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In  this  paper  we  detail  a  multivariate  spatial  regression  model  that  couples  LiDAR,  hyperspectral  and  for-
est inventory  data  to  predict  forest  outcome  variables  at a high  spatial  resolution.  The proposed  model  is
used to  analyze  forest  inventory  data  collected  on  the US  Forest  Service  Penobscot  Experimental  Forest
(PEF),  ME,  USA.  In addition  to helping  meet  the  regression  model’s  assumptions,  results  from  the  PEF
analysis  suggest  that  the  addition  of multivariate  spatial  random  effects  improves  model  fit and  pre-
yperspectral
ayesian hierarchical spatial models
aussian Predictive process
orestry

dictive  ability,  compared  with  two  commonly  applied  modeling  approaches.  This  improvement  results
from  explicitly  modeling  the  covariation  among  forest  outcome  variables  and  spatial  dependence  among
observations  through  the  random  effects.  Direct  application  of  such  multivariate  models  to  even moder-
ately  large  datasets  is  often  computationally  infeasible  because  of cubic  order  matrix  algorithms  involved
in estimation.  We  apply  a spatial  dimension  reduction  technique  to help  overcome  this  computational
hurdle  without  sacrificing  richness  in modeling.
. Introduction

Recent advances in remote sensing, specifically Light Detection
nd Ranging (LiDAR) and hyperspectral sensors, provide detailed
ata at unprecedented scales. At broad spatial scales, large amounts
f LiDAR and hyperspectral data for temperate North Ameri-
an forests are being collected, or will soon be collected by US
orest Service, NASA’s Laser Vegetation Imaging Sensor (LVIS;
ttp://lvis.gsfc.nasa.gov), National Ecological Observatory Network
NEON) Airborne Observation Platform (Kamper et al., 2010), and
pcoming NASA missions. These high-dimensional data contain

nformation about forest structure and reflectance that can be
elated to forest variables of interest through suitable modeling
rameworks. Anderson et al. (2008) and Tonolli et al. (2011) offer

 thorough literature review of recent studies that couple these
emotely sensed data with georeferenced forest inventory through
arametric or non-parametric regression techniques. The inference
arnered through these analyses often supports decisions with
mportant economic and ecological implications; therefore, it is

ritical to correctly estimate uncertainty.

Commonly, the regression models used to explore relation-
hips between covariates, including remotely sensed variables, and

∗ Corresponding author.
E-mail address: finleya@msu.edu (A.O. Finley).

303-2434/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.jag.2012.04.007
© 2012  Elsevier  B.V.  All rights  reserved.

the forest outcome variables of interest do not explicitly accom-
modate residual spatial dependence. These non-spatial regression
models are adequate in the absence of extraneous structured vari-
ation, beyond what is explained by the covariates. However, when
observations are spatially indexed, we  might expect similar out-
comes in proximate locations, possibly resulting from common
environmental conditions or disturbance regimes. Ignoring this
spatial dependence can lead to incorrect inference about model
parameters and erroneous predictions. Hoeting (2009) offers a
nice discussion on consequences of not meeting the assumption
of uncorrelated model residuals. A common solution to accommo-
dating spatial dependence among the residuals is to add a spatially
varying model intercept via normally distributed spatial random
effects that have a mean of zero and covariance that captures spa-
tial association through a function of distance and perhaps direction
between observations. Beyond helping to ensure the statistical
validity of the model, the addition of a spatial random effects to
the intercept allows for partitioning of residual uncertainty into a
spatial and non-spatial component which can improve model fit
and predictive performance.

Theoretical and applied studies have shown that spatial asso-
ciations are captured most effectively using models that build

dependencies in different stages. Hierarchical models are espe-
cially useful for acknowledging multiple sources of uncertainty and
dependence, where they can estimate richer models with less strin-
gent assumptions than traditional modeling paradigms. Flexible

dx.doi.org/10.1016/j.jag.2012.04.007
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
http://lvis.gsfc.nasa.gov
mailto:finleya@msu.edu
dx.doi.org/10.1016/j.jag.2012.04.007


1 arth O

s
t
2
M
m

e
o
s
T
M
b
fl
t
w
n
l

p
r
i
d
I
h
t
e
w
c
s
w

a
S
2
m
a
i
e
m
3
i

2

2

E
4
w
s
t
h
o

s
w
a
v
i
u
2
a
u
O

48 A.O. Finley et al. / International Journal of Applied E

pecification of these models follows the Bayesian paradigm of sta-
istical inference (see, e.g., Carlin and Louis, 2000; Gelman et al.,
004), where analysis uses samples, obtained using Markov chain
onte Carlo (MCMC) methods, from the posterior distributions of
odel parameters.
Computational advances with regard to MCMC  have contributed

normously to the popularity of hierarchical models in a wide array
f disciplines (e.g., Gilks et al., 1996; Robert and Casella, 2005), and
patial modeling is no exception (see, e.g., Banerjee et al., 2004).
hese hierarchical spatial process models, implemented through
CMC  methods, offer increased flexibility to fit models that would

e infeasible with classical methods. However, with this increased
exibility comes substantial computational demands. Estimating
he proposed models involves expensive matrix decompositions
hose computational complexity increases in cubic order with the
umber of spatial locations, rendering such models infeasible for

arge spatial datasets.
In this paper we detail a spatial regression model that incor-

orates information from LiDAR and hyperspectral data, often
eferred to as fusion in the remote sensing literature, along with
nformation inherent in the observed forest inventory data to pre-
ict multiple forest outcome variables at a high spatial resolution.

n particular, we define and assess the utility of: (i) LiDAR and
yperspectral data variable selection using a dimension reduction
echnique; (ii) multivariate spatial regression with spatial random
ffects that accommodate dependence of outcomes variables both
ithin and between inventory plot locations, and (iii) a technique

alled the predictive process that reduces the dimensionality of the
patial random effects to ease the computational burden associated
ith parameter estimation.

The remainder of the paper evolves as follows. The study area
nd dataset used to illustrate the proposed models are described in
ection 2.1. The proposed regression models are detailed in Section
.2 along with the associated dimension reduction approach and
odel validation methods. A univariate spatial regression model

nd k-nearest neighbor algorithm used as benchmarks are defined
n Section 2.3.  Our approach for LiDAR and hyperspectral variable
xtraction is provided in Section 2.4. Details about model imple-
entation and subsequent analysis results are given in Sections

 and 4, respectively. Finally, some concluding remarks with an
ndication of future work are provided in Section 5.

. Materials and methods

.1. Study area and data

The study area is the US Forest Service Penobscot
xperimental Forest (PEF; http://www.fs.fed.us/ne/durham/
155/penobsco.htm), ME,  USA. The dataset comprised LiDAR
aveforms collected with the Laser Vegetation Imaging Sen-

or (LVIS; http://lvis.gsfc.nasa.gov), hyperspectral imagery from
he Airborne Visible/Infrared Imaging Spectrometer (AVIRIS;
ttp://aviris.jpl.nasa.gov), and several forest variables measured
n a set of 451 georeferenced forest inventory plots.

Both the LVIS and the AVIRIS data were acquired during the
ummer of 2003. The LVIS instrument, an airborne scanning LiDAR
ith a 1064 nm laser, provided full waveform LiDAR returns for

n approximate 25 m diameter footprint. For each waveform, ele-
ations were converted to height above the ground surface and
nterpolated at 0.3 m intervals. The AVIRIS instrument provides
p-welling radiance in 224 contiguous optical bands from 400 to

500 nm with a spectral resolution of 10 nm.  Radiance data were
cquired at a spatial resolution of 18 m and converted to reflectance
sing the ACORN atmospheric correction program (ACORN 5.0;
llinger et al., 2008).
bservation and Geoinformation 22 (2013) 147–160

The PEF forest inventory data are collected every 5 years as
part of a long-term silvicultural treatment study (for more details
see Sendak et al., 2003). Our study considered the outcome vari-
ables live aboveground tree biomass (BIO; Mg  ha−1), basal area (BA;
m2 ha−1), density (DEN; trees ha−1), mean tree diameter at breast
height (DBH; cm), and total volume growth between 2002 and
2003 (GRO; Mg  ha−1). Live, aboveground biomass was  estimated
using the generalized biometric models of Jenkins et al. (2004).
Growth rates were estimated as differences between estimates of
live, aboveground biomass, and biomass trajectories were used to
interpolate biomass measurements to the 2003 remote sensing
data acquisitions. Fig. 1 provides maps of the outcome variables
measured on each forest inventory plot.

A total of 12,414 and 13,403 LiDAR waveform and hyperspectral
reflectance signals fell within the PEF boundary. To facilitate model
development, hyperspectral data were resampled, using first near-
est neighbor, to the LIDAR location grid. Then those signals nearest
the center of the inventory plot were extracted for subsequent
plot-level analysis.

2.2. Multivariate spatial regression

For the subsequent development, we assume at any location
s ∈ D ⊆ R2, we have observed m outcome variables, y1(s), y2(s), . . .,
ym(s). For each yq(s), we  observe pq spatially referenced predictors,
which we collect into a pq × 1 vector xq(s). Let y(s) = (y1(s), y2(s),
. . .,  ym(s))′ be an m × 1 vector with yq(s) as the qth element. We
envision a model that accounts for inherent association among
the outcomes within each location and among observations across
locations. We  achieve this through the following multivariate
regression model

y(s) = X(s)′
 ̌ + w(s) + �(s). (1)

Here X(s)′ is an m × p block-diagonal matrix, where p =
∑m

q=1pq and

the qth diagonal block is xq(s)′. Conformably,  ̌ = (ˇ′
1, . . . , ˇ′

p)′

is a p × 1 vector of regression coefficients, where each ˇq is a
pq × 1 vector of regression coefficients corresponding to xq(s)′.
This specifies the mean structure that accounts for large scale
variation in the outcome. Spatial variation in the outcome is
modeled using an m × 1 vector of spatially indexed random
effects w(s) = (w1(s), . . . , wm(s))′. Customarily, we assume the
unstructured residuals �(s), defined analogous to w(s), follow a
zero-centered multivariate normal (MVN) distribution with zero
mean and an m × m covariance matrix � .

Spatially structured dependence is introduced in (1) through a
multivariate (m × 1) Gaussian process w(s)∼GP(0, C( · , · ; �)) (see,
e.g., Cressie, 1993), where the cross-covariance function C(s1,
s2 ; �) is defined to be the m × m matrix with (i, j)th entry
Cov{wi(s1), wj(s2)}. The cross-covariance function is parametric,
with � denoting the set of parameters that describe association
structure between w(s1) and w(s2). The cross-covariance function
completely determines the joint dispersion structure implied by
the spatial process.

Consider any finite collection of locations S = {s1, s2, . . . , sn}
and let w be the mn × 1 vector obtained by stacking up the w(si)’s
one above the other. Then, the distribution of w is multivariate nor-
mal  with zero mean and an nm × nm variance covariance matrix
˙w(�). This matrix is best described as a partitioned matrix com-
posed of m × m blocks, where the (i, j)th block is C(si, sj ; �).

Since ˙w(�) must be symmetric and positive-definite, it
is immediate that the cross-covariance function must satisfy

(i) C(si, sj ; �) = C(sj, si ; �)′ for any pair of locations, and (ii)∑n

i=1

∑n
j=1v′

i
C( si, sj; �) vj > 0 for all non-zero m × 1 vectors vi, vj .

The first condition ensures that ˙w(�) will be symmetric, although
the cross-covariance function itself need not be. The second

http://www.fs.fed.us/ne/durham/4155/penobsco.htm
http://www.fs.fed.us/ne/durham/4155/penobsco.htm
http://lvis.gsfc.nasa.gov
http://aviris.jpl.nasa.gov
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Fig. 1. Forest outcome variables meas
ondition ensures the positive-definiteness of ˙w(�). These condi-
ions must hold for any arbitrary set of distinct locations. The above
efinition also implies that within a given location s, C(s, s ; �) is a
ymmetric and positive definite matrix.
at the forest inventory plot locations.
Let us turn to specifications for cross-covariance functions.
One possibility for C(s1, s2 ; �) is a separable specification,
�(s1, s2 ; �)˙,  where � = {˙,  �},  ̇ is an m × m covariance matrix
between the random effects and �(s1, s2 ; �) is a real-valued spatial
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orrelation function. One important example is the stationary
atérn correlation function

(s1, s2; �) = 1
2�−1� (�)

(‖s1 − s2‖�)�K�(‖s1 − s2‖�);

� > 0, � > 0, (2)

here ‖s1− s2 ‖ is the Euclidean distance between locations s1 and
2, � = {�, �} with � controlling the decay in spatial correlation
nd � controlling process smoothness, � is the usual Gamma  func-
ion while K� is a modified Bessel function of the second kind with
rder � (Cressie, 1993). This implies Var(w) = R(�) ⊗ ˙,  where ⊗
s the Kronecker product of matrices and R(�) is the n × n matrix

hose (i, j)th element is �(si, sj ; �). Note that this separable struc-
ure “separates” (or decomposes) the covariance structure into a
urely spatial component (R(�)) and a non-spatial component (˙).
he matrix R(�) captures spatial association, while  ̇ captures the
ssociation among the m outcomes within a location. The separable
odel is “stationary” in the sense that the association among the

utcomes remains the same for every location.
A separable spatial association structure is rather restrictive

ere, assigning a single set of spatial correlation parameters � to be
hared by all the outcomes. This can be inappropriate – why  should
ll the outcomes have, for example, the same strength of spatial
ssociations? More general cross-covariance functions, however,
re not routine to specify although there is now a fairly rich lit-
rature on them. Constructive approaches, dating back to Gelfand
t al. (2004),  are more comprehensible and computationally feasi-
le. This can be motivated as below.

For the separable model, notice that we can write C(s1,
2 ; �) = A�(s1, s2 ; �)A′ where  ̇ = AA′ is a Cholesky factorization,
(s1, s2 ; �) is a diagonal matrix with �q(s1, s2 ; �q), q = 1, . . .,

 as its diagonal elements, and � = {�1, �2, . . .,  �m}. This incor-
orates a set of m correlation parameters, or even m different
orrelation functions, offering an attractive, easily interpretable
nd flexible approach. This approach resembles the linear model
f coregionalization (LMC) as in, e.g., Grzebyk and Wackernagel
1994), Wackernagel (2003), Schmidt and Gelfand (2003), and
elfand et al. (2004).  See, also, Reich and Fuentes (2007) for a
ayesian nonparametric adaptation. We  will assume this struc-
ure in our subsequent development. Under this setting ˙w(�) =
I ⊗ A)˙�(�)(I ⊗ A′), where ˙�(�) is an mn × mn block matrix
hose (i, j)th block is �(si, sj ; �), and � = {A, �}.

Let y be the mn  × 1 vector formed by stacking up the m × 1
(si)’s. The posterior distribution p(ˇ, w, �, � | y) is proportional to

m

q=1

p(�q) × IW(AA′ | aAA′ , bAA′ ) × MVN(  ̌ | �ˇ, ˙ˇ) × IW(� | a� , b� )

× MVN(w | 0, ˙w(�)) ×
n∏

i=1

MVN(y(si) | X(si)
′

 ̌ + w(si), � ), (3)

here IW is the inverse-Wishart prior distribution with degrees of
reedom aAA′ and scale matrix bAA′ . The prior distributions for �’s
re dependent on the chosen spatial correlation function and the
xtent of the domain.

Choices for modeling A include an inverse-Wishart prior for
A′ (Gelfand et al., 2004), as in our current analysis, element-wise
odeling with normal and log-normal priors, or using parametric

ssociation structures suggested by the design under considera-

ion (see, e.g., Banerjee and Johnson, 2006). Alternatively, instead
f a lower-triangular Cholesky factor, one might opt for a spectral
quare-root (see, e.g., Daniels and Kass, 1999). In previous anal-
ses, we have experimented with each of these approaches and
bservation and Geoinformation 22 (2013) 147–160

found that posterior estimates of AA′ do not vary greatly among the
specifications.

In practical implementation, a marginalized version of (3) that
integrates out w is often preferred because of the smaller parameter
space. This uses MVN( y|Xˇ, ˙y(�)) as the likelihood, where X is now
the nm × p matrix of predictors obtained by stacking the X(si)′’s, and
˙y = (In ⊗ A)˙�(�)(In ⊗ A′) + In ⊗ � . The parameters to be updated
in the marginalized model are  ̋ = {ˇ, � , A, �} whose priors are
exactly as in (3).

An efficient MCMC  algorithm is obtained by updating  ̌ from its
full conditional distribution MVN(��|·, ˙�|·), where

˙ˇ| · = [˙−1
ˇ

+ X ′˙−1
y X]−1 and �ˇ| · = ˙ˇ| · X

′˙−1
y y. (4)

The remaining parameters are updated by using Metropolis steps,
possibly using block updates. Typically, random-walk Metropo-
lis steps with (multivariate) normal proposals are adopted; since
all parameters with positive support are converted to their loga-
rithms, some Jacobian computation is needed. Upon convergence,
the MCMC  output generates L samples, say {˝(l)}L

l=1, from the
parameters’ posterior distribution.

In this sampling scheme, the spatial random effects w are not
sampled directly. This reduces the parameter space, which results
in a more efficient MCMC  algorithm. A key advantage of the first
stage Gaussian model (as in (1)) is that samples from the posterior
distribution of w can be recovered in a posterior predictive fashion.
More precisely, we seek to evaluate

p(w | y) ∝
∫

p(w | ˝,  y)p(  ̋ | y)d˝.  (5)

Because the full conditional distribution of w in  (5) is again
multivariate normal, (5) is easily evaluated using composition sam-
pling. To be precise, for each sample ˝(l), we  draw w(l) from
MVN(�w| · , ˙w| · ), where

˙w| · = [(In ⊗ A−1(l))˙�(�(l))−1(In ⊗ A−1(l)′) + In ⊗ �−1(l)]−1

and �w| · = ˙w| · (In ⊗ �−1(l))(y − Xˇ(l)).

These posterior samples from w can be mapped using contours or
interpolation routines to produce plots of the spatial process.

For predictions, if S0 = { s0,1, s0,2, . . . , s0,n0 } is a collection of
n0 new locations, the posterior predictive distribution of p(w0 | y),
where w0 = (w( s0,1), w(  s0,2), . . . , w(  s0,n0 ))′, is

p(w0 | y) ∝
∫

p(w0 | w, ˝,  y)p(w | ˝,  y)p(  ̋ | y)d˝dw. (6)

Given posterior samples, {˝(l)}L
l=1, this distribution can again be

obtained via composition sampling: we first draw w(l) for each
l as described in (5) and then draw w(l)

0 from p(w0 | w(l), ˝(l), y),
where this last distribution is derived as a conditional distribution
from a multivariate normal and, hence, is again multivariate nor-
mal. More precisely, the process realizations over the new locations
are conditionally independent of the observed outcomes given the
realizations over the observed locations and the process param-
eters. In other words, p(w0 | w, ˝,  y) = p(w0 | w, ˝), which is a
MVN(�w0| · , ˙w0| · ), where

�w0| · = ˙w0 (�)′˙w(�)−1w and

˙w0| · =  ̇ − ˙w0 (�)′˙w(�)−1˙w0 (�), (7)
˙w0 (�)′ is an m × mn block matrix whose (j)th block is the m × m
cross-covariance C(s0, sj ; �), j = 1, . . .,  n.

Finally, given a set of covariates at the new location s0, samples
from the posterior predictive distribution of the outcome variable



arth O

v
l

2

r
m
w
w
i
r
n

t
t
t
a
p
s
a
f
c
K
s
k
l
r

h
t
r
2
C
e
“
s
W
t
n
a
t
a
a
o

s
s
a
w
o

w

w
s

m
w
m
a
m
t
s
p
p

A.O. Finley et al. / International Journal of Applied E

ector, y(s0)(l), are drawn from MVN(X( s0)′ˇ(l) + w( s0)(l), � (l)) for
 = 1, 2, . . .,  L.

.2.1. Spatial process models for large datasets
Without further specifications, estimating the parameters in (1)

equires linear solvers or Cholesky decompositions of the mn × mn
atrix ˙w(�). The computational complexity is O(n3m3) and this
ork needs to be executed once every MCMC  iteration, when we
ant to estimate �. With large n and/or m,  this is computationally

nfeasible and we must resort to some approximation or dimension
eduction approach. In most practical settings, we encounter large

 rather than large m.  We  now discuss dimension reduction in n.
Modeling large spatial datasets has received much attention in

he statistical literature. Vecchia (1988) proposed approximating
he likelihood with a product of appropriate conditional distribu-
ions to obtain maximum-likelihood estimates. Stein et al. (2004)
dapt this to restricted maximum likelihood estimation. Another
ossibility is to approximate the likelihood using spectral repre-
entations of the spatial process (Fuentes, 2007). These likelihood
pproximations yield a joint distribution, but not a process that
acilitates spatial interpolation. Yet another approach considers
ompactly supported correlation functions (Furrer et al., 2006;
aufman et al., 2008; Du et al., 2009) that yield sparse correlation
tructures. More efficient sparse solvers can then be employed for
riging and variance estimation, but the tapered structures may
imit modeling flexibility. Also, full likelihood-based inference still
equires determinant computations that may  be problematic.

Alternatively, one could build models especially geared toward
andling of large spatial datasets. These are representations of
he spatial process in a lower-dimensional subspace and are often
eferred to as low-rank or reduced-rank spatial models (Higdon,
002; Kamman and Wand, 2003; Stein et al., 2007; Stein, 2008;
ressie and Johannesson, 2007; Banerjee et al., 2008; Crainiceaniu
t al., 2008). Many of these methods are variants of the so-called
subset of regressors” methods used in Gaussian process regres-
ions for large datasets in machine learning (e.g., Rasmussen and

illiams, 2006). The idea here is to consider a smaller set of loca-
ions, or “knots”, say S∗ = { s∗

1, . . . , s∗
n∗}, where the number of knots,

*, is fixed to be much smaller than the number of observed sites,
nd to express the spatial process realizations over n locations in
erms of its realizations over the smaller set of knots. Here, the
ssumption is there will be an insignificant loss of information
bout the underlying spatial process given an adequate number
f knots that cover the domain.

Recently Banerjee et al. (2008) proposed a class of knot-based
patial process models for large spatial datasets. These models con-
ider a fixed set of S∗, again with n* 
 n, which may  or may  not form

 subset of the entire collection of observed locations in S. Letting
∗ = (w( s∗

1)′, . . . , w( s∗
n)′)′ be the realizations of the parent process

ver S∗, we formulate a multivariate predictive process defined as

˜ (s) = E{w(s) | w∗} = Cov(w(s), w∗)Var−1(w∗)w∗

= C(s; �)′˙∗(�)−1w∗, (8)

here C(s; �)′ is an m × mn* block matrix with the m × m matrix C(s,
∗
j
; �) being the jth block, and ˙*(�) is the n*m × n*m covariance
atrix of w*, i.e., with C( s∗

i
, s∗

j
; �) as its (i, j)th block. Eq. (8) reveals

˜ (s) to be a zero mean m × 1 spatial process with cross-covariance
atrix given by Cw̃( si, sj; �) = C(  si; �)′˙∗(�)−1C(  sj; �). Again, the

ppeal behind this formulation is that every spatial process (parent)
odel produces a corresponding predictive process version. Thus,
he predictive process counterpart of the parent model in (1),  and
ubsequently in (3),  is derived by replacing w(s) with w̃(s). No new
arameters are introduced and the cross-covariance function of the
redictive process derives directly from that of the parent process.
bservation and Geoinformation 22 (2013) 147–160 151

Finley et al. (2009) identified a systematic bias in the covariance
components of multivariate predictive process model, which are
corrected by adding a spatially adaptive nugget process to w̃(s).
More precisely, we  correct this bias by replacing w̃(s) with w̃�(s) =
w̃(s) + �̃(s), where �̃(s)

iid∼MVN{0, C(s, s; �) − C(s; �)′˙∗(�)−1C(s; �)}.
Details on the algorithms to estimate these bias-corrected mul-
tivariate predictive process models can be found in Finley et al.
(2009).

Key variables in predictive process modeling are the num-
ber and location of knots. The choice of n* is governed by
computational cost and sensitivity to choice. Customarily, the
analysis is implemented over different choices of n* and knot
locations. The issue is not dissimilar to a spatial design prob-
lem (e.g., Nychka and Saltzman, 1998; Xia and Gelfand, 2006;
Diggle and Lophaven, 2006). The standard method is to experi-
ment with different computationally feasible knot intensities and
configurations.

2.2.2. Model selection
There are several approaches to assessing model performance

and subsequent comparison. Here we will consider the popular
Deviance Information Criterion, or DIC, to rank models in terms of
how well they fit the data (Spiegelhalter et al., 2002). This crite-
rion is the sum of the Bayesian deviance (a measure of model fit)
and the (effective) number of parameters pD (a penalty for model
complexity). Here, lower DIC indicates better fit. In addition to DIC,
we also consider an approach that is based on simulating indepen-
dent replicates for each observed outcome. For example, for the full
multivariate spatial model (1),  and each location si we compute, for
each i = 1, 2, . . .,  n,

p(yrep(si) | y) =
∫

N(yrep(si) | X(si)
′

 ̌ + w(si), � )

× p(˝, w(si) | y)d  ̋ dw(si)

where the conditional distribution of the replicate yrep(si) given
the parameters is simply the likelihood component correspond-
ing to y(si). Simulation from other candidate models, such as the
non-spatial, i.e., w = 0 or the predictive process models, follow
this same approach. Then, letting �rep,i and ˙rep,i be the poste-
rior predictive mean and variance for each yrep(si), we prefer
models that excel under a decision-theoretic balanced loss func-
tion, penalizing both departure of replicated means from their
observed values (lack of fit) and excessive uncertainty in the repli-
cated data. Using a squared error loss function (e.g., Gelfand and
Ghosh, 1998), the measures for these two  criteria are evaluated
as G =

∑n
i=1‖y( si) − �rep,i‖2, where ‖· ‖ is the standard Euclidean

norm, and P =
∑n

i=1tr(˙rep,i). We  will use the score D = G + P as a
model selection criterion, with lower values of D indicating better
models.

To facilitate comparison with similar studies that propose mod-
els for coupling remotely sensed and forest inventory data we  also
consider the coefficient of determination for each outcome vari-
able, R2

q = 1 −
∑n

i=1(yq( si) − ỹq( si))
2/

∑n
i=1(yq( si) − yq)2 for q = 1,

. . .,  m. Here, for the qth outcome variable, ỹq( si) is the ith fitted
value and yq is the mean over the observed values.

Finally, because forest variable prediction is our overarching
goal, we assess model predictive performance using a split-set vali-
dation approach. Here, 90% of the observations are used to estimate

candidate models’ parameters and the remaining 10% are used for
subsequent prediction. Models are ranked based on their holdout
set root mean squared prediction error (RMSPE), where again lower
values of RMSPE indicate greater predictive performance.
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.3. Benchmark models

The simpler alternative to the multivariate model is to specify
 univariate spatial regression models that do not explicitly model

he covariance among their respective spatial random effects.
herefore, to assess the usefulness of (1),  we consider the uni-
ariate model counterpart for each outcome using the univariate
ias-corrected predictive process approximation. Model specifica-
ion and prediction follows from Section 2.2 by simply setting m = 1
see, e.g., Banerjee et al., 2008; Finley et al., 2009).

We also consider a multivariate but non-spatial version of (1)
here w = 0 and covariance among the outcomes’ residuals is still

stimated via � . Additionally, we fit the univariate non-spatial
egression model to each outcome.

In addition to the regression models, we also consider a popular
on-parametric k-nearest neighbor (k-NN) algorithm for predic-
ion (see, e.g., Tomppo et al., 2008; McRoberts, 2011). To predict a
ector of outcome variables at the new location, s0, the most basic
-NN algorithm averages over the corresponding outcomes associ-
ted with the k nearest observations locations in S, where nearest
s measured as the Euclidean distance between the x(s0) and x(si)
or i = 1, . . .,  n. In practice, the value of k that minimizes some objec-
ive function is chosen. Using the split-set validation described in
ection 2.2.2, we consider values of k from 1 to 20 and select the
ne that provides the smallest holdout set RMSPE for the majority
f the outcome variables.

.4. Selection of LiDAR and hyperspectral covariates

The high-dimensional waveform LiDAR and hyperspectral data
etailed in Section 2.1 contain information about the structure and
eflectance of the forest canopy. As noted in Section 1, this infor-
ation has been shown to explain some of the variability in the

orest variables of interest. Following post-processing, 153 and 224
alues defined each LiDAR and hyperspectral signal, respectively.
bviously, we cannot include all of these highly collinear covari-
tes in a regression model, and thus must consider some way to
educe the signals’ dimension. Several variable extraction methods
ave been proposed for these types of data, see, e.g., Næsset and
obakken (2008).

Our aim is to extract the maximum amount of information
rom the LiDAR and hyperspectral signals using the fewest num-
er of non-collinear derived covariates. To be specific, we form
he u × v matrix M with rows corresponding to signal measure-

ent locations and columns holding signal values that have been
entered (e.g., for the LiDAR data M is 12,414×153). Let M = UDV′

e the Singular Value Decomposition (SVD) of M,  where U and
 are orthogonal matrices of dimension u × u and v × v respec-

ively, and D =
[

	
O

]
, where 	 is a v × v diagonal matrix with

iagonal entries 
1 ≥ 
2 ≥ · · ·
v ≥ 0 called the singular values of
 and O is a (u − v) × v matrix of zeroes. In practice, one could look

t Tr(M′M)  =
∑v

i=1
2
i

as a measure of total variation and choose

 < v such that
∑r

i=1
2
i
/
∑v

i=1
2
i

≈ 1. In other words, 
i ≈ 0 for
 = r + 1, r + 2, . . . , v. We  now form the matrix of “derived covari-
tes” as Z = MV1, where V1 is the matrix formed from the first r
olumns of V. From the orthogonality of V, it is easy to see that
V = UD,  which implies that Z = MV1 = U1	,  where U1 is the matrix

ormed from the first r columns of U. This shows that zi = 
iui = Mvi

or i = 1, 2, . . .,  r, where ui is the ith column of U. These reveal that
he derived covariates are orthogonal vectors (since the ui’s are)

nd they all belong to the column space of M – which is same as the
riginal covariate space.

This method was applied to both the LiDAR and the hyper-
pectral data. Exploratory data analysis was used to determine the
Fig. 2. Observed forest inventory plot locations along with the model validation
holdout plot subset and the locations of the predictive process knots used in the
63 knot model.

number of covariates to retain from each dataset. Specifically, we
used non-spatial univariate regression models to explore a range
of covariates for each outcome variable. The results showed that no
covariates beyond the first four were significant in the models. The
first four covariates explained 64% and 92% of the variability in the
LiDAR and hyperspectral data, respectively, and were used for the
subsequent analysis.

3. Model implementation and analysis

Predictive process knots used for the multivariate and univari-
ate bias-corrected predictive process versions of (1) were laid out
on a grid over the PEF as illustrated in Fig. 2. For the subsequent
analysis, we considered knot intensities of 63 and 124. In practice a
range of knot intensities and configurations should be considered
to explore the robustness of the model parameter estimates, see,
e.g., Guhaniyogi et al. (2011) for discussion.

Prior to regression analysis, BIO and BA were square root trans-
formed and DEN, DBH, and GRO were log transformed to better
approximate a normal distribution and hence satisfy the models’
assumed distribution of the outcome variable.

As detailed in Section 2.2.2, model fit was evaluated using DIC, D,
and R2 criteria. Predictive performance was  assessed using RMSPE
calculated using 46 randomly selected observed locations, i.e., a
10% holdout set, ‘+’ symbol in Fig. 2. Candidate and baseline model
parameters were estimated using the remaining 405 observations.

Parameter and predictive inference was based on three chains
of 50,000 iterations (the first 10,000 iterations were discarded as
burn-in). The marginalized sampler detailed in Section 2.2 was
coded in C++and leveraged Intel’s Math Kernel Library threaded
BLAS and LAPACK routines for matrix computations. All analyses
were conducted on a Linux workstation using two Intel Nahalem
hyperthreaded quad-Xeon processors. For the spatial models, sam-
pling the three chains of 50,000 iterations required approximately
10 and 16 h for the 63 and 124 knot models to complete.

To complete the proposed models’ Bayesian specification, prior
distributions were assigned to each parameter. As is customary,

a flat prior was  assigned to the regression intercept and slope
parameters. The covariance matrices AA′ and � , were each assigned
an IW(a, b) with the degrees of freedom, a, set to m + 1. For AA′

and � , the IW scale matrix, b, was  constructed with zeros on the
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Table  1
Regression slope parameter credible intervals, 50 (2.5, 97.5) percentiles, for the multivariate candidate models.

Parameter Non-spatial Spatial

63 knot 124 knot

ˇBIO,0 10.03 (9.84, 10.22) 10.46 (9.25, 11.93) 10.22 (8.92, 11.41)
ˇBIO,1 −158.48 (−181.48, −135.83) −123.45 (−140.71, −105.29) −115.82 (−132.96, −99.55)
ˇBIO,2 −84.32 (−107.97, −59.82) −79.28 (−99.24, −57.86) −76.31 (−92.01, −58.90)
ˇBIO,3 −4.26 (−24.50, 20.54) 11.58 (−7.89, 32.42) 14.56 (−9.24, 34.81)
ˇBIO,4 6.71 (−16.09, 26.76) 0.85 (−14.85, 16.73) −2.02 (−15.61, 15.81)
ˇBIO,5 −29.13 (−50.43, −8.55) −14.41 (−35.65, 9.26) −15.15 (−36.13, 4.14)
ˇBIO,6 13.83 (−10.37, 36.17) −13.66 (−32.86, 8.78) −17.66 (−38.52, 5.49)
ˇBIO,7 −28.98 (−54.09, −3.81) −1.77 (−20.72, 17.54) −5.19 (−24.59, 14.10)
ˇBIO,8 −27.40 (−49.02, −7.53) −9.91 (−31.08, 9.33) −13.04 (−35.00, 5.25)
ˇBA,0 4.85 (4.75, 4.95) 5.05 (4.48, 5.80) 4.95 (4.30, 5.52)
ˇBA,1 −63.17 (−74.64, −51.55) −47.17 (−55.62, −38.94) −43.59 (−52.18, −36.01)
ˇBA,2 −9.74 (−20.75, 2.96) −14.31 (−24.30, −4.82) −13.06 (−20.44, −4.20)
ˇBA,3 −4.06 (−15.44, 7.84) 3.30 (−5.84, 13.77) 5.71 (−5.58, 15.96)
ˇBA,4 11.46 (1.27, 21.60) 6.51 (−0.73, 13.41) 5.55 (−2.86, 13.91)
ˇBA,5 −5.09 (−16.76, 5.38) −2.12 (−12.70, 9.51) −2.92 (−13.70, 6.86)
ˇBA,6 4.90 (−8.02, 17.11) −7.37 (−17.47, 2.80) −8.26 (−19.17, 2.89)
ˇBA,7 −12.55 (−25.73, −0.21) 0.71 (−7.20, 10.67) −0.22 (−9.53, 7.91)
ˇBA,8 −10.55 (−21.41, 0.20) −4.33 (−13.47, 4.67) −6.45 (−15.59, 2.05)
ˇDEN,0 8.14 (8.02, 8.25) 8.10 (7.29, 8.95) 8.01 (7.07, 8.66)
ˇDEN,1 −5.08 (−17.64, 8.02) 2.52 (−6.25, 12.19) 4.20 (−4.81, 11.43)
ˇDEN,2 41.02 (27.55, 55.73) 31.40 (21.16, 39.98) 32.00 (23.78, 41.38)
ˇDEN,3 −4.58 (−17.90, 9.99) 10.49 (1.20, 18.19) 10.76 (2.64, 20.36)
ˇDEN,4 1.49 (−10.70, 14.77) 4.46 (−3.31, 13.79) 3.74 (−3.74, 12.67)
ˇDEN,5 12.21 (0.03, 27.40) 2.31 (−8.20, 12.50) 0.35 (−10.34, 10.92)
ˇDEN,6 23.08 (8.06, 36.25) 4.52 (−6.57, 14.12) 3.77 (−8.70, 14.16)
ˇDEN,7 −17.23 (−32.36, −3.75) 0.76 (−8.59, 8.59) −1.17 (−10.58, 8.18)
ˇDEN,8 −5.65 (−18.15, 8.41) 0.05 (−8.67, 10.06) −1.59 (−10.64, 8.54)
ˇDBH,0 1.55 (1.52, 1.59) 1.61 (1.35, 1.87) 1.60 (1.36, 1.89)
ˇDBH,1 −14.09 (−18.23, −10.16) −12.83 (−16.20, −8.57) −12.32 (−15.67, −9.35)
ˇDBH,2 −22.60 (−27.16, −18.29) −18.40 (−22.09, −13.93) −18.13 (−22.71, −14.64)
ˇDBH,3 −2.17 (−6.66, 1.96) −5.09 (−9.00, −1.10) −5.22 (−8.50, −1.86)
ˇDBH,4 0.35 (−3.90, 4.24) −1.30 (−4.56, 1.58) −1.39 (−4.37, 2.00)
ˇDBH,5 −9.47 (−13.72, −5.40) −3.22 (−7.34, 0.89) −2.34 (−7.35, 2.11)
ˇDBH,6 −4.50 (−8.66, 0.05) −1.89 (−6.05, 1.99) −2.07 (−5.79, 2.68)
ˇDBH,7 3.62 (−0.64, 7.85) −0.09 (−4.13, 3.98) −0.07 (−3.69, 3.75)
ˇDBH,8 −1.03 (−5.41, 3.15) −0.15 (−4.04, 3.56) 0.43 (−3.67, 4.28)
ˇGRO,0 1.26 (1.20, 1.31) 1.23 (0.99, 1.40) 1.21 (0.99, 1.45)
ˇGRO,1 −10.30 (−16.17, −4.77) −11.37 (−16.22, −5.02) −11.04 (−17.06, −5.86)
ˇGRO,2 3.83 (−2.24, 9.53) 4.89 (−2.43, 10.77) 4.97 (−1.16, 11.60)
ˇGRO,3 8.95 (3.02, 15.81) 11.27 (5.34, 17.05) 10.55 (4.13, 16.18)
ˇGRO,4 −3.61 (−8.54, 1.57) −1.56 (−6.50, 4.07) −0.99 (−6.36, 3.63)
ˇGRO,5 12.64 (7.42, 18.34) 4.58 (−1.15, 10.53) 4.27 (−2.15, 11.37)
ˇGRO,6 6.75 (0.03, 12.55) 4.58 (−2.98, 11.54) 5.47 (−1.68, 12.43)
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ˇGRO,7 2.75 (−3.09, 8.42) 

ˇGRO,8 4.35 (−1.02, 9.80)

ff-diagonal elements and diagonal elements taken as the
artial-sill and nugget values, respectively, from univariate semi-
ariograms fit to the residuals of the non-spatial multivariate
odel. These semivariograms are illustrated in Fig. 3. To reduce

he computational complexity, we fixed � = 0.5 which reduces (2)
o an exponential correlation function. Fixing the Matérn smooth-
ess parameter does reduce flexibility; however, this concession
esults in substantial reduction in computing time. The spatial
ecay parameter �, for each of the m correlation functions, were
ssigned a uniform U(0.001, 0.3), which, given � = 0.5, corresponds
o support for an effective spatial range between approximately 10
nd 3000 m (i.e., where effective spatial range is the distance at
hich the correlation drops to 0.05, − log (0.05)/�).

. Results and discussion

Parameter estimates for the multivariate spatial and non-spatial
egression models were obtained following the methods detailed

n Section 3. Results suggested that none of the covariates derived
rom the hyperspectral data and few from the LiDAR data explained

 statistically significant amount of variability in the outcomes. The
ovariates’ regression slope parameter estimates are provided in
3.97 (−1.45, 9.40) 4.53 (−1.62, 9.71)
−0.62 (−6.37, 4.91) −1.12 (−7.75, 4.03)

Table 1. Here, subscripts on the slope parameters (ˇ’s) indicate the
outcome variable and associated covariate. The ˇ·,0 correspond to
the intercept whereas ˇ·,1 · · · ˇ·,4 and ˇ·,5 · · · ˇ·,8 correspond to the
first four LiDAR and hyperspectral derived covariates, respectively.
Values in bold indicate those slope parameters with 95% credible
intervals that do not include zero. There were several statistically
significant slope parameters in the non-spatial model that were
not significant in the spatial models – particularly those parame-
ters associated with the hyperspectral covariates. This is a result of
violating the key model assumption of independent and identically
distributed residuals. The violation of this assumption is clearly
seen in Fig. 3 where outcome specific semivariograms are fit to
the non-spatial model’s residuals.

Given these initial results, we refit the regression models using
only those covariates that had statistically significant slope param-
eters in the multivariate spatial regression models. The resulting
parameter estimates are provided in Table 2. Although not shown,
the univariate spatial regression models slope parameter estimates

did not differ substantially from those of the multivariate spatial
regression models.

The model fit and predictive performance of the benchmark and
candidate models are summarized in Table 3. Considering first the
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ig. 3. Empirical semivariograms of residuals from non-spatial version of model (1
unction’s nugget (lower horizontal line), sill (upper horizontal line), and effective s
esults for the multivariate models (columns 4–6 in Table 3); com-
ared to the non-spatial specification, the spatial models produce
onsiderably lower DIC and D, which suggests the addition of the
ultivariate spatial random effects improve model fit. Similarly,
 with the maximum likelihood estimates of the exponential semivariogram model
 range (vertical line).
the outcome variable specific R2 are substantially higher among
the spatial models compared to the non-spatial model. The mul-
tivariate spatial models also produce consistently lower RMSPE
compared to their non-spatial counterpart. Among the spatial
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Table  2
Regression slope parameter credible intervals, 50 (2.5, 97.5) percentiles, for the multivariate candidate models.

Parameter Non-spatial Spatial

63 knot 124 knot

ˇBIO,0 10.05 (9.87, 10.24) 10.45 (9.39, 11.56) 10.12 (8.49, 12.18)
ˇBIO,1 −168.15 (−185.87, −153.66) −123.88 (−136.96, −108.62) −117.32 (−131.53, −98.55)
ˇBIO,2 −100.68 (−121.65, −76.94) −82.72 (−102.26, −69.25) −79.63 (−94.03, −61.98)
ˇBA,0 4.86 (4.77, 4.96) 5.07 (4.48, 5.55) 4.88 (3.94, 5.86)
ˇBA,1 −65.44 (−72.61, −59.06) −47.68 (−53.77, −40.66) −44.59 (−51.84, −37.68)
ˇBA,2 −18.00 (−29.20, −6.31) −17.80 (−25.69, −10.34) −16.81 (−24.52, −9.17)
ˇDEN,0 8.10 (7.99, 8.20) 8.09 (7.46, 8.76) 8.04 (6.97, 8.98)
ˇDEN,2 34.29 (23.86, 46.44) 26.92 (18.30, 34.87) 25.96 (18.21, 34.70)
ˇDEN,3 −4.76 (−13.34, 4.06) 11.37 (2.06, 20.38) 9.30 (3.01, 15.01)
ˇDBH,0 1.57 (1.54, 1.60) 1.64 (1.39, 1.83) 1.61 (1.32, 1.94)
ˇDBH,1 −17.19 (−19.90, −14.97) −11.70 (−13.19, −9.66) −10.94 (−13.27, −8.92)
ˇDBH,2 −22.18 (−26.06, −18.52) −16.83 (−20.66, −13.65) −16.06 (−19.89, −13.23)
ˇDBH,3 −2.26 (−5.68, 0.99) −6.68 (−10.94, −2.63) −6.16 (−9.40, −3.54)
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ˇGRO,0 1.24 (1.20, 1.29) 

ˇGRO,1 −6.20 (−11.12, −1.53) 

ˇGRO,3 6.86 (1.03, 12.56) 

odels, increasing n* should result in improved fit and predictive
erformance. This result is expected because a larger number of
nots provide a better approximation of the parent process. This
mproved fit to the data is seen between the n* = 63 and 124 knot

odels (i.e., the 124 knot model has lower DIC and D, and larger R2

alues). However, the 124 knot model does not consistently outper-
orm the 63 knot model when considering the holdout set RMSPE
e.g., RMSPEBIO is 27.57 and 28.40 for n* = 63 and 124, respectively).
uch variation is expected because the parent process is being
stimated with a different, albeit marginally lower intensity, knot
onfiguration.

Comparing between fit criteria and RMSPE for multivariate (or
nivariate) non-spatial and spatial models in Table 3 suggest the
iDAR covariates were not very useful for explaining variability in
he outcomes. Although LiDAR data are able to quantify some ver-
ical and horizontal forest structure characteristics, the substantial
ains in fit and predictive performance are realized through the
ddition of the spatial random effects.

The first column in Table 3 provides the fit and holdout set
MSPE for the k-NN benchmark. These results are based on a k = 15
nd the set of covariates considered in Table 2. The k = 15 was

hosen because it resulted in the lowest RMSPE for the major-
ty of the outcomes (specifically for BIO, BA, and DBH). Compared
o the multivariate spatial models, k-NN provided lower R2 but
imilar values of RMSPE. We  note, the k-NN algorithm could

able 3
enchmark and candidate model fit and predictive performance.

k-NN (k = 15) Univariate 

Non-spatial Spat

n* = 

pD – – 

DIC  – – 

G  – – 

P  – – 

D  – – 

R2
BIO

0.55 0.42 

R2
BA

0.46 0.28 

R2
DEN

0.32 0.08 

R2
DBH

0.37 0.30 

R2
GRO

0.17 0.01 

RMSPEBIO 27.91 32.28 2
RMSPEBA 6.58 7.12 

RMSPEDEN 4288.84 4532.38 415
RMSPEDBH 1.67 1.72 

RMSPEGRO 1.67 1.64 
1.22 (0.95, 1.49) 1.21 (0.96, 1.42)
−12.45 (−17.10, −6.06) −12.73 (−17.37, −8.23)

9.90 (4.07, 14.37) 9.29 (4.35, 13.67)

produce different, and perhaps improved results, if one pursued
an exhaustive cross-validation approach for choosing the covari-
ates and associated weighting for defining an optimal NN search
space. This however is beyond the scope of the current study.

We are also interested in assessing if the complexity of the mul-
tivariate spatial model improves fit and predictive performance,
compared to results obtained using simpler regression models.
Comparison between the univariate and multivariate 124 knot
model R2 and RMSPE values, columns 3 and 6 respectively, shows
that with the exception of tree density, DEN, results are com-
parable and in some instances the univariate model provides
marginally better fit and prediction. For DEN, however, the mul-
tivariate model provides substantially improved model R2 and
RMSPE. These improvements are likely due to explicit modeling
of the covariance among the outcome variables’ spatial random
effects through the cross-covariance matrix AA′. Estimates of these
and the other parameters associated with the models’ residual com-
ponents are summarized in Table 4.

To aid in interpretation, we converted off-diagonal elements
of the AA′ covariance matrix to their corresponding correlations,
e.g., the median of AA′

BIO,BA correlation posterior distribution is

�BIO,BA = 0.94 in Table 4. Here, the cross-correlation

estimates in bold have 95% credible intervals that do
not include zero. By considering the sign and strength of
these correlation estimates, along with the scatter plot of the

Multivariate

ial Non-spatial Spatial

124 n* = 63 n* = 124

– 28 176 258
– −895 −1888 −1941

– 2651 1095 957
– 2555 104 139
– 5206 1199 1095

0.73 0.40 0.71 0.73
0.70 0.28 0.67 0.70
0.52 0.08 0.72 0.75
0.69 0.26 0.61 0.63
0.38 0.02 0.37 0.38

6.58 31.82 27.57 28.40
6.11 7.06 6.29 6.55
3.61 4465.55 4024.50 3874.31
1.23 1.72 1.20 1.24
1.11 1.66 1.14 1.11
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Table  4
Regression spatial and residual parameter credible intervals, 50 (2.5, 97.5) percentiles, for the multivariate candidate models.

Parameter Non-spatial Spatial

63 knot 124 knot

AA′
BIO,BIO – 3.33 (2.31, 4.02) 4.77 (2.88, 6.00)

AA′
BA,BA – 0.78 (0.61, 0.92) 1.22 (0.73, 1.48)

AA′
DEN,DEN – 0.90 (0.77, 1.13) 1.53 (1.09, 1.96)

AA′
DBH,DBH – 0.12 (0.10, 0.17) 0.18 (0.12, 0.23)

AA′
GRO,GRO – 0.19 (0.12, 0.27) 0.17 (0.11, 0.26)

�BIO,BA – 0.94 (0.90, 0.95) 0.94 (0.88, 0.96)
�BIO,DEN – 0.46 (0.38, 0.58) 0.59 (0.42, 0.67)
�BIO,DBH – 0.09 (−0.07, 0.21) −0.08 (−0.22, 0.09)
�BIO,GRO – −0.11 (−0.43, 0.21) −0.08 (−0.45, 0.19)
�BA,DEN – 0.64 (0.54, 0.70) 0.75 (0.67, 0.81)
�BA,DBH – −0.13 (−0.28, 0.02) −0.32 (−0.47, −0.08)
�BA,GRO – 0.01 (−0.28, 0.26) 0.07 (−0.37, 0.34)
�DEN,DBH – −0.74 (−0.80, −0.67) −0.81 (−0.86, −0.65)
�DEN,GRO – 0.16 (0.01, 0.35) 0.36 (0.07, 0.55)
�DBH,GRO – −0.26 (−0.62, −0.01) −0.52 (−0.65, −0.29)
� BIO,BIO 3.63 (3.29, 4.20) 1.00 (0.86, 1.35) 1.02 (0.78, 1.19)
� BIO,BA 1.72 (1.55, 1.98) 0.45 (0.38, 0.61) 0.45 (0.33, 0.52)
� BIO,DEN 1.25 (1.15, 1.47) 0.11 (−0.00, 0.20) 0.02 (−0.06, 0.11)
� BIO,DBH −0.05 (−0.09, 0.00) 0.06 (0.01, 0.10) 0.08 (0.05, 0.13)
� BIO,GRO 0.22 (0.12, 0.30) 0.22 (0.10, 0.30) 0.20 (0.12, 0.26)
� BA,BA 0.91 (0.83, 1.05) 0.25 (0.20, 0.31) 0.23 (0.17, 0.27)
� BA,DEN 0.78 (0.72, 0.88) 0.12 (0.06, 0.16) 0.05 (0.00, 0.09)
� BA,DBH −0.10 (−0.12, −0.07) 0.00 (−0.02, 0.02) 0.02 (0.00, 0.04)
� BA,GRO 0.15 (0.09, 0.19) 0.12 (0.07, 0.15) 0.11 (0.07, 0.14)
� DEN,DEN 1.30 (1.18, 1.42) 0.23 (0.19, 0.27) 0.14 (0.11, 0.18)
� DEN,DBH −0.33 (−0.37, −0.29) −0.08 (−0.10, −0.06) −0.05 (−0.07, −0.04)
� DEN,GRO 0.21 (0.16, 0.26) 0.08 (0.05, 0.11) 0.06 (0.03, 0.09)
� DBH,DBH 0.13 (0.12, 0.15) 0.05 (0.04, 0.06) 0.04 (0.03, 0.05)
� DBH,GRO −0.07 (−0.08, −0.05) −0.01 (−0.03, −0.00) −0.01 (−0.02, 0.00)
� GRO,GRO 0.26 (0.23, 0.30) 0.12 (0.10, 0.15) 0.12 (0.08, 0.16)
Eff.  range1 (m)  – 1360.97 (804.22, 1709.15) 1727.45 (1012.69, 1927.03)
Eff.  range2 (m)  – 1931.54 (1175.13, 1987.30) 1607.31 (1259.96, 1903.29)
Eff.  range3 (m)  – 1808.65 (1329.55, 1969.88) 1607.95 (1136.12, 1915.34)
Eff.  range4 (m)  – 1920.95 (1497.45, 1995.78) 1953.56 (1864.27, 1991.62)
Eff.  range5 (m)  – 1071.85 (695.11, 1547.14) 737.09 (424.88, 1280.27)
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Fig. 4. Scatter plots of residuals from non-spatial version of the multivariate candidate model.
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Fig. 5. Mean of the posterior predicted distribution at the pixel-level for each outcome variable.

Table  5
Predicted total and standard deviation in parentheses of the outcome variables over the 434.1 ha PEF study area.

Design-based k-NN (k = 15) Multivariate

Non-spatial Spatial

68 knot 124 knot

BIO 43,801.84 (903.06) 45,899.08 46,875.98 (884.43) 46,512.13 (968.07) 46,279.79 (954.89)
BA  10,427.92 (206.38) 10,603.97 10,853.98 (216.97) 10,695.81 (213.96) 10,661.29 (219.83)
DEN  2,541,714 (103,402.4) 1,710,907 2,936,691 (196,664.5) 2,309,598 (117,339.5) 2,327,825 (112,891.5)
DBH 4.94 (2.01) 4.88 5.28 (0.10) 5.54 (0.14) 5.51 (0.13)
GRO  1662.72 (35.49) 1560.728 1723.47 (46.29) 1691.72 (49.84) 1684.54 (47.20)
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Fig. 6. Standard deviation of the posterior predicted

on-spatial model’s residuals, Fig. 4, it becomes clear that the

o-varying spatial random effects improve model fit and sub-
equent prediction for outcomes, such as DEN, that are poorly
uantified by the LiDAR covariates. An additional advantage
o using the multivariate spatial random effects is that the
ibution at the pixel-level for each outcome variable.

outcome variables predicted at a new location maintain a

realistic covariance that might otherwise be lost when outcomes
are modeled independent of each other.

As noted above, the multivariate and univariate spatial
regression models effectively leverage the dependence among
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bserved outcomes to improve fit and prediction. Residual spatial
ependence extends well beyond 1 km for all outcome variables,
s seen in the exploratory data analysis semivariograms, Fig. 3,
nd in the estimated effective spatial ranges of the spatial random
ffects in Table 4. Here, the disparity among the effective ranges
upports our use of a non-separable specification of the spatial
ross-covariance function.

Fig. 5 shows maps comprising 12,414 pixels’ posterior predictive
istribution mean generated using the 63 knot multivariate spatial
odel. As suggested by the holdout set RMSPE results, there was

egligible difference between maps based on the 63 and 124 knot
odels. These maps are comparable to the patterns seen in the

bserved data, Fig. 1. Importantly, because we used a Bayesian
nferential framework, we have access to the entire posterior pre-
ictive distribution at all new locations (or pixels). This flexibility
llows us to create maps of any function of the predictive distribu-
ion. For example, creating maps of the untransformed predicted
utcomes in Fig. 5 simply requires applying the inverse transfor-
ation to each posterior predictive sample then taking the mean

ver all resulting sample values. To assess prediction uncertainty
e might look at the range between each pixel’s upper and lower

5% percentile or perhaps standard deviation of the posterior pre-
ictive distribution samples as illustrated in Fig. 6. Such maps are
seful for designing future forest inventory protocol.

In addition to small area prediction, e.g., at the pixel-level,
here is often interest at summarizing the outcome variable at
ome broader management unit. Table 5 provides totals and asso-
iated standard deviation for each outcome variable over the PEF.
he first column labeled “Design-based” are totals and standard
rrors estimated using a finite population approach that assumes
he observations were drawn using simple random sampling (see,
.g., Gregoire and Valentine, 2008). The second column provides
esults obtained using the k-NN algorithm. Although not pursued
ere, McRoberts et al. (2007) detail approaches for deriving stan-
ard errors for the k-NN based total. The results in columns 3–5
re calculated using the posterior predictive distributions from the
ultivariate non-spatial and spatial models. When considering the

stimated uncertainty, there are negligible differences among the
otals produced using these various approaches.

. Conclusions

In this paper we compared multivariate regression models with
nd without spatially structured random effects to several alterna-
ive, less computationally, complex models. In addition to helping

eet the regression model’s assumption of independent and iden-
ically distributed residuals, the results of the PEF data analysis
uggest that the addition of univariate or multivariate spatial ran-
om effects greatly improved model fit and prediction. In some
ases, explicitly modeling the residual spatial dependence among
he outcomes via multivariate random effects resulted in improved
nference, e.g., as in the case of the tree density outcome.

For the spatial regression models, we achieve computational
fficiency by replacing the parent spatial process by its induced
redictive process. The appeal of this solution is that one need not
igress from the modeling objectives to think about choices of basis
unctions, or kernels or alignment algorithms for the locations. The
nalysis demonstrated that a low-dimensional representation of
he parent process is highly effective at borrowing information over
pace to deliver accurate and precise prediction at new locations.
urther, by working in a Bayesian paradigm we  have access to the
ull posterior predictive distribution at each new location, which

acilitates uncertainty assessment. Access to posterior predictive
amples could also be useful in settings where the investigator
ishes to propagate uncertainty in outcome variables through sub-

equent economic or ecological numerical models. For example,
bservation and Geoinformation 22 (2013) 147–160 159

many forest yield models require spatially and temporally explicit
inputs that must be somehow imputed to the region of interest.

Variable extraction from the high-dimensional LiDAR and
hyperspectral data was  achieved using a straightforward approach
that maximizes signal information using the fewest number of non-
collinear derived covariates. Although several studies have used
AVIRIS data to partially explain indices of forest health or produc-
tivity, such as foliar nitrogen concentration Martin et al. (2008),
our derived covariates did not explain much variability in annual
growth or other outcome variables. Although several LiDAR covari-
ates were found to be useful, they explained a relatively small
amount of variability in the outcomes as reflected in the low R2

and holdout set RMSPE values.
There are obviously many alternative approaches to deriving

covariates from these data, some of which might result in more
useful covariates, i.e., those that explain more variability in the out-
come variables. For instance, Lefsky et al. (2002) demonstrate that
LiDAR derived covariates related to maximum canopy height are
strongly correlated with several important forest variables. Such
covariates could certainly be included in the regression model
considered in our analysis. However, in practice the addition of
spatial random effects almost always results in a gain in model fit
and predictive ability. Further, as demonstrated by the comparison
between the non-spatial and spatial random effects models, the
presence of correlated residuals can result in misleading inference
regarding the importance of the covariates.

Our future research will focus on developing modeling
frameworks that automate the selection of covariates from high-
dimensional remotely sensed data. Also, we are considering
application of non-stationary cross-covariance functions that allow
covariance among outcomes to vary by location.
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