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ABSTRACT

An approach is presented in this study to aid water-resource managers in characterizing streamflow alteration at ungauged rivers. Such approaches
can be used to take advantage of the substantial amounts of biological data collected at ungauged rivers to evaluate the potential ecological con-
sequences of altered streamflows. National-scale random forest statistical models are developed to predict the likelihood that ungauged rivers have
altered streamflows (relative to expected natural condition) for five hydrologic metrics (HMs) representing different aspects of the streamflow
regime. The models use human disturbance variables, such as number of dams and road density, to predict the likelihood of streamflow alteration.
For each HM, separate models are derived to predict the likelihood that the observed metric is greater than (‘inflated’) or less than (‘diminished’)
natural conditions. The utility of these models is demonstrated by applying them to all river segments in the South Platte River in Colorado, USA,
and for all 10-digit hydrologic units in the conterminous United States. In general, the models successfully predicted the likelihood of alteration to
the five HMs at the national scale as well as in the South Platte River basin. However, the models predicting the likelihood of diminished HMs
consistently outperformed models predicting inflated HMs, possibly because of fewer sites across the conterminous United States where HMs
are inflated. The results of these analyses suggest that the primary predictors of altered streamflow regimes across the Nation are (i) the residence
time of annual runoff held in storage in reservoirs, (ii) the degree of urbanization measured by road density and (iii) the extent of agricultural land
cover in the river basin. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
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INTRODUCTION fraction of all river reaches in a given geographic area. To aid
managers in understanding the pervasiveness of alterations to
the flow regime beyond the limited networks, methods are
needed to extend information from gauged to ungauged rivers.
Because substantial amounts of biological data are already
collected at ungauged rivers (e.g. USEPA, 2007), the ability
to estimate flow information at ungauged rivers would allow
these biological data to be used in evaluating the potential
ecological consequences of altered flows (Poff er al., 2010).
There are different approaches of varying complexity for
deriving flow information for ungauged river segments.
Watershed models (e.g. Kennen et al., 2008; Poff et al.,
2010) are used to construct synthetic daily-time series of
flow values, including both altered flows and expected
natural flows. These synthetic time series can then be
summarized by an array of statistics, or hydrologic metrics
(HMs) (Poff et al., 2010), that describe various characteris-
tics of the flow regime. A major disadvantage of using
watershed models to generate synthetic time series are that

State and local resource managers must often balance the
water needs of humans with those required to maintain eco-
system resources such as fisheries and recreation. One of the
key controls on riverine ecosystem integrity is the streamflow
regime (e.g. Power et al., 1995; Walker et al., 1995; Poff et al.,
1997). It is well documented that alterations to the natural
streamflow regime are associated with ecosystem degradation
(Bunn and Arthington, 2002; Konrad et al., 2008; Carlisle
et al., 2010b; Poff and Zimmerman, 2010). Thus, sound man-
agement decisions about water allocations require an under-
standing of how streamflow (henceforth referred to as flow)
alteration influences river biological communities (e.g. Poff
et al., 2010). Flow monitoring networks, such as those oper-
ated and maintained by the US Geological Survey (USGS),
aid these management decisions but are limited to a small
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Statistical approaches also are commonly used to
estimate flow alteration. Unlike watershed models, statis-
tical approaches, such as spatial interpolation or multiple-
linear regression, are generally used to estimate HMs
(natural and altered) directly rather than to synthesize
daily-flow records (e.g. Thomas and Benson, 1970; Yuan,
2004; Eng and Milly, 2007; Carlisle et al., 2010a; Eng
et al., 2011). Statistical approaches generally are simpler
than watershed modelling, particularly if the statistical
models are based on readily available data sources such as
geospatial features of the catchment. Statistical models
can be used to predict both expected natural and altered
HMs if the natural features and human disturbance
variables, such as climate, land use and water management
features, can sufficiently describe the spatial variation and
seasonal patterns in these metrics.

There are two general approaches in computing natural
and altered HMs. First, a model is developed that includes
both natural and human disturbance variables to predict
observed, or altered, conditions. Predictions of natural
HMs are then made by setting the human variables in these
models to ‘zero’. The use of statistical methods to estimate
altered HMs and then deriving natural HM values from
these models (or vice versa) is not novel (e.g. Sauer et al.,
1983; McCuen, 1998; Fitzhugh and Vogel, 2010; Suen,
2011). An alternative to the aforementioned approach is to
construct statistical models that estimate the deviation from nat-
ural conditions within a single model structure. Such an ap-
proach requires a consistent and objective method to describe
deviations in HMs from natural conditions across large regions.

Our objective is to develop a statistical modelling approach
that uses human disturbance of the watershed for a given river
segment to predict the likelihood that it is hydrologically
altered from its natural condition. We select five HMs that
represent various aspects of the perennial flow regime. Pre-
dictive models for measures of the deviation of each HM from
its natural condition are formed using human disturbance
variables at 4196 gauged rivers across the United States. From
these models, we are able to identify the important regional
human disturbance variables to the flow regime and their
general relation to the HMs. Two example applications of
the models are presented: (i) for all river reaches within a
single river basin (the South Platte River, Colorado) and
(ii) for all 15406 10-digit hydrologic units (HUC 10, USDA,
2010) in the conterminous United States.

STUDY AREA, HYDROLOGIC METRICS AND
HUMAN DISTURBANCE VARIABLES

The 4196 gauged rivers used in this study are located
throughout the conterminous United States (Figure 1).
These rivers represent a wide range of climatic conditions
and human disturbance, particularly with respect to hydro-
logic modification (Falcone et al., 2010). Gauged river
locations that have a daily-flow record of at least 10 years
in length during the period 1990-2009 are selected. The
drainage areas of the gauged rivers range from 0.80 to
49802 km” with a median of 718 km®.

We select five HMs to represent different aspects of
the flow regime: the annual (calendar year) 1-day maximum

Figure 1. Circles represent US Geological Survey gauges on the 4196 gauged rivers used in this study. This figure is available in colour online
at wileyonlinelibrary.com/journal/rra.
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daily flow (henceforth referred to as annual maximum),
skew of daily flows in May (henceforth referred to as May
skew) and average May, July and November flows. This
selection is subjective and based on a review of HMs used
in other studies of human disturbance on flows (e.g. Zhang
and Schilling, 2006), as well as our desire to maintain a
tractable yet illustrative analysis. One important criterion,
however, is that we only consider HMs for which natural
conditions can be accurately and precisely estimated.
The five chosen HMs are calculated from the observed
daily-flow values from the USGS National Water Informa-
tion System website (http://waterdata.usgs.gov/nwis) using
software that allows batch-mode retrieval and data format-
ting (GNWISQ version 1.0) (Granato, 2008).

Eighteen human disturbance variables are selected as
potential predictors of altered flow (Table 1); these explana-
tory variables are described by Falcone (2011) and are avail-
able at http://water.usgs.gov/GIS/metadata/usgswrd/ XML/
gagesll_Sept2011.xml. The disturbance variables include the
impacts of dams (reservoir storage and dam density), land-
use intensity (land cover, impervious surfaces, population
density, agricultural fertilizer application) and waste-water
discharge points as identified in the National Pollutant
Discharge Elimination System by the United States Environ-
mental Protection Agency (http://cfpub.epa.gov/npdes/). A
simple reservoir storage index (total reservoir storage, in
volume/year, divided by estimated annual runoff, in volume/
year) is used because detailed storage operations information
is not available for most of the gauged sites.

PREDICTION OF THE LIKELIHOOD OF
ALTERED FLOWS

The overall procedure of our modelling process is depicted in
Figure 2. In general, the modelling effort is tiered because
models for predicting flow alteration at ungauged rivers are
first developed at gauged rivers, which requires estimates of
the site-specific expectations of natural flows. Great care is
taken in this two-phased approach to rigorously evaluate
model performance at each step and minimize the effects of
compounding error throughout the modelling process. Spe-
cific details of each step are described in the succeeding text.

Quantifying altered flows at gauged rivers

For each of the five HMs, the deviation of observed from
expected natural conditions is quantified at each gauged
river by dividing the observed (from 1990 to 2009) HM
(Ouwm) value by its expected natural (Eyyy) value. The Eyy
value is estimated with statistical models (e.g. Carlisle
et al., 2010a) developed at 1035 gauged natural rivers.
These models use a large number of natural features such

Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

as climate and topography to make predictions of Eppy.
Independent validation of these random forest (RF) models
revealed that, for the five HMs in this study, Eyp\ estimates
are within 10% of observed values at gauged natural rivers,
which indicates relatively low prediction error and minimal
potential to increase the error in subsequent models.

Models for each Eyy are applied to 4196 gauged rivers
that spanned a wide range of human disturbance (Falcone
et al., 2010). The Oym/Eym values quantify the average
deviation from expected natural conditions at each gauged
river and are used to then classify each gauge site as
‘diminished” (Oym/Epm < that of 90% of gauged natural
rivers), ‘inflated’ (Oym/Epm >that of 90% of gauged
natural rivers) or ‘unaltered’ if Oynm/Eyy is any other value.
Although errors in the prediction of Epy are <10%, some
misclassification of gauged rivers is possible, especially for
sites with Oym/Eym values near the percentile (10% and
90%) cutoff values, which could add to error in the subse-
quent modelling. Independent validation of subsequent
classification models is therefore critical and is undertaken
as described in later sections.

Classification models for predicting likelihood of
altered flows

In a second tier of modelling, RF classification models are
formed to predict the diminished and inflated classes of flow
alteration at gauged rivers by using a set of human disturb-
ance variables (Table 1). The first step in building these
models is to group highly correlated human disturbance
variables. The predictions of RF classification models are
not affected by high correlations among the human disturb-
ance variables (Cutler et al., 2007), but high correlations do
affect the evaluation of the relative importance of disturb-
ance variables. Two groups of human disturbance variables
are highly correlated (Spearman rank correlation, Irl>0.9).
The first group is associated with urban development and
includes population density, road density, percentage of
impervious cover and percentage of basin that is urbanized.
The second group is associated with agricultural activities
and includes percentage of basin used for agriculture, nitro-
gen fertilizer application rates and phosphorous fertilizer
application rates. To minimize the effect of large correla-
tions on the relative importance of the human disturbance
variables, each model is formed using a set of 13 variables
from a pool of 18:1 from the urban group, 1 from the agricul-
ture group and 11 human disturbance variables that are not
correlated with either group. All 12 possible combinations
of sets of human disturbance variables (four urban variables
multiplied by three agricultural variables) are tested in this
study. The final set of human disturbance variables for each
HM is identified by the set of variables that had the largest
mean Gini index value across all RF (see Performance
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Table 1. List of 18 human disturbance variables from Falcone (2011)

Human disturbance
variable Units Abbreviation Description

CHANGE_PCT % CHP Per cent of land cover in watershed that changed
between early 1990s and early 2000s (regardless
of type of change), according to NLCDO1 ‘Change Product’.

PDEN_2000_BLOCK' persons/km’ PDN Population density in the watershed, persons per

sq km, from 2000 Census block data regridded to 100 m.
NDAMS_2006 no. of dams NDM Number of dams in watershed, from our

enhanced version of the 2006 National Inventory of Dams (NID).
DDENS_2006 no. of dams/100 km? DDS Dam density.
STOR_2006 megaliters/km> STO Dam storage in watershed

(1 megaliters = 1 000 000 litres = 1000 cubic metres).
MAJ_NDAMS_2006 no. of dams MDM Number of ‘major’ dams in watershed. Major

dams defined as being > 50 ft in height (15 m) or having

storage > 5000 acre feet (617 hectare meter, National Atlas definition).
MAIJ_DDENS_2006 no. of dams/100 km?* MDS Major dam density.
NPDES_MAJ_DENS no. of sites/100 km? NPD Density of National Pollutant Discharge

Elimination System (NPDES) ‘major’ point

locations in watershed. Major locations are

defined by an EPA-assigned major flag. From

download of NPDES national database summer 2006.

ROADS_KM_SQ_KM! km/km? RDS Road density from Census 2000 TIGER roads.

NLCDO1_IMPERV_PCT! % IMP Per cent impervious surfaces from 30-m
resolution NLCDO1 data.

BASOI_URBAN! % URB Watershed percent ‘urban’, 2001 era.

BASO1_AG> % AGR Watershed per cent ‘agriculture’, 2001 era.

NITR_APP_KG_SQKM?  kg/km® NIT Estimate of nitrogen from fertilizer and manure,

from Census of Ag 1997, on the basis of county-

wide sales and percent agricultural land cover in watershed.
PHOS_APP_KG_SQKM?  kg/km® PHO Estimate of phosphorus from fertilizer and

manure, from Census of Ag 1997, on the basis of

county-wide sales and percent agricultural land cover in watershed.
PESTAPP_KG_SQKM kg/km? PES Estimate of agricultural pesticide application (219

types), from Census of Ag 1997, on the basis of

county-wide sales and percent agricultural land cover in watershed.
PADCATI_PCT_BASIN % PC1 Per cent watershed in Protected Areas Database

(PAD) Category 1 (GAP status 1): ‘most

protected lands’: areas managed to maintain a

natural state and within which natural disturbance

events are allowed to proceed without

interference. Primarily: National Park, National

Monument, Wilderness Area, Nature

Reserve/Preserve, Research Natural Area.
PADCAT2_PCT_BASIN % PC2 Per cent watershed in PAD Category 2 (GAP status 2):

(somewhat less protected than Cat 1). Areas generally

managed for natural values but which may receive uses

that degrade the quality of existing natural communities.

Primarily: State Parks, State Recreation Areas, National

Wildlife Refuge, National Recreation Area, Area of Critical

Environmental Concern, Wilderness Study Area, Conservation

Easement, Private Conservation Land, National Seashore.
STOR_INDEX yrs STI Average residence time of annual runoff held in storage behind dams.

"Indicates highly correlated variable (Spearman rank correlation > 0.90) for group 1 (urban).
“Indicates highly correlated variable (Spearman rank correlation > 0.90) for group 2 (agriculture).

metrics for classification models section), which measures RF classification models (Prasad et al., 2006; Cutler et al.,
the relative importance of the variables in the RF classifica- 2007) are developed using the Matlab application (by
tion models. Jaiantilal, 2009, available at http://code.google.com/p/
Published 2011. This article is a U.S. Government work and is in the public domain in the USA. River Res. Applic. (2012)
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18 Human disturbance
variables (HDs)

A

Calculate Onmat
all gaged rivers.

Use existing statistical model to
calculate Enm at all gaged rivers.

Y
Identify 10th and 90th percentile Caloulate
B Onm/Enm
Onw/Enm values across all natural ~€ .
) ratios at all
rivers. )
gaged rivers.

Input phase

A

Classify alteration at all gaged rivers using percentiles
from natural rivers as thresholds: Diminished=Ornw/Erm<10th
percentile, Inflated=Onw/Env>90th percentile. Otherwise

Unaltered.

Y

Step 2 - Randomly select 80% of
gaged rivers and associated HDs
for calibration of model and 20% [

for validation.

Step 1 - Create two binary response models
Diminished model: diminished vs. not diminished
Inflated model: inflated vs. not inflated

A

Step 3 - Form separate RF
classification models for
cases: n=500 trees.

Model formation and
validation phase

Y

Step 4 - Calculate performance metrics
(accuracy, sensitivity, specificity, AUC, Gini,
and OOB error %) on 20% validation sites.

Y

Apply best (of 500) RF models to
HDs for each river reach.

(

Tally predictions from each tree in RF model: likelihood of
alteration=percentage of trees in which alteration

was predicted.

(

Validate with gaged streamflow.

-1 Identify correlated groups of HDs. Use 12 different sets of HDs to form models. Each set contains all independent disturbance
variables (=11) and 1 each from the urban and agriculture correlated groups.

-2 Formation of RF classification models (steps 2 to 4) is repeated 500 times for all sets of HDs for each HM.

-3 After steps 2 to 4 repeated 500 times, calculate average of all performance metrics. The largest AUC value is used to identify
the best RF model. The best set of HDs is identified by the largest average Gini value.

Figure 2. Generalized flow diagram of modelling approach. HDs indicates human disturbance variables, Oy indicates observed hydrologic
metric, Eyy indicates estimated hydrologic metric at a natural river, RF indicates random forest, AUC indicates area under the curve and
OOB indicates out-of-bag

randomforest-matlab/). Two binary RF classification
models for each HM are developed: one model predicting
diminished versus not diminished (which includes all
unaltered and inflated sites) HM conditions henceforth
called the ‘diminished’ model, and another model predicting
inflated versus not inflated (which includes all unaltered and
diminished observations) HM conditions henceforth called
the ‘inflated’ model. In all cases, the binary classification
is predicted using the sets of 13 human disturbance variables
described previously.

Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

For each binary RF classification model, 12 different
versions of the model are produced because of the dif-
ferent pools of human disturbance variables. These different
versions are formed to discern which combination of
urbanization and agricultural variables, when combined
with the remaining 11 human disturbance variables,
yield the best predictive model. For each combination of
variables, 500 RF classification models are formed using a
randomly selected set of 80% of the 4196 gauged rivers to
calibrate the model, and the remaining 20% of sites are used
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for model validation. This is performed so that the predic-
tions from the models are not dependent on any particular
configuration of the network of gauged rivers. Within each
RF model, 500 individual trees are grown, and four human
disturbance variables [(total number of human disturbance
variables in set)’> and rounded up to nearest whole number]
are randomly selected at each split (Cutler et al., 2007).

Performance metrics for classification models

The performance of binary RF classification models is
assessed with metrics (i.e. sensitivity, specificity, accuracy)
calculated from confusion matrices on the basis of results
of applying models to validation sites. Sensitivity is the
percentage of correctly classified positive cases out of all
positive cases, specificity is the percentage of correctly
classified negative cases out of all negative cases and
accuracy is the percentage of the correctly classified positive
and negative cases out of all positive and negative cases. A
positive case is defined as either the diminished or an
inflated condition, and a negative case is defined as the not
diminished or not inflated condition. Arithmetic averages
of the accuracy, sensitivity and specificity values are also
calculated across the 500 RF models.

An additional performance metric is the area under the
curve (AUC) metric associated with the receiver operator
curve approach (e.g. Hand and Till, 2001). The AUC metric
is similar to the test statistic from the Mann—Whitney—
Wilcoxon two sample test. Its value varies from 0 (low
accuracy) to 1 (high accuracy), where a value of 0.5 indi-
cates a model that predicts either class equally. A mean
AUC value is calculated from the 500 RF classification
models. The RF classification model with the largest AUC
value is considered the best model and is the one applied
to the South Platte River Basin and the HUC 10 units in
the conterminous United States.

The mean out-of-bag (OOB) error percentages are also
reported for every RF classification model constructed with
the calibration data. For each individual classification tree in
each RF, two-thirds of the observations are used to estimate
the parameters of the tree, and the remaining third are placed
OOB and classified through the tree as test cases. This
procedure is repeated for all trees in the forest, and the per
cent of cases incorrectly classified is calculated for each
observation that is OOB. The mean OOB value for an RF
classification model is calculated as the mean of all of the
percentages of incorrectly classified observations.

The relative importance of human disturbance variables
in the RF classification models is evaluated by measuring
the loss of overall predictive accuracy when each disturb-
ance variable in the model is randomized (Cutler et al.,
2007). Loss of predictive accuracy is measured as the
Gini index (Cutler et al., 2007), where increasing values

Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

of the index indicate increasing loss of predictive
accuracy. The human disturbance variables are ranked in
decreasing order of their Gini index values and generally
produce one of two possible patterns. One common
pattern is a significant decrease in Gini index values after
one, or a few, of the top ranked human disturbance
variables. In this case, the most important human disturb-
ance variables are those listed prior to the substantial drop
(subjectively defined as a decrease of at least 30% in the
Gini index value). The second is a gradual decrease of
the Gini index value across all human disturbance
variables. In this case, the most important human disturb-
ance variables cannot be identified.

Applications to the South Platte River Basin and HUC
10 units

We illustrate how models of flow alteration can be applied
to ungauged rivers by generating predictions at two scales:
a single river basin and the conterminous United States.
The best RF classification model for the annual maximum
flow is applied to every 30-m river reach in the South Platte
River Basin, Colorado, to predict the likelihood that each
reach has, on average, diminished annual maximum flows.
The likelihood is defined as the fraction (0 to 1) of classifi-
cation trees within the RF model that classified the river
reach as having diminished maximum flows. The likelihood
values are plotted using ArcMap version 9.2. Model per-
formance in the South Platte for all HMs is evaluated by
comparing model predictions with HMs calculated from
actual daily flow data at 28 USGS gauged rivers that had
been excluded from model development. Predictions of flow
alteration across the conterminous United States are derived
by calculating the human disturbance variables (Table 1) for
every HUC 10 unit in the conterminous United States. The
inflated model of average July flows is then applied to all
HUC 10 units, and the likelihood of alteration are computed
as just described.

RESULTS AND DISCUSSION
Model performance

In general, all inflated and diminished models perform
substantially better (on the basis of average AUC values)
than models that predicts either class equally (AUC=0.5),
but the diminished models performed consistently better
than the inflated ones (Table 2). The best diminished models
are annual maximum flow and average May flow, followed
by average November and July flows and the May skew.
The best inflated models are average July flow followed
by average May flow, annual maximum flow, average
November flow and the May skew. The relatively poorer
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performance of the inflated models may have been caused
by having so few sites in the data set where HMs are inflated
(Table 2).

Predictors of altered flows

Three primary factors—storage index (STI), road density
(RDS) and percentage of basin used for agriculture
(AGR)—are consistently influential in predicting flow
alteration across the conterminous United States (Table 2).
Increased reservoir storage intensity is associated with
increased likelihood of diminished annual maximum flow
and diminished May, July and November average flows. In
contrast, reservoir storage intensity is not a significant pre-
dictor of inflated flows for any of the flow metrics considered.

The significant effect of reservoir storage intensity on
diminished annual maximum flow is consistent with other
studies showing that dams reduce peak flows (Ye et al.,
2003; Yang et al., 2004; Poff et al., 2007). This result is
not surprising given that one of the primary functions of res-
ervoir storage is flood control. The finding that increased
reservoir storage is a predictor of diminished average flows
for May, July and November may be related to reservoir
effects on peaks as average flows are often correlated with
peak flows. In addition, the relation between reservoir

storage and diminished average flows may be due to the
use of water stored in reservoirs for consumptive uses such
as irrigated agriculture.

Road density is associated with streamflow alteration
in two ways. First, the likelihood of diminished annual
maximum flow and diminished May, July, and November
average flows declines as RDS increases. Second, the like-
lihood of inflated flows for all of the metrics considered
(May skew, annual maximum flow and average May, July
and November flows) increases as RDS increases. Other
studies (e.g. Burns et al., 2005; Konrad et al., 2005; Poff
et al., 2006) have also reported that RDS, which is related
to the extent of impervious cover in a watershed, increases
the likelihood of inflated flows primarily by increasing the
amount of direct runoff to rivers and by decreasing the
amount of recharge to aquifers.

The likelihood of inflated summer flows (represented by
the average July flow) increases in basins with a larger
extent of agricultural land cover. One explanation for this
result is the hydrological changes associated with the transi-
tion from perennial vegetative cover to crop production
during the summer growing season. Crop lands generally
increase recharge to groundwater and decrease evapotrans-
piration compared with perennial vegetation, and these
increases in baseflow are associated with increases in mean

Table III. Observed alteration of hydrologic metrics (HMs) and their correct classification by statistical models at 28 gauged rivers in the
South Platte River, Colorado, USA. This table is available in colour online at wileyonlinelibrary.com/journal/rra.

Observed Altered Hydrologic Metric

UsSGS Years of
Streamgage Name LATITUDE LONGITUDE Record (1990- Annual Average
No. 2009) May skew maximum flow Average May  Average July November flow
flow (DA) flow (DA)
(DA) DA)
06701500 SOUTH PLATTE RIVER BELOW CHEESMAN LAKE, CO. 39.209 -105.268 14 Unaltered
06709530 PLUM CREEK AT TITAN RD NR LOUVIERS, CO 39.507 -105.024 19 Diminished Diminished Diminished Diminished Diminished
06710385 BEAR CREEK ABOVE EVERGREEN 39.633 -105.337 19
06710500 BEAR CREEK AT MORRISON, CO. 39.653 -105.196 17 Diminished Diminished Diminished
06710605 BEAR CREEK ABOVE BEAR CREEK LAKE NEAR MORRISON, CO 39.652 -105.174 19 Diminished Diminished Diminished Diminished
06711500 BEAR CREEK AT MOUTH, AT SHERIDAN, CO. 39.652 -105.033 17
06711565 SOUTH PLATTE RIVER AT ENGLEWOOD, CO. 39.665 -105.004 19 Inflated
06714000 SOUTH PLATTE RIVER AT DENVER, CO. 39.760 -105.003 17
06714215 SOUTH PLATTE R AT 64TH AVE. COMMERCE CITY, CO. 39.812 -104.958 19
06716500 CLEAR CREEK NEAR LAWSON, CO. 39.766 -105.626 14
06719505 CLEAR CREEK AT GOLDEN, CO. 39.753 -105.235 19
06720500 SOUTH PLATTE RIVER AT HENDERSON, CO. 39.922 -104.868 17 Inflated Diminished
06725450  ST. VRAIN CREEK BELOW LONGMONT, CO. 40.158 -105.014 19 Inflated
06730200 BOULDER CR AT NORTH 75TH ST NR BOULDER 40.052 -105.179 19 Inflated
06730500 BOULDER CREEK AT MOUTH, NEAR LONGMONT, CO. 40.152 -105.015 18 Inflated
06738000 BIG THOMPSON R AT MOUTH OF CANYON, NR DRAKE, CO. 40.422 -105.227 17 Inflated
06741510  BIG THOMPSON RIVER AT LOVELAND, CO. 40.379 -105.061 19 Diminished
06746095 JOE WRIGHT CREEK ABOVE JOE WRIGHT RESERVOIR, CO. 40.540 -105.883 19 Inflated
06746110 JOE WRIGHT CREEK BELOW JOE WRIGHT RESERVOIR, CO. 40.562 -105.864 19 Inflated Inflated
06751490 NORTH FORK CACHE LA POUDRE R. AT LIVERMORE, CO 40.787 -105.252 19
06752000 CACHE LA POUDRE R A MO OF CN, NR FT COLLINS, CO. 40.664 -105.224 17
06752260 CACHE LA POUDRE RIVER AT FORT COLLINS, CO. 40.589 -105.070 19 Inflated
06752280 CACHE LA POUDRE R AB BOXELDER C, NR TIMNATH, CO. 40.552 -105.011 19 Inflated Diminished
06754000 SOUTH PLATTE RIVER NEAR KERSEY, CO. 40.412 -104.563 17 Inflated
06712000 CHERRY CREEK NEAR FRANKTOWN, CO. 39.356 -104.763 20 Inflated
06713000 CHERRY CREEK BELOW CHERRY CREEK LAKE, CO. 39.654 -104.863 15 Diminished Diminished
06713500 CHERRY CREEK AT DENVER, CO. 39.742 -105.000 20
06720820 BIG DRY CREEK AT WESTMINSTER, CO 39.906 -105.035 18
Mean Out-of-Bag % Error from RF Classification Models for 28 gaged rivers (Diminished vs. Not Diminished) 14.9 5.1 4.4 18.6 14.3
Mean Out-of-Bag % Error from RF Classification Models for 28 gaged rivers (Inflated vs. Not Inflated) 33.8 16.1 10.1 252 21.3

Indicates one estimate from either diminished or inflated RF models agree with observed condition.

DA) indicates that the hydrologic metric is normalized by drainage area.
Indicates both estimates from diminished and inflated RF models agree with observed condition.
Indicates neither estimates from diminished and inflated RF models agree with observed condition.
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flows (Zhang and Schilling, 2006). In addition, the
presence of tile drains used in agriculture, such as those
throughout the corn belt, also would increase the amount
of runoff to rivers.

Predicted flow alteration in the South Platte Basin

In general, predictions for the South Platte River Basin are
most accurate for the diminished models (Table 3). Perform-
ance of the models for May skew and the average July and
November flows are poorer than models of annual
maximum and average May flows. The inflated flow condi-
tions are not predicted as well as diminished conditions in
this basin because of the scarcity of inflated conditions
throughout the model calibration data set. Out of the 140
observed HM values (28 gauges multiplied by 5 HMs),
23% are misclassified by either the diminished or the
inflated model, and 3% are misclassified by both models.
The remaining cases (74%) are correctly classified.

Overall, nearly one-third (28%) of river reaches in the
South Platte River Basin are predicted to have diminished
annual maximum flows (likelihood >50%, Figure 3).
There appears to be a greater prevalence of diminished
annual maximum flows in the larger downstream segments
than in the smaller headwater segments. One exception to
this pattern is the southernmost headwater portions of the
basin, which include many high-elevation agricultural
areas and associated impoundments that likely reduce
maximum flows.

Predicted flow alteration in HUC 10 units

The likelihood of inflated average July flows shows
strong geographic patterns across 10-digit HUCs of the
conterminous United States (Figure 4). In general, inflated
July flows are predicted to occur in geographic areas
with intensive agricultural activity such as the central
United States or in urban settings. Both of these human
impacts are associated with increasing the average flow
in summer as noted earlier. Our predictions for hydro-
logic units are based on coarse generalizations of the
land uses within them, and unlike the South Platte
example, do not pertain to any single river segment.
Nevertheless, maps such as Figure 4 can be developed
for a variety of HMs and used to identify broad
geographic patterns in various types of flow alteration.
In addition, broad-scale patterns in altered flows could
be juxtaposed with maps for key ecological indicators
such as distributions of imperilled aquatic species,
which may show substantial spatial overlap and poten-
tial causal associations. Maps would also be useful
for designing regional studies targeted at specific types
of altered flows.

Published 2011. This article is a U.S. Government work and is in the public domain in the USA.
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Figure 3. Likelihood (defined as the percentage of votes from the
best random forest classification model) of diminished annual
maximum flow for each 30-m stream reach in the South Platte

River Basin, Colorado. This figure is available in colour online at

wileyonlinelibrary.com/journal/rra.

CONCLUSIONS

Flow is widely recognized as a key factor in river health but is
not measured in the vast majority of rivers. This information
gap hinders the ability of scientists and resource managers to
determine where and when altered flows are a potential cause
of poor river health. We found that statistical models predicting
flow alteration can be developed within the river gauging net-
work and applied with relatively high confidence to ungauged
river segments across broad geographic areas. Applied in this
way, statistical models can be used to identify where the likeli-
hood of flow alteration is high--from the scale of specific river
segment within a river basin or across a continent. Our study
examines only a few aspects of the flow regime, but the
modelling approach may be applicable to the plethora of
HMs cited in various investigations.
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Figure 4. Likelihood (defined as the percentage of votes from the best random forest classification model) of inflated average July flow for
15406 10-digit hydrologic units in the conterminous United States. This figure is available in colour online at wileyonlinelibrary.com/journal/rra.
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