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Abstract. Multivariate regression models are often applied to hydrologic regions to
estimate peak flows at ungauged basins in an area. Such regression models can be
derived using a region of influence (RoI), which is a selected set of basins that are
hydrologically similar to the ungauged basin for which peak flow estimates are
required. These regions can be poorly defined resulting in unstable parameter
estimates because observations at a few basins may disproportionately influence the
parameters. Conventional treatment is to drop the basin, if the problem is even
recognized. We propose a leverage-guided RoI regression approach that redefines
the region of influence. This new procedure uses two newly defined RoI leverage and
influence metrics. The proposed approach is applied to 996 streamflow gauging
stations in the southeast United States to estimate the 50-year peak flow. The new
leverage-guided RoI regression approach resulted in lower root-mean-square
estimation errors, produced fewer observations with large leverage, and eliminated all
influential observations.

1. Introduction
Hydrologists, engineers, state and local agencies, and the general public often

require information on peak streamflow at locations where there are no streamflow-
gauging stations (henceforth referred to as gauges). For example, these estimates are
often used for flood insurance mapping to assess risk. Peak-streamflow
characteristics at such ungauged basins are often inferred from flood flow records at
similar, nearby gauges. A method to calculate peak-streamflow characteristics for
ungauged basins is to use regional regression models that relate observable basin
characteristics, such as drainage area, to streamflow characteristics, such as the 50-
year-return peak streamflow.

Regional regression models are applied to regions that are often defined by
physiographic boundaries or from residuals from an overall regression (Wandle,
1977). Regions can also be defined by a collection of watersheds whose basin
characteristics are similar, by some overall measure, to those at the ungauged site of
interest. This “region-of-influence” (RoI) approach defines a unique region for each
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ungauged basin (Burn, 1990). The RoI can also be defined as a collection of the
geographically closest basins.

For the different approaches to define regions, such as predictor-variable
proximity and physiographic boundaries, there can be basins in these regions whose
characteristics have an unusually large impact (“influence”) on the estimation of the
regression model parameters. Conventional treatment of these types of basins is to
either to ignore the problems with the analysis or to remove the troublesome basins
from the analysis, so that they do not unduly affect the parameter estimates of the
regional regression models. With the RoI regression approach, influential
observations have generally been ignored and left in the analysis (e.g., Eng et al.,
2005).

Unusually influential observations can occur due to construction of a poorly
defined region, perhaps containing too few basins to support a statistical analysis or if
the region is in some sense not representative. An alternative to the practice of
removing or ignoring influential observations is to redefine the region.

The objectives for this study are to (1) develop new and specialized RoI
leverage and influence metrics for GLS regression, (2) to use these metrics in a
proposed leverage-guided RoI regression approach to redefine the region of
application, and (3) to evaluate the proposed approach when used to estimate the 50-

year peak flow characteristic, 50Q̂ . Our study employs 996 continuous gauging

stations in the southeast United States.

2. Data and Study Area
For this analysis 996 streamflow gauges were selected because they are

contained in a single physiographic region, the Gulf-Atlantic Rolling Plains
(Hammond, 1964) (Figure 1). The record lengths at these gauges range from 10 to
103 years. Drainage areas range from 0.13 to 2,564 km2, with a median of 402 km2.

Eight basin characteristics are available for all gauged basins: drainage area,
Ad, main channel slope, S, mean basin elevation, E, forested area fraction, F, main-
channel stream length, L, fractional area of basin occupied by reservoirs and lakes,
SWB, mean annual precipitation, P, and mean minimum January temperature, JT.
Using the entire data set, the most statistically significant basin characteristics are Ad,
S, and P determined by a best subsets selection made on the basis of the Mallows Cp

statistic (Mallows, 1995; Eng et al., 2005).

Because 50Q̂ is to be estimated by regression against Ad, S, and P the analysis

requires estimates of these variables for all the basins. Estimates of 50Q̂ are derived

from peak streamflow data obtained from the USGS National Water Information
System (NWISWeb, http://nwis.waterdata.usgs.gov/usa/nwis/), which also provides

Ad values. The 50Q̂ values are estimated by the standard methods described in

Bulletin 17B of the Hydrology Subcommittee of the Interagency Advisory
Committee on Water Data (1982). In this preliminary study, we choose to examine a
single return period, the 50-year return period, because it lies within the range
commonly used in hydrologic analyses.

Isohyetal maps (U.S. Department of Commerce, 1976-1978) are used to
obtain P. The values of S are calculated as the average channel slope (elevation
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difference divided by distance along the main channel) between points located 10 and
85 percent of the distance from the gaging station to the basin divide.

3. Regional Regression Models of Peak-Flow Characteristics
3.1. Generalized Least Squares (GLS) Parameter Fit

We consider log-linear regression models of the form,
( ) ( ) ( ) ( ) δββββ ++++= PSAQ pSdAd

loglogloglog 050 (1)

where Q50 is the 50-year peak flow, β0, dAβ , βS, and βP are constants, and δ is model

error, with mean zero and variance 2
δσ .

The historical estimate of ( )50log Q at gauged basins, ( )50
ˆlog Q , is derived

from a sample of observed flows at each gauged basin. The associated temporal
sampling error, η, is defined as

( ) ( )5050 logˆlog QQ −=η . (2)

Time-sampling errors from basins close together will generally be correlated, because
the finite sample of observed flows at one site temporally overlaps the sample from
another, and temporal variations of flows are spatially correlated. This means that
values of η for different sites are cross-correlated. Substituting (2) into (1) yields

( ) ( ) ( ) ( ) εββββ ++++= PSAQ pSdAd
logloglogˆlog 050 , (3)

where ε=δ+η is the sum of the model and the time sampling errors.
A GLS parameter estimation technique is used to perform the regression in

the presence of cross-correlation of η, following the assumption that model error ε is
not spatially correlated (Stedinger and Tasker, 1985). Estimates of β0, dAβ , βS, and

βP are 0β̂ ,
dAβ̂ , Sβ̂ , and Pβ̂ , respectively. The GLS estimator β̂ of the parameter

vector is

( ) YΛXXΛXβ ˆˆˆˆ 111 −−−= TTT , (4)
where X is a (J x 4) matrix of log(Ad), log(S), and log(P) values at J sites in the
region of influence, augmented by a column of ones, J is the number of gauged

basins in the region of influence, Ŷ is a (J x 1) vector of ( )50
ˆlog Q values, and Λ̂ is a

matrix containing the estimates of the covariance of ε across basins in the selected
region of influence. The main diagonal elements of Λ̂ thus include a part associated
with δ, and all elements include the effect of η. Following Tasker and Stedinger

(1989), Λ̂ is given as
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(5)
where the subscripts p and q are indices of gauged basins in the region of influence,
Kp and Kq are the Log-Pearson Type III distribution standard deviate for basins p and
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q, pĝ and qĝ are the skewness coefficients for basins p and q determined by

weighted least squares regression on basin attributes as described by Tasker and
Stedinger (1986), mp and mq are basin specific record lengths, mpq is the concurrent
record length for basins p and q, pŝ and qŝ are estimates of the standard deviation of

annual peaks estimated by methods by Tasker and Stedinger (1989), and rpq is the
sample cross-correlation of annual peaks at basins p and q estimated by methods in
Tasker and Stedinger (1989) and coefficients from Pope et al. (2001). Equation (5)
neglects the error in weighted skewness estimators, which is reasonable if the
regional skewness estimator is relative precise (Griffis and Stedinger, 2006).

3.2. Region of Influence
The regression model parameter estimates are calculated by GLS regression

using data for the gauged basins within a RoI for the ungauged (‘estimation’) basin.
A RoI is formed in two different ways: predictor-variable (PRoI) and geographic
space (GRoI). A typical RoI consists of n gauged basins closest in either space. The
value of n is determined by methods described in section 3.3. The predictor-variable
space proximity of an ungauged basin to a gauged basin, j, is defined as

( ) ( )
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where ( )dAlogσ , ( )Slogσ , and ( )Plogσ are the sample standard deviation of log(Ad),

log(S), and log(P), respectively (computed from data from the entire study region).
The geographic space proximity is simply measured by the geographic distance
between the ungauged basin and each gauged basin.

3.3. Performance Metrics

The root-mean-square error (RMSE) of estimation of 50Q̂ is used to evaluate

the precision of the RoI regression procedures. In percentage terms (Aitchison and
Brown, 1957; modified for use of common logarithms),

( )[ ] 2
1

22
1100 10ln







 −= obseRMSE ε , (7)

where 2
obsε is the observed mean squared error,

( ) ( )[ ]
2

1
5050

2 ˆlogˆlog
1
∑
=

−=
N

i
iRiobs QQ

N
ε , (8)

where 50Q̂ is the estimate of 50Q computed from the observed annual series of peak

flows, 50
ˆ

RQ is the GLS-regressed estimate of 50Q̂ , and N is the total number of

gauged basins for which predictions are made as if they were ungauged.
The location in predictor-variable space of the basin attributes of a gauged

basin relative to those from the other basins is important. If the attributes of one basin
are relatively far away from the centroid of the other basins in a region, then this
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unusual basin may significantly change or influence the parameter values obtained in
a RoI regression. The leverage metric measures how far away observations are from
the centroid of the characteristics of other basins. For conventional multiple linear
regression using GLS, Tasker and Stedinger (1989) defined leverage for the ith site as

( )
ii

TT
iih 



= −−− 111 ΛXXΛXX . (9)

We propose a more suitable form of (9) for RoI regression models using GLS, which
is

( ) 



= −−− 111

00 ΛXXΛXxh TTT , (10)

where x0 is a vector of basin attributes at the ungauged basin, hT
0 is a vector

containing the leverage values for each site for the RoI regression model for site 0. A
basin potentially has large influence if its leverage exceeds the criteria given by

∑
=

=
RoIN

j
jo

h h
J

C
h

1
,limit , (11)

where Ch is a constant. For conventional multiple linear regression, Ch is equal to 2 in
(11) and reflects the observation that values twice the average can be considered as
unusually large. Multipliers of 2, 4 and 8 are tested in the numerator of (11) to
determine the number of RoI regression models that have at least one large leverage
point (Table 1).

For leverage-guided RoI regression, a Ch value equal to 2 was found to be too
small resulting in the addition of too many basins to a region, and thus roughly 90%
and 70% of all GRoI and PRoI regression models, respectively, are identified as
having at least one large leverage point. Conversely, when Ch is equal to 8, roughly
15% and 2.5% of regression models for GRoI and PRoI, respectively, are identified
as large leverage. A Ch value of 4 is chosen for the remainder of this study since it
results in a moderate amount (20% and 45% for PRoI and GRoI, respectively) of the
regressions as having at least one large leverage point.

The leverage metric only indicates if an observation is unusual from the others
in predictor-variable space. Such unusual observations may or may not have any
significant impact on the derived parameters in (3). The influence metric, such as
Cook’s D (Cook, 1977), indicates if an unusual observation had large influence over
the parameter values. A Cook’s D for multiple linear regression using GLS is given
by (Tasker and Stedinger, 1989)

( )2
2
,ˆ

jjjj

jjjr
j
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K
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ε
, (12)

where p is the dimension of β, Λjj is the jth main diagonal of the Λ cross-correlation
matrix, Kjj is the jth main diagonal of X(XTΛ-1X)-1XT, and jr,ε̂ is the jth residual. For

RoI, we propose the leverage statistic

( ) 











−Λ












=

2

2
,0

0
ˆ

jjjj

jjjr

jj

j
j

Kp

K

H

h
D

ε
, (13)
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where h0j is the jth component of (10), and Hjj is the jth main diagonal of H=X(XTΛ-

1X)-1XT Λ-1. Identification of an observation that has caused large influence is if it
exceeds the limit given by









=

RoI

D
N

C
Dlimit . (14)

A CD value of 4 is used for conventional multiple linear regression. Similar to the
hlimit, the value of 4 may be inappropriate for RoI regression, so values of 4, 8, and 16
in the numerator of (14) are examined.

In a typical application of RoI regression, an optimal value of n would be
determined by performing the RoI analyses for various fixed values of n (e.g., Tasker
et al., 1996). The optimal n value associated with the minimum RMSE value. In a
previous study by Eng et al. (2005), the range of optimal n values for GRoI and PRoI
were 10 to 20. In this study, we examined n =10, 15, and 20. As discussed in section
3.4, the leverage-guided region-of-influence approach in theory is not sensitive to the
choice of n.

Table 1. Percent of RoI regression models that have at least one large leverage point.
Percentage of RoI regressions

Approach n
Ch=2 & CD=4 Ch=4 & CD=8 Ch=8 & CD=16

10 90.7 47.5 13.6
15 90.1 42.3 15.7GRoI
20 88.0 43.2 15.3
10 66.6 17.3 2.5
15 72.1 18.3 2.5PRoI
20 71.4 20.5 2.5

3.4. Leverage-Guided Region-of-Influence Regression Approach
As noted in the Introduction, potentially influential observations have often

been ignored in RoI regression studies. Perhaps because the idea of RoI-regression is
to identify regions of similar basins, one hopes that none will be unusual. However,
the exercise of trying to select only basins that are similar creates an opportunity of a
few basins that would not have been unusual if all basins were included in the
analysis. As an alternative to ignoring or removing influential observations, here they
are retained and new basins are strategically introduced to revise the region of
influence so that it is better balanced.

For the leverage-guided region-of-influence approach, the first step is to
conduct a conventional RoI analysis with a selected value of n, and if at least one
large leverage basin using (10) a new basin is added. To add new observations to the
RoI, the predictor-variable space is used. We focus on the two most significant basin
attribute, Ad and S, and determine their maximum and minimum values. Only two
predictor-variables are chosen to allow easy interpretation of the predictor-variable
space by a two-dimensional graph. Basins whose Ad and S values fall within these
ranges are added to the RoI one at a time, and the regression parameters and leverage
values are recomputed. On one hand, if the added observation increases the
magnitude of the leverage value(s) of any of the original potentially influential
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observation(s), it is removed from the RoI and the next candidate observation is
added. On the other hand, if the added site decreases the magnitude of the leverage
values then the new observation is retained, and another new observation is added.
This process continues until any one of the three conditions is satisfied: (1) the
number of new observations retained equals the original number of observations in
the RoI, (2) all leverage values in the redefined RoI are less than the limit given by
(11), or (3) the original variance of the leverage values in the RoI is reduced by nine
tenths by the addition of the new ones.

RoI regressions were developed for all 996 basins in the database. The entire
process for developing a RoI was repeated with all of the RoI regression models that
have large leverage observations. We will focus on the comparison of leverage-
guided RoI regression models that satisfy the second and third conditions mentioned
previously to conventional RoI regression that use regions that are not redefined.
Leverage-guided RoI regression models satisfying the first condition are incomplete,
so they are not used for comparison. A value of this new procedure is that it identifies
situations where RoI regression may be unstable, and there does not appear to be a
simple solution.

Suitability of using a regression model to estimate streamflow characteristics
at an ungaged location can be assessed by analysis of the two-dimensional graphs of
the two most significant predictor variables. The collection of basins do not support a
regression analysis if the basin attributes of the ungauged basin are far away from
those of gauged basins in predictor-variable space.

4. Results
Figure 1 shows the locations of the 996 gauges used in the study. Figure 2

illustrates the basins selected by the leverage-guided GRoI and PRoI approaches.
Both approaches start with the 10 closest gauged basins, as each defines close, to
form their initial RoI. For the leverage-guided GRoI approach, the addition of two
new observations reduces all the leverage values to be less than the hlimit. In addition,
the variance of the leverage values reduces from 0.91 to 0.01, and the estimated
RMSE computed using (7) decreases from 226% to 59%. For the leverage-guided
PRoI approach, the addition of three observations did not reduce all leverage values
to be less than hlimit. The variance of the leverage values reduces from 0.12 to 0.08,
and the estimated RMSE from 48% to 22%.

The performances over the leverage-guided PRoI and GRoI regression
approaches are summarized in Table 2. For GRoI, the proposed approach
successfully rebalanced anywhere from 14 to 27% of the models that had at least one
large leverage observation. Unlike GRoI, PRoI rebalanced 35 to 38% of the
regression models. The conventional RMSE values for the GRoI regressions ranged
from 63 to 120%. With leverage-guided GRoI, the RMSE values ranged from 50 to
53%. This reduction is consistent across different starting n values supporting the
assumption that the leverage-guided GRoI regression is relatively insensitive to these
values. For conventional PRoI, the RMSE values range from 75 to 187%, and the
leverage-guided PRoI approach reduced this range from 72 to 140%. The leverage-
guided PRoI is not as effective as the GRoI one for redefining regions that have at
least one large leverage observation. This result is not a surprise since the range of
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predictor-variable values is significantly smaller from conventional PRoI approach
than those from a GRoI analysis.

The numbers of large leverage and influence observations from conventional
and leverage-guided RoI regression approaches are reported in Table 2. The leverage-
guided GRoI regression approach roughly reduced the total number of large leverage
observations on average by 67%. The average reduction by the leverage-guided PRoI
approach is 5%. The leverage-guided RoI approach is much less effective for
reducing large leverage observations for a RoI that is formed of basin closest in
predictor-variable space. Both approaches, however, reduced the total number of
large influence observations to zero.

Figure 3 illustrates the analysis of the two-dimensional graph of the two most
significant predictor variables at station 02077210, Kilgore Tributary near Leasburg,
North Carolina. The 20 geographically closest basins were initially chosen to form
the RoI. The Ad and S values of the ungauged basin by themselves may fall within the
range of values of the gauged basins, but their combination is unlike the others in the
RoI. From further examination of the other 995 basins, there are no basins that are
comparable in size and have a small slope. In this case and 6 others, applications of
regression models to estimate peak characteristics were not pursued.

Table 2. Summary of performance of conventional GRoI and PRoI regression with
leverage-guided RoI results with Ch equal to 4 and CD equal to 8.

Conventional RoI Leverage-Guided RoI
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10 126 120.3 263 18 50.5 96 0
15 85 63.12 139 13 52.6 50 0GRoI
20 62 86.7 78 8 52.2 23 0
10 60 186.7 147 12 140.5 139 0
15 66 82.8 177 8 77.2 169 0PRoI
20 78 74.8 246 5 71.5 236 0

5. Discussion
The conventional strategy to address potentially influential observations in

RoI regression models is to ignore them and leave them in the analysis. We propose
an approach that retains potentially influential observations and rebalances the
regression model by redefining the region of application, thus, maximizing the data
that can be used for an analysis.

In this study, the parameters of each RoI regression model are determined by
the local basin attributes in the RoI. These locally determined parameters could vary
greatly in value and sign. To address these problems, a set of parameters for the basin
attributes determined by the global data set could be used instead of the local ones.
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The global parameter values could be used in every RoI regression, while the
constant could be determined locally. This approach would solve the problem of
nonphysical signs occurring and potentially reduce the root-mean-square estimation
errors.

Although this study focused on RoI regression approaches, the procedures
outlined can be readily applied to other types of regression approaches estimating
other statistics in addition to flow characteristics.
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Figure 1. Southeastern United States. Circles represent 996 gauged basins.

Figure 2. Predictor-variable space of gauged basins forming the RoI. (a) Leverage-
guided GRoI approach (n=10, U.S. Geological Survey Station No. 02226700,
Whitehead Creek near Denton, GA), and (b) leverage-guided PRoI approach (n=10,
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U.S. Geological Survey Station No. 08031100, Bethlehem Branch near Van, TX).
The black triangles represent the basin attributes at the ungauged basin, the black
circles represent the basin attributes of the gauged basins in the unmodified RoI, the
black squares represent the gauged basins added to the RoI, the red circles represent
observations that have large leverage values in the unmodified RoI, and the red
squares represent the observations that have large leverage values in the redefined
RoI. Axis scales are very different in (a) and (b) reflecting points selected.

Figure 3. Predictor-variable space of gauged basins forming the GRoI (n=20, U.S.
Geological Survey Station No. 02077210, Kilgore Tributary near Leasburg, NC). The
black triangle represent the basin attributes at the ungauged basin, the black circles
represent the basin attributes of the gauged basins in the unmodified RoI, and the red
circles represent observations that have large leverage values in the unmodified RoI.
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