables defini-
tion of the following dimensionless variables, denoted by asterisks:

x*=x/L y*=y/L z*=z/H t*=t/(L/g)"
vi=v /(L' vi=v,[(Lg)? vi=v./(Hg)"*
h*=h/H p*=p/p,
W=n/H b*=b/H A*=A/B(Hg)"® B*=BIB(Hg)"

(T Ty T T The Th) = (Teos Ty Tazs Ty Tees T )/ PogH
(43.34)

Substitution of (43.34) into (43.32) and (43.33) results in scaled
forms of the equations

—_ a(h*vx*) a(h*V,*z) a(hvx*vy*) —_ ¥ dﬁ*
* *h*____
P [ ot* * ox* * ay* T ar
= 5*h*sinf—¢ otsh™) | o(T;;h*)
ox* ay*
+15 @)+ PP VAT - v (BDB*]  (43.35)
and
g5 avy) |, o vrvy) | oV} 7))
or* ox* ay*
., dp*
+ 1/2 z*h* bl
| Y e
=-p*h* cos@—¢ o(Tz ) + o)
ox* ay*
+2 (0)+Bp* [vi (A - v 0)B*], (43.36)
where
e=H/L (43.37)
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is a fundamental length-scale ratio. The condition ¢ <« 1 com-
monly applies in debris flows, which generally have thicknesses
much smaller than their lengths and widths. Neglect of all terms
containing € or €2 in (43.35) and (43.36) therefore constitutes
a rigorous shallow-flow approximation. The factor £ does not
appear in the mass-conservation Equation 43.23 when it is scaled
using (43.34), implying that no terms in (43.23) can be neglected.

43.4.3 Stress Estimation

Several physical implications of the shallow-flow approximation
are noteworthy. Most significantly, if B < 1 and the erosion and
sedimentation terms involving A* and B* are neglected, the con-
dition € « 1 reduces (43.36) to a static balance between the basal
normal stress and the slope-normal component of the debris
weight,

1% (b*) =p*h*cosO (or, dimensionally, T, (b) = pghcos®).
(43.38)

This approximation is employed in most shallow-flow theo-
ries, and as shown in the following, it can be used as a basis for
estimating the stress components in (43.35). If B # 0, however,
(43.38) is modified by the flux of z-direction momentum due to
debris entering or leaving the flow. If, for example, basal sedi-
mentation occurs at a rate B* > 0, accompanied by a downward
basal velocity v} (b*)<0, the term Bp* B*v} (b*) reduces the
basal normal stress 1}, (b*).

Estimation of the stress components in (43.32) or (43.35)
hinges on the validity of (43.38) or some other approximation of
the z-momentum balance, and on the use of a constitutive model
such as the Coulomb equation (43.8). Substitution of (43.38) in
(43.8), and inclusion of the viscous stresses specified in (43.7),
enables the basal shear stress in (43.32) to be estimated as

T,.(b) = ~[pghcos® — p,.s]tan§(S) — 25;1,(—%—) ,  (43.39)

where
pgh cos 0 (=0,,,) is the total basal normal stress
Dheq is the basal pore-fluid pressure
71 is the depth-averaged porosity
-2nu(v,/h) is the pore-fluid stress associated with viscous
shearing at an estimated depth-averaged rate 2v,/h

Importantly, Gy, Py h, and ¥, are readily measured quantities,
as illustrated in Figure 43.3.

Although the lateral stress-gradient terms 9(%,h)/dx and
0(T,,h)/dy in (43.32) are typically small, as indicated by the
factor ¢ that precedes them in (43.35), these terms are gener-
ally included in depth-averaged models because their neglect
would leave only rigid-body forcing effects on the right-hand
side of (43.32). The terms can be approximated by inferring that

Handbook of Environmental Fluid Dynamics, Volume One

Tz = T,(b)/2and p = p,,,/2, and postulating that T, = X7, + §
and T, = X,T,, + AW(3V,/9y), where x, and K, are proportion-
ality coefficients (of order 1) that describe the magnitude of
lateral stress transfer by solid grains, and p and 77(%,/9y)
are depth-averaged fluid stresses due to pressure and viscous
shearing, respectively (Iverson and Denlinger 2001). The use of
these expressions in conjunction with (43.38) yields

ohTs) _1 9 x[pgh’ cos8 - thzd]"' . a(hpw) (43.40)
ox  20x
AT, 19 BZVX oh ov,
By = 5 —K,[pgh’ cos6— hpml+nu[ %’ +$ a;]
(43.41)

Note that (43.40) reduces to the analogous expression used in
conventional shallow-water theory, d(h7,,)/0x =pgh cos 6(dh/dx),
if p is constant and either ¥, = 1 (implying hydrostatic inter-
granular stress), or p,,,=pghcos® (implying complete mixture
liquefaction).

Equations 43.39 through 43.41 and analogous y-component
equations provide mathematical closure of the depth-averaged
conservation laws describing evolution of 4, v, and v, but only if
equations governing simultaneous evolution of p,,,, 71, and p are
also specified—and only if erosion and sedimentation are negligi-
ble (B — 0). Analyses of cases with [ # 0 are in their earliest stages
and are not presented here, but derivations of the depth-integrated
evolution equations for p,,,, 77, and p are relatively straightforward.

43.4.4 Depth-Integrated Pore-Pressure
Evolution

Depth integration of the pore-pressure evolution equation (43.17)
relies on some simplifying approximations to obtain an equa-
tion that contains p,,, rather than p,. Preliminary steps involve
recasting (43.17) in terms of the total pore-fluid pressure, p=p, +
p;g(h — z) cos O, and invoking shallow-flow scaling that applies
if £ « 1. This scaling indicates that d?p/d2? is much greater than
9’p/dx? and 9%p/dy* because 0*/0z? scales with 1/H?, whereas
d%/0x* and 92/dy? scale with 1/L2. Consequent neglect of 8*p/ox?
and 9%p/dy? reduces (43.17) to

k o _do 1y
opdz dt o

dp _
dt

(43.42)

Another step involves the use of the approximations v, = (z/h)
dh/dt, v, = v, and v, = ¥, to recast the total time derivatives in
(43.42) as d/dt = d/dt + (z/h)(dh/dt)alaz Then (43.42) can be
rewritten as

k ap_ do zdha(c dc~p) W
auaz dat hdt oz o

a_

t (43.43)
dt
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Depth integration of (43.43) is accomplished term-by-term using
Leibniz rule and applying the stress-free surface boundary con-
ditions p(n) = o(n) =0, yielding

d@h _L[B_P

0
0 0 E)ZF +psgcos ]

LI R = e SOY.
dt +© )_ Y S 344

where overbars denote depth-averaged variablesand ,/v, +v}? /2h
is used to approximate the depth-averaged shear rate, (1/ h).[ ydz.

The term p,g cos 6 arises in (43.44) from depth-integration of the
pore-pressure diffusion term in (43.43) and application of a zero-
flux basal boundary condition that requires the pore-pressure
gradient at the bed to remain hydrostatic: [dp/dz],, = —p,g cos 6.
The term (6 — p)dh/dt arises from depth-integrating the term that
includes o(c — p)/0z in (43.43) by parts. This term cancels some
other terms and thereby reduces (43.44) to

‘_1—1_7 k |dp dc . 2 ¥
_ |} L + 0= —— . T _— 43.45
it ok [ a2l.., prg cos ] = TN Yy o (4349)
where

5== + T;’ Ty +62Kl) pghcosO (43.46)

and x, is the lateral stress coefficient introduced in (43.40).
Equation 43.45 retains two pore-pressure variables, p and p,
however, rather than the single desired variable, p,.,.

To express (43.45) in terms of p,,,;, approximations of p and
[dp/dz],.m are necessary. First-order approximations assume
that p varies linearly with depth, ranging from p =p,,,atz=bto
p =0atz=n. This linear distribution of p implies that

~Pret . (43.47)

Higher-order (in z/h) approximations allow for nonlinearity
of the pore-pressure profile, particularly near the bed (Savage
and Iverson 2003), but such details complicate the results with-
out revealing effects of fundamental importance, and they are
omitted here for the sake of brevity. Substitution of (43.46) and
(43.47) into (43.45) then yields

Pres _ (1+2x,)g cosO | d(ph)
= auhz [ Poea — Psghcos 6] + 13 [ =
T ;l‘-"&. (43.48)
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The derivative E(Eh)/zt can be eliminated from the right-hand
side of (43.48) by using the mass-conservation equation (43.23)
to find that d(Eh)/dt = —p[h(dV,/dx + 9%,/0y) - A + B]. Making
this substitution in (43.48) yields the final form of the evolution
equation for p,,;

AP
%l;d au_hz[Pb'd pfghcose]
—pghcosel”"‘[%‘; +%Vy—’—%] i+ L
(43.49)

43.4.5 Depth-Integrated Porosity and Bulk
Density Evolution

The derivation of the depth-integrated evolution equation for n
utilizes the scaling inference 0%p/dz? > 0%p/dx? and d%p/dz* >
9p/dy? described above, and also utilizes the assumption p = p,
which implies that n = 7i. Under these conditions, depth integra-
tion of Equation 43.15 yields
h dn

1-7n dt

k dp. [

. 43.50
u aZ z=b ( )

Like the preceding equations involving d/dt, this equation
assumes that v, = v, and v, = v,. The linear pore-pressure dis-
tribution defined in conjunction with (43.47) indicates that
0p./9z = —(Py.q — Pygh cos 6)/h, and use of this expression in
(43.50) yields the evolution equation for #:

(1 n) (Pbed Pfgh Cos 9) (4351)

dn

dt
This result also provides an evolution equation for p if the debris
remains saturated with pore fluid, because (43.3) implies that

p= p(1-1)+pg. (43.52)

The similarity of terms on the right-hand side of (43.51) and
some of those on the right-hand side of (43.49) is significant.

Indeed, the unforced version of (43.49) can be substituted into
(43.51) to reduce it to

_a pred

== (43.53)
2 dt

....

-
0N,

ST

This equation implies that, in the absence of external forcing,
7 declines logarithmically as p,,, declines linearly. Such nonlin-
ear behavior is typical of quasi-static, water-saturated granular
debris as it consolidates during dissipation of pore-fluid pressure
(Iverson 1997).
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43.4.6 Model Summary

The system of depth-integrated equations governing simultane-
ous evolution of h, hv,, p,.» 77, and p is (43.23), (43.32), (43.49),
(43.51), and (43.52). In addition, (43.39) through (43.41) specify
the stress terms that appear in (43.32). A system of equations
exactly analogous to (43.32) and (43.39) through (43.41), but
with x and y transposed, describes evolution of h,. All stress
calculations are predicated on (43.38), which approximates the
z-momentum equation and constitutes the central postulate of
the depth-integrated model. ’

43.5 Solution Techniques and Model
Predictions

Numerical solution of the full set of model equations described
above is the object of ongoing research. Two broad classes of
techniques have-proven useful for solving similar systems of
conservation equations, such as the shallow-water equations
and Savage-Hutter granular avalanche equations. One type of
technique employs Lagrangian numerical methods in which
the computational mesh translates with the local flow velocity.
This approach has the advantage of replacing partial deriva-
tives of the nonlinear terms on the left-hand side of (43.28)
with total time derivatives such as that on the left-hand side
of (43.29). Furthermore, these methods are relatively easy
to implement if the flow path is simple (such as a uniformly
inclined plane). Classical Lagrangian techniques have limited
potential for computing motion across complex, 3D terrain,
however, because deformation of the computational mesh can
become exceedingly complicated. Meshless Lagrangian tech-
niques such as those used in smooth-particle hydrodynam-
ics may have promise, but their structure makes it difficult to
determine if conservation equations are rigorously satisfied
(McDougall and Hungr 2004).

A more rigorous approach utilizes a fixed, Eulerian com-
putational mesh, but also requires the use of shock-capturing
numerical methods to accurately account for the potentially
severe effects of nonlinearities, which can give rise to discon-
tinuous solutions. (Conventional finite-difference and finite-
element methods tend to smear out these effects, leading to
inaccurate solutions.) Finite-volume methods enable shock
capturing by reframing the numerical problem as a series of
elementary Riemann problems that describe fluxes of conserved
variables between adjacent computational cells (e.g., Denlinger
and Iverson 2001, 2004; Pitman and Le 2005). Such methods
also lend themselves to adaptive mesh refinement (AMR), a
sophisticated technique that can greatly accelerate computation
speeds by automatically implementing mesh refinement only
where high resolution is needed (George and LeVeque 2008).

Despite significant advances, application of computational
models to forecasting behavior of debris flows and rock ava-
lanches remains in its earliest stages, largely because most
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model predictions have not been subject to rigorous, controlled
tests. Instead, models have generally been calibrated to fit field
observations (mostly by tuning resistive stress terms), and
such models cannot be regarded as truly predictive. A basis for
more stringent model testing is provided by recently acquired
experimental data such as those summarized in Figure 43.3. The
availability of such data, along with increasingly sophisticated
numerical methods, makes prospects for better understanding
and modeling of debris flows appear promising.
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