
APPENDIX

Because the worldwide probability of a large earthquake appears to be constant in time
(Michael 2011), the probability of the occurrence of a catastrophic earthquake in any short
interval dt is thought to be αNðtÞdt, where NðtÞ is some measure of the population at risk at
time t and α is a constant. The occurrence of catastrophic earthquakes is then a nonstationary
Poisson process (see Ogata 1983 for a brief discussion of nonstationary Poisson events and
the maximum likelihood method of analyzing them). Given a sequence of n catastrophic
earthquakes at times t1; t2; : : : ; tn within the interval ðS;TÞ, the likelihood of that parti-
cular sequence is the product of the likelihoods αNðtiÞ of an earthquake at each time ti and the
likelihoods Exp½−∫ tiþ1

ti αNðtÞdt� of no events in time intervals S to t1, ti to tiþ1, and tn to T .
Thus, the likelihood of the particular sequence is
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The natural logarithm of the likelihood is
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One can then can solve the equation ∂ðLogeðLÞÞ∕∂α ¼ 0 for the value
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that maximizes the likelihood of the particular sequence t1; t2; : : : ; tn. The standard devia-
tion σα of α is
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One can compare as a function of time the observed cumulative number of catastrophic
earthquakes in the time interval ðS; tÞ with the expected number α∫ t

SNðtÞdt predicted at
any time t by the nonstationary Poisson process. However, one should realize that the
observed accumulation curve may wander from predicted curve because the abscissa
of the observed cumulative number of events is composed of the sum of independent
random intervals. Because the time of an event then depends upon the time of the pre-
ceding event, the events are not independent. For example, if one of the early intervals
between events is unusually long, the accumulation curve will fall below the predicted
curve, and there is no reason for the subsequent events to compensate for that shortfall
because the intervals are independent. The accumulation curve may then wander from the
predicted curve in a random walk.
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The Pearson’s chi-square test (Evans 1955, p. 775) provides a quantitative measure of
how well the data fit the proposed nonstationary Poisson distribution. Divide the time interval
ðS; TÞ into m subintervals such that a significant number ð>5Þ of events is expected in each
subinterval. Then the chi-square statistic ðχ2Þ is
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where Oi is the number of observed events lying in the ith subinterval, and Ei ¼ α∫ tiþ1
ti NðtÞdt

is the expected number of events in that subinterval. The probability P that a smaller value
of χ2 would be observed if the data were drawn from the proposed nonstationary Poisson
process is given by the chi-square distribution with m-2 degrees of freedom and argument χ2.
A probability between 5% and 95% indicates that the data are consistent with proposed
nonstationary Poisson distribution.
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