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The origin and prevalence of triggered seismicity and remote after-
shocks are under debate. As a result, they have been excluded from
probabilistic seismic hazard assessment and aftershock hazard
notices. The 2004 M = 9.2 Sumatra earthquake altered seismicity
in the Andaman backarc rift-transform system. Here we show
that over a 300-km-long largely transform section of the backarc,
M > 4.5 earthquakes stopped for five years, and over a 750-km-
long backarc section, the rate of transform events dropped by two-
thirds, while the rate of rift events increased eightfold. We com-
pute the propagating dynamic stress wavefield and find the peak
dynamic Coulomb stress is similar on the rifts and transforms. Long-
period dynamic stress amplitudes, which are thought to promote
dynamic failure, are higher on the transforms than on the rifts,
opposite to the observations. In contrast to the dynamic stress,
we calculate that the mainshock brought the transform segments
approximately 0.2 bar (0.02 MPa) farther from static Coulomb
failure and the rift segments approximately 0.2 bar closer to static
failure, consistent with the seismic observations. This accord means
that changes in seismicity rate are sufficiently predictable to be
included in post-mainshock hazard evaluations.

Coulomb stress transfer | great earthquakes | seismicity rate changes

hether aftershocks and subsequent mainshocks are trig-

gered by the small but permanent static stress changes
or the larger but oscillatory dynamic stress changes is unresolved
(1-8). Partly in consequence, aftershocks have been omitted from
probabilistic seismic hazard assessment even though the ground
motion and damage they cause can sometimes exceed that of the
mainshock. By virtue of its size, the 26 December 2004 M = 9.2
Sumatra earthquake (9-11) permits study of how seismicity far
from the rupture is promoted and inhibited by a mainshock. The
earthquake struck along the Sunda trench, where the Indian-
Australian plate undergoes oblique subduction (Fig. 1). At the
northern portion of the rupture zone, the Andaman backarc rift-
transform system lies 200-400 km from the megathrust (12-14)
(Fig. 1). This separation from the megathrust means that stress
transferred to the backarc by the megathrust is insensitive to the
unknown details of the coseismic slip distribution and geometry.
But because of the size of the mainshock, the calculated static
stress imparted to the Andaman backarc exceeds 0.2 bar
(0.02 MPa), about twice the commonly observed threshold seen
to influence seismicity (2, 15), making the Sumatra-Andaman
event an ideal test case of long-distance earthquake triggering
and inhibition. At magnitudes up to 6.2 backarc, earthquakes are
also large enough to cause damage if they struck in many regions
of the world, and so understanding what controls them matters to
hazard assessment.

Seismicity Observations

The National Earthquake Information Center (NEIC) and the
Global CMT (gCMT) catalogs permit us to compare the 26-y
record of preceding or ‘background’ seismicity to the 6 y of after-
shocks and post-mainshock seismicity, which reveals a 330-km-
long dominantly-transform section of the Andaman backarc

www.pnas.org/cgi/doi/10.1073/pnas.1208799109

system that is devoid of earthquakes during the first 5 y after the
mainshock (Fig. 2.4 and B). The magnitude of completeness, Mc,
is 4.5 for NEIC (Fig. S1) and 5.2 for gCMT, and so we count only
earthquakes above these thresholds. The post-mainshock shut-
down of NEIC earthquakes (16) is evident in map view (Fig. 2 4
and B) and in time series (Fig. 3), where it is marked as Box N. It
is also evident after aftershocks and foreshocks are removed by
declustering (17) (Figs. S2 and S3 4 and B). The next largest tem-
poral gap in the full or declustered catalog is 3.5 y. It is unlikely
that the observed gap is a detection artifact, because Box S of
similar dimension along the backarc (Fig. 2) exhibits an abrupt
rate increase at the time of the M = 9.2 event in the full catalog
(Fig. 3), or no rate change in the declustered catalog (Fig. S3B).

Along a longer 750-km-long section of the back-arc system that
includes both rifts and transforms, earthquake focal mechanisms
changed after the 2004 mainshock, as first reported by Andrade
and Rajendran (2011) (18). Whereas more than half of the 28
events were strike-slip before the mainshock (Fig. 44), only one
of the 21 events was afterwards (Fig. 4B), an 800% gain in the rate
of normal events and a 66% drop in the rate of strike-slip events
(Table S1). Comparison of Fig. 4 4 and B indicates that the trans-
form segments became seismically inactive after the 2004 main-
shock. If strike-slip or normal mechanisms could occur with equal
likelihood, roughly as in the pre-mainshock period (54/46%),
the probability of drawing 20 normal events out of 21 is 0.19%.
The focal mechanism change is also evident in a space-time plot
(Fig. S44). Thus, we observe earthquake activation along the rifts
and inhibition along the transforms after the 2004 mainshock.
This could be a product of the dynamic or static stresses.

Coulomb Stress Transfer

To calculate the Coulomb stress transmitted to the Andaman
backarc system, we treat the transforms as vertical right-lateral
faults, and the rifts as 45°dipping normal faults, based on the geo-
metry of other well-imaged oceanic transform-rift systems (19,
20). We then impose the 2004 coseismic slip in an elastic half-
space for the static stress, or a spherically layered earth for the
dynamic stress, and calculate the Coulomb stress change. After
1,000 s the dynamic stresses closely resemble the static stresses
calculated in a halfspace. The Coulomb stress change ACFF =
At + p’Ac, where 7 is the shear stress on the fault (positive in the
direction of slip), o is the normal stress (positive for unclamping),
and p’ is the apparent friction coefficient. Failure is promoted if
ACFF is positive, and inhibited if negative. Thus both increased
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Fig. 1. Tectonic setting of the 2004 Sumatra earthquake. M > 4 seismicity
during the 30 y before the mainshock is blue, and during 5 y afterwards is
red; all relocated earthquakes (16) are shown, including those below the
completeness level. The Indian-Australian plate subducts obliquely at ap-
proximately 38 mm/y, the West Andaman and Seuliman transforms slip at
approximately 20 mm/y each, the Sumatra transform slips at approximately
23 mm/y (40), and the Andaman rift-transform backarc system has opened
at 38 mm/y since 4-11 Ma (35). Plate motion is relative to Eurasia. Black
lines give the back-arc interpreted from bathymetric surveys (12, 14) (and
GEBCO_08, http://www.gebco.net), earthquakes (16), and relocated gCMT
focal mechanisms (Fig. S6).
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Fig. 2. Change in back-arc seismicity after 2004 and comparison with static
stress transfer. (A-B) Relocated M > 4.5 seismicity (16) for 1 Jan 1975—31
Oct 2009. Straight single lines represent right-lateral transforms, double
lines are rifts. Earthquakes near the 2004 rupture surface are masked. (C)
Coulomb stress imparted by the mainshock with rake shown by black arrows
(7) to the interpreted back-arc fault system (with sense of slip given by gray
arrows).

2of 5 | www.pnas.org/cgi/doi/10.1073/pnas.1208799109

I
N
6.0F
e
55F 5
v &
3 50 g
o
g 45 . 5
2 g
S o
g S =
£ of 800 &
g > 2
600 S
551 5
400 ©
50F
l|| SN 200
45LL o mrm m nri  nd L

0
1980 1985 1990 1995 2000 2005 2010 «Year

Fig. 3. Time series of NEIC M > 4.5 seismicity for depths <60 km. Green
dots with stems are individual events; blue lines give the cumulative number.
Color shaded areas indicate the post-mainshock analysis period. Time series
for the declustered catalog are shown in Fig. S3.

Before 2004 mainshock (26 yr) After 2004 mainshock (5 yr)
| [ ] ] T T T

A ® B

Ot vt

Focalmechanism
| & strike-slip %
@ normal %

e "

Andaman

Focalmechanism o
[ & strike-slip%
@ normal % N

¢ 124

Colored by earthquake focal mechanism
T T
1
T

28 events 21 events
| | | | | |

L T T

ek

Coulomb stress 15°
@ decrease %

& increase %

In @ ]

Coulomb stress

@ decrease %
& increase %

Colored by stress imparted by 2004 mainshock
=TT

- 4 b 13° 4

i Coulomb stress )

1 change (bar) 12°4
-

i 100 110

23 events used 20 events used
1 1 1 1

L
93° 94° 95° 96° 97° 94° 95° 96°  97°

Fig. 4. Shutdown of transform events and activation of rift events. (A-B)
M > 5.2 earthquakes colored by their rake (blue < —135° < red). (C-D) Earth-
quakes colored by the stress change imparted by the 2004 mainshock, using
the (9) source and friction = 0.4; mechanisms with negligible stress changes
(ACFF < [0.05| bar) are excluded from the pie charts. Receiver faults are
taken to be the most-northerly striking nodal planes of each pair. (A and C)
Earthquakes before the 2004 mainshock; (B and D) earthquakes afterwards.
The Coulomb model in (D) is judged relative to the control in (C) following
(30), with a 54% improvement in fit (Table S1). A similar analysis of the earth-
quakes in Box S of Fig. 2 is given in Fig. S7.
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Dynamic Coulomb stress 320 s after nucleation, resolved on N-striking vertical right-lateral faults typical of the transform sections (A), and on

N45 °E-striking 45°dipping normal faults typical of the rift sections (B). (C) Stressgrams at a rift-transform junction; the p wave arrival is seen at 118 s,
and the peak positive pulses have approximately 10-s durations. (D) Spectrum shows the static (zero frequency) stress changes, and the much higher stress

at approximately 26 s on the transforms in comparison to the rifts.

shear and unclamping of faults are taken to promote failure, with
the influence of unclamping controlled by friction.

Dynamic Stress

We first seek to explain these observations by the dynamic Cou-
lomb stress carried by the surface waves. An isotropic PREM was
used as the spherically-symmetric reference Earth structure (21).
Implementation of the direct Green’s function method (22, 23)
involved all spherical harmonic degrees from 0-3000, and discre-
tization of the finite fault plane into approximately 35 km?
patches sufficient to sample the wavefield with at least 10 points
per wavelength. We use 6 x 6 km grid spacing, low-pass filtered
with a corner period of 10 s, and calculate the stress at 10 km
depth (for comparison, the depth of post-mainshock rift events

A Stressgrams

B Peak dynamic stress
on transforms

on transforms

Transform

receivers ‘4
i 4
==

Coulomb stress (bar) Coulomb stress (bar)

Coulomb stress (bar)

is 13 £7 km). For simplicity, we use the Banerjee et al. (10)
source model composed of eight rectangular surfaces for the
dynamic stress calculation. The rupture propagates northward
at 2.8 km/s based on (24), activating 6,000 slip patches on these
eight surfaces in succession. We resolve the resulting stress on
transforms and on rifts.

Movie S1 reveals the pronounced northward directivity that
some studies infer is required to promote dynamic triggering
(4, 25); the strongest Coulomb stress waves sweep past the trans-
form section of the backarc 320-370 s after nucleation (Fig. 5 and
Movie S1). The stressgrams in Figs. 5 and 6, and Movie S1 reveal
the dynamic stress changes generated by the full array of regional
seismic phases (P, S, L, R, and the reflected phases). The peak
dynamic Coulomb stresses occur during the passage of the Love
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Fig. 6. Peak dynamic stress (the most positive value attained anytime during 1000 s minus the static stress) and stressgrams resolved on transforms (A-B), and
rifts (C-D), at 10 km depth for friction of 0.2. The peak dynamic stress along the backarc is similar (within 0.25 bar) on transforms and rifts. The stress amplitude
decays and the duration grows toward the north, in the directivity direction. Note that the stress scale for the stressgrams changes from south to north.
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wave train, similar to that found for triggering of global micro-
earthquakes (7).

We find that the peak dynamic stress is similar on rifts and
transforms over 618 °N lat. (Fig. 6). The peak stress on transform
faults exceeds 2 bar north of 12.5°N, where transform events
halted. Although some studies conclude that long period (>30 s)
energy is necessary for dynamic triggering (4, 25), long-period
stress amplitudes are higher on the transforms than on rifts
(Figs. 5D and 6), opposite to the observed transform shutdown
and rift activation. Thus, as best we can infer, the calculated
dynamic stress cannot explain the observations. The first backarc
events occur 80 min after the mainshock, and Omori decay begins
3 h after the mainshock (Fig. 7), and so detection is likely com-
plete from 3 h onward. Thus it is possible that M > 4.5 earth-
quakes struck undetected along both rifts and transforms up to
3 h of the passage of the stress waves, but not later.

Static Stress

The static Coulomb stress change is calculated using the Chlieh
et al. (9) source in Fig. 2C for fault friction of 0.4. The stress
change as a function of fault friction is shown in Fig. 8 for the
same source (9), and in Fig. S5 for the alternative source (10).
The static stress rises on the rifts and drops along the transforms
in both models, matching the observations for friction of 0.2-0.4.
Oceanic and mature continental transforms generally exhibit
evidence for low apparent friction (26, 27), most likely due to
their geometrical continuity and thick fault gouge. Oceanic and
volcanic rifts are also found to possess friction of 0.01-0.40 (28,
29), probably due to high temperature, high pore pressure, or a
thin crust. Thus, the assumption of low friction appears war-
ranted, but to reduce bias toward the expectation of low friction,
we nevertheless use friction of 0.4.

We also calculated the static stress imparted to the earthquake
nodal planes at their hypocentral depths (Fig. 4 C and D).
Although the shear stress change on each pair of nodal planes is
the same, the normal stress change is not. Thus, except for the
special case of frictionless faults, the Coulomb stress change on
the two nodal planes is different. Because of the NNE strike of
the backarc, we select the most northerly-striking plane of each
pair as the more likely fault, and find that all 21 post-2004 me-
chanisms were brought closer to Coulomb failure by the 2004
mainshock. For the control population (30), we calculate the per-
centage of pre-2004 mechanisms brought closer to failure by the
2004 mainshock, again selecting the most northerly-striking
planes, finding 65% were positive (Table S1). If two out of three
focal mechanisms are promoted at random as in the pre-main-
shock control period, the probability that all 20 shocks would
be promoted after the mainshock is 0.03%. For this test, we drew
100,000 sets of 20 earthquakes from a population in which 66%
of the events are promoted, and calculated the chance that all
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Fig. 7. Aftershock decay along the Andaman backarc-transform system,
using M > 4.7 NEIC earthquakes from the unmasked area of Fig. 2. (A) These
remote aftershocks decay with p = 1 starting 3 h after the 2004 mainshock,
with excursions after the largest aftershocks; the plot ends on 12 Jul 2011. (B)
Judging from the foregoing 32-y period, the background baseline rate is
1072 y~', suggesting that the aftershock decay ended by mid- to late-2011.
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Fig. 8. Coulomb stress at 10 km depth as a function of friction on the back-
arc system, using the 400-patch (9) mainshock source. Black vectors on the
source give fault slip azimuths. Transforms are assumed to be vertical and
rifts dip 45° southeast. Results are little changed for 15 km depth or for
60°-dipping rift normal faults. Fig. S5 shows similar results for the 8-patch
(10) source.

20 shocks will be promoted after the mainshock. By comparison,
a previous analysis (31) resolved only a subtle 5-y change in ob-
served focal mechanisms in the stress shadows of global M > 7
mainshocks.

Discussion and Conclusions

We argue that the M = 9.2 Sumatra earthquake caused a 5-y
shutdown of moderate to large earthquakes along the transform
system, and a corresponding change in focal mechanisms. The
apparent return of seismicity after 5 y (Fig. 34, Top ) mirrors
the aftershock duration for the backarc-transform system (Fig. 7):
Aftershock frequency decays with inverse time, reaching the pre-
mainshock background rate about 5 y after the 2004 mainshock.
Thus, the duration of the seismicity rate drop in the stress shadow
resembles the duration of the seismicity rate gain in the stress
trigger zones.

We consider the results we report for the Sumatra earthquake
to be more complete than but consistent with those from other
large shocks. The 1992 M = 7.3 Landers earthquake produced a
strong seismicity shutdown in its stress shadow up to 35 km from
the source, but no focal mechanism change (32). The 2011 M =
9.0 Tohoku-oki earthquake produced a focal mechanism change
inland of the megathrust—from reverse events before the main-
shock to normal mechanisms afterwards—consistent with static
stress change, but exhibited a very limited seismicity shutdown
(33). Not only does the post-Sumatra period span the full 5-y
aftershock decay, its aftershock observations exhibit all of the dis-
tinguishing features of static stress changes.

Cattin et al. (34) also calculated the static stress transferred to
the backarc by the 2004 mainshock, finding a Coulomb stress in-
crease on the transforms and a decrease on the rifts at 11°-15 °N
lat., opposite to our results. Although we use the same source (9),
our interpretations of the backarc faults differ. What we regard
as a N-S transform, they view as a set of 15-km-long en echelon
NW-striking normal faults. But such short normal faults could not
accommodate the 150 km of right-lateral displacement associated
with the opening of the Andaman Basin (35). We consider such
normal faults as a secondary features often seen near transforms.
We base our inference on 376 focal mechanisms (they used 83),
most of which are strike-slip along the transform (Fig. 44). As a
result of their fault interpretation, they infer fault friction >0.5,

Sevilgen et al.
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while we infer 0.2-0.4, consistent with studies of the other sea-
floor spreading centers. Finally, Cattin et al. (34) consider 2 y of
post-mainshock events (36), while we use 5-7 y of relocated
events (16); the longer period permits identification of the seis-
micity rate drop along the transforms.

The remote changes in seismicity rate have implications for
seismic hazards. If a mainshock can promote or inhibit earth-
quakes far from the fault rupture, it changes not just the local but
also the regional risk of subsequent earthquake damage. This is
important because damage to buildings can be more strongly in-
fluenced by moderate nearby earthquakes than by shaking from
the large distant mainshock that triggered those remote shocks.
For example, a M = 6 event 10 km from a twostory house (typical
resonant period of 0.2 s) produces the same spectral acceleration
asa M =9 earthquake 100 km away; a M = 6 shock 10 km from
a 30-story building (3 s period) produces the same spectral accel-
eration as a M = 9 earthquake 500 km away (37). Nowhere was
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this clearer than when a M = 6.3 aftershock of the 4 September
2010 M = 7.1 Darfield, New Zealand, earthquake struck 45 km
away in Christchurch five months later, tripling the insured losses
(38, 39) and causing 181 deaths.

We thus offer this study and the calculation of the full dynamic
animations as a contribution to the ongoing debate about to what
extent, and to what distance, static or dynamic stresses trigger
earthquakes (1-8). We find that the static stress imparted by
the 2004 mainshock best explains the observed changes in focal
mechanisms and seismicity rate.
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Details of the Dynamic Coulomb Stress Model. Our simulations in a
spherically-symmetric structure account for first-order directivity
effects and geometrical and intrinsic attenuation (evident in
Movie S1), but do not incorporate wave propagation through lat-
erally heterogeneous media (1). The latter would include lateral
refraction, focusing and de-focusing, and multiple scattering,
e.g., basin reverberations and amplification. We regard these
effects as important locally but of second order for the under-
standing for the character of the regional wave propagation
and amplitude of time-dependent dynamic stress at the receiver
faults. Earth’s sphericity becomes important in the phase arrival
times over the 1500 km distance between the epicenter and the
northern backarc. A limitation of our stressgrams is their 6 s
(0.17 Hz) minimum period, but at the 200-400 km distances from
the source that we consider, such short period energy is already
attenuated.

We generate synthetic seismograms using the Direct Green’s
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and Vs, density, and attenuation factors Qp and Qs in the /-Q
domain, where / denotes spherical harmonic degree. It is the
spherical equivalent of the frequency-wave number method em-
ployed for flat-layered structures (3). It has been validated against
analytic solutions, including those for elastic wave propagation in
a full space for both isotropic and shear sources [eqn 4.29 of (4)],
in a half-space the independent numerical solutions AXITRA (5)
and f-k method (3), and in a layered spherical geometry the axi-
symmetric spectral-element code AXISEM (6).

Alternative approaches to calculating the dynamic Coulomb
stresses include that of Cotton and Coutant (7), which uses a dis-
crete wavenumber reflectivity method to compute the stress field
radiated by arbitrary moment-tensor sources in plane-layered
media. From the expressions giving the potentials radiated by sin-
gle forces (5), they derived the upward and downward potentials
in the source layers. Their code has been widely used (8-14). Kar-
abulut et al. (15) used the method of Bouchon (5). Doser et al. (1)
used the code of Olsen (16), a fourth-order finite-difference
method, in which 3D basin velocity structure was included.
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Fig. S1. Magnitude of completeness as a function of time. We calculated the magnitude of completeness, Mc, for successive bins of 24 earthquakes, rather
than successive uniform time-periods, in the Sumatra-Andaman back-arc over 93°-97° lon., 6.9°-17.0° lat. by least squares. (A) The NEIC catalog from 3/7/1973
to 7/12/2011. (B) The relocated (1) catalog from 5/1/1964 to 9/5/2009 (the end of this catalog).
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Fig. S2. Comparison of the full and declustered catalog along the backarc-transform system. We declustered the NEIC catalog using the algorithm by re-
ference (1) for Mc ~ 4.5. (A) Map view. Blue dots represent surviving (declustered) earthquakes; green dots represent earthquakes that did not survive. (B) Time
series. Blue stems represent surviving earthquakes; black stems represent the full catalog.
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Results are similar to that for Fig. 8, but favor a slightly lower friction to match the earthquake observations south of 14 °N lat.
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Fig. S7. Activation of rift events south of 10° lat. imparted by the 2004 mainshock. We relocated gCMT earthquakes from Box S of Fig. 2 so that they could be

associated with the back-arc-transform system (Fig. S6). (A-B) Earthquakes are colored by focal mechanism; (C-D) earthquakes are colored by the Coulomb

stress change from the 2004 mainshock (1) using the most-northerly striking nodal planes as the receivers and friction of 0.4; (A-C) Earthquakes occurring

before the 2004 mainshock; (B-D) Earthquakes occurred after the mainshock. This rate increase was previously reported (2-4). Although these earthquakes are

close to the 2004 rupture surface and so more sensitive to the nearby megathrust slip distribution, they, too, show a change in focal mechanisms after the 2004

earthquake (A-B): whereas only 3% of the events were strike-slip before the mainshock, 24% were afterwards. Although 99% of the post-2004 mechanisms

are calculated to be promoted by the 2004 earthquake, 90% were so beforehand (C-D), yielding a 110% gain in promoted mechanisms.
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Movie S1. (1 min 22 s duration; example frame is shown.) First, the seismicity before and after the 2004 M = 9.2 Sumatra earthquake is shown in map view
and time series. Then, the dynamic Coulomb stress is shown at 10 km depth using the Banerjee (1) source rupturing northward at 2.8 km/s (2). The left panel
resolves the stress on N-striking vertical right-lateral transform faults; the right panel resolves stress on N45 °E-striking normal faults dipping 45 °SE typical of
the rift sections. The movie covers the first 1000 s after earthquake nucleation, and plays at about 20 times faster than real time.
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Table S1. Focal mechanism rate and stress change (2005-2010 relative to 1975-2004) in the region

of Fig. 3
Number of M > 5.2 mechanisms

Focal mechanism Before mainshock After mainshock Rate change
Strike-slip 15 1 0.34
Normal 13 20 8.00
Rate change = rate after mainshock/rate before mainshock.

Mainshock
Focal mechanism Before After Gain in promoted earthquakes Significance
Promoted/All 15/23 20/20 53% 0.03%

Gain = (ratio after mainshock/ratio before mainshock)~".
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