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Selection of Methods for the Detection and Estimation
of Trends in Water Quality

ROBERT M. HirscH, RICHARD B. ALEXANDER, AND RICHARD A. SMITH
U.S. Geological Survey, Reston, Virginia

One result of increased scientific and public interest in water quality over the past few decades has
been the gradual accumulation of reliable long-term water quality data records and an interest in
examining these data for long-term trends. This paper summarizes and examines some of the major
issues and choices involved in detecting and estimating the magnitude of temporal trends in measures
of stream water quality. The first issue is the type of trend hypothesis to examine: step trends versus
monotonic trend. The second relates to the general category of statistical methods to employ:
parametric versus nonparametric. The third issue relates to the kind of data to analyze: concentration
data versus flux data. The fourth relates to issues of data manipulation to achieve the best results from
the trend analysis. These issues include the use of mathematical transformations of the data and the
removal of natural sources of variability in water quality due to seasonal and stream discharge
variations. The final issue relates to the choice of a trend technique for the analysis of data records with
censored or ‘‘less than’’ values. The authors’ experiences during the past decade with the develop-
ment of several trend detection techniques and application of these techniques to a large number of
water quality records provide insight into the issues related to a choice of a statistical test for trend in

water quality.

INTRODUCTION

During the past decade, various nonparametric and semi-
nonparametric techniques for the detection of trends in
water quality data were developed and applied by many U.S.
Geological Survey investigators. Theoretical investigations
that compared the performance of these techniques with
their parametric counterparts were conducted [Hirsch et al.,
1982; Hirsch and Slack, 1984; Hirsch, 1988]. The trend
methods were also applied to an extremely large number of
stream water quality and atmospheric deposition records as
part- of several investigations [Smith et al., 1982, 1987;
Alexander and Smith, 1988; Schertz and Hirsch, 1985;
Hirsch and Gilroy, 1985]. The experiences gained during the
development and application of these methods provide valu-
able insight into the various decisions related to the choice of
a statistical test for trend in water quality data.

The purpose of this paper is to examine some of the major
issues and choices involved in selecting a method for eval-
uating changes in stream water quality over time. The
discussion draws heavily on the authors’ experiences in
conducting theoretical investigations of particular method-
ological choices, applying trend detection techniques to
numerous water quality records, and advising others on
applications of trend techniques. Specific statistical or data
manipulation techniques for dealing with issues related to
trend detection are either described or references on the
methods are provided in the paper. This discussion is not
intended to provide a comprehensive review of trend detec-
tion methodologies. Instead, the objective is to provide
guidance in the selection and use of available statistical
techniques for trend detection based on our experiences with
a wide variety of trend detection methods.

The choices involved in the selection of a trend detection
method discussed here include: (1) the type of trend hypoth-
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esis to examine (step trend versus monotonic trend), (2) the
general category of statistical methods to employ (paramet-
ric versus nonparametric), (3) the kind of water quality data
to analyze (concentration versus flux), (4) various data
manipulation choices related to the use of mathematical
transformations and the removal of natural sources of vari-
ability (discharge, seasonality) in water quality, and (5) the
choice of a trend detection technique for water quality
records with censored data.

SAMPLE COLLECTION AND ANALYTICAL METHODS

It is assumed for purposes of this examination that one or
more sets of data, which were collected over a period of
years in a consistent and reliable manner, are available to the
investigator. This means that the rules for the timing of
sample collection must be known (convenience sampling is
not acceptable), the methods of sample collection, handling,
shipment, preservation, laboratory measurement, and data
reporting conventions (rounding and reporting limits) must
be constant over the period of record. There can be excep-
tions to this requirement of constancy. Specifically, if
changes have been documented to have no effect on the
resulting data, or if changes result in known biases and these
biases are subsequently corrected in the data undergoing
analysis, then the procedures described here may legiti-
mately be used to examine the data for trend.

STEP TREND VERSUS MoNOTONIC TREND

Two primary types of trends can be considered in hypoth-
esis testing and in trend estimation. One is the step trend
hypothesis. This hypothesis assumes that the data collected
before a specific time are from a distinctly different popula-
tion than the data collected after that time. The difference
between the populations is assumed to be one of location
(e.g., mean or median) but not necessarily of scale (e.g.,
variance or interquartile range). The other trend hypothesis
is that the population shifts monotonically (i.e., no reversals
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Fig. 1. (a) A relatively continuous, monotonic increase (p <

0.001) is detected in total phosphorus concentrations for the time
period 1972-1989. Trend test is Seasonal Kendall. Solid line is
regression estimate. Dashed line is LOWESS. (b) An increase (p =
0.003) is detected in dissolved solids concentrations for the time
period 1972-1989. Within the overall increase there are notable
decreases around 1974 and during the period 1978-1983. Trend test
is Seasonal Kendall. (c) An increase (p < 0.001) is detected in
sulfate concentrations for the time period 1972-1989. Much of this
increase in sulfate concentration occurred as an abrupt rise in 1981.
Trend test is Seasonal Kendall.

of direction) over time, but does not specify if this occurs
continuously, linearly, in one or more discrete steps, or in
any other specific pattern (see examples in Figure 1). The
step trend hypothesis is much more specific than the mono-
tonic trend hypothesis. It requires that a particular fact, the
time of the change, is known prior to any examination of the
data.

Examples of techniques tailored to the step trend alterna-
tive include parametric tests like the two sample ¢ test [Iman

HiRsCH ET AL.: TREND DETECTION TECHNIQUES

and Conover, 1983] and estimates of change magnitude
based on the difference in sample means. The nonparametric
alternatives to these are the Mann-Whitney-Wilcoxon Rank
Sum test [Bradley, 1968] and the associated Hodges-
Lehmann estimator of trend magnitude [Hodges and Leh-
mann, 1963]. The parametric procedures for the monotonic
trend alternative are regression analysis [Montgomery and
Peck, 1982] of the water quality variable as a function of
time. Regression provides a measure of significance based
on a hypothesis test on the slope coefficient (or alternatively
the correlation coefficient) and a measure of magnitude, the
estimated slope. The nonparametric approach would be to
use the Mann-Kendall test for trend [Mann, 1945; Kendall,
1975), which is functionally identical to Kendall's (tau) test
for correlation [Kendall, 1975], and the associated slope
estimate developed by Sen [1968]. Numerous variations are
possible for each of the procedures mentioned. Several of
these are discussed below in the sections on seasonal vari-
ation and flow variation.

The step trend procedures should only be used in two
specific types of cases. The first is when the record (or
records) being analyzed are naturally broken into two dis-
tinct periods with a relatively long time gap between them.
There is no specific rule to determine how long the gap
should be to make this the preferred procedure. If the length
of the gap is more than about one-third the entire period of
data collection, then the step trend procedure may be best
(see Figure 2a) even if the actual trend was linear. In general,
if the within-period trends are small in comparison to the
between-period differences, then the step trend procedures
should be used. The other situation is when there is a known
event that occurred at a specific time during the record and
is likely to have resulted in a change in water quality. The
record should be divided into ‘‘before’’ and ‘‘after’’ periods
at the time of this known event. The event could be the
introduction of a new source of contaminants, reduction in
some contaminant due to completion of treatment plant
improvements, or the closing of some facility (see example
in Figure 2b). It is imperative that the decision to use step
trend procedures not be based on examination of the data
(i.e., the analyst notices an apparent step but had no prior
hypothesis that it should have occurred) or on a computation
of the time which maximizes the difference between periods.
To use such a two-step procedure would have the result of
biasing the significance level of the test. Step trend proce-
dures require a highly specific situation, and the decision to
use them should be made prior to any examination of the
data.

If there is no prior hypothesis of a time of change or if
records from a variety of stations are being analyzed in a
single study, the monotonic trend procedures are most
appropriate. In multiple record studies, even when some of
the records have extensive but not identical gaps, the
monotonic trend procedures are generally best because
comparable periods of record can be more easily examined
among all the records. In fact, the frequent problem of
multiple starting dates, ending dates, and gaps in a group of
records presents a significant practical problem in trend
analysis studies. In order to correctly interpret the data,
records examined in a multiple station study must be con-
current. For example, it is pointless to compare a 1975-1985
trend at one station to a 1960-1980 trend at another. The
difficulty arises in selecting a period which is long enocugh to
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Fig. 2. (a) For the Red River at Alexandria, Louisiana, nitrate-

nitrite concentrations measured during the 1988-1989 period are
found to be significantly (p = 0.085) lower than those measured
during 1977-1981 when tested with a step trend procedure, the
Mann-Whitney Rank Sum test. A monotonic trend procedure, the
Seasonal Kendall test, does not detect a significant trend (p =
0.167) in concentration for the period of record (1977-1989). The
Sen [1968] estimate of linear trend associated with the Seasonal
Kendall test is shown as a solid line. (b) A weakly significant (p =
0.105) reduction occurred in suspended sediment concentration in
the Green River near Jensen, Utah, following the completion of the
Flaming Gorge reservoir (located 93 miles (150 km) upstream of the
station) in late 1962. In an application of the Mann-Whitney Rank
Sum test, monthly flow-weighted concentrations of suspended sed-
iment were separated into preconstruction (1948-1962) and postcon-
struction (1963-1979) time periods.

be meaningful but does not exclude too many shorter
records.

A further difficulty involves deciding just how complete a
record must be to be included in the analysis. For example,
if the study is for 1970-1985 and there is a record that runs
from 1972 through 1985 it is probably prudent to include it in
the study. Furthermore, a 1- or 2-year gap in the middle of
the record should not disqualify it from the analysis. More
difficult are questions such as inclusion of a 1976-1984
record, or inclusion of a record that covers 1970-1975 and
1982-1985. One reasonable objective rule for deciding to
include a record would be as follows: (1) divide the study
period into thirds (three periods of equal length), (2) deter-
mine the coverage in each period (e.g., if the record is
generally monthly, count the months for which there are
data), (3) if any of the thirds has less than 20% of the total
coverage then the record should not be included in the
analysis.

PARAMETRIC VERSUS NONPARAMETRIC METHODS

The parametric procedures for trend testing are regression
in the case of monotonic trend and the two sample ¢ test
[Iman and Conover, 1983] for step trends. Associated esti-
mators of trend magnitude are the regression slope and the
difference in the means, respectively. Nonparametric alter-
natives to these procedures are the Mann-Kendall test
[Mann, 1945; Kendall, 1975] and the Rank Sum test [Brad-
ley, 1968), respectively, and their estimators of trend mag-
nitude are the Sen [1968) slope estimator and the Hodges-
Lehmann estimator [Hodges and Lehmann, 1963). The Sen
slope estimator is the median of all pairwise slopes in the
data set. The Hodges-Lehmann estimator is the median of all
differences between data in the first data set and data in the
second data set. The parametric step trend procedures are
special cases of the parametric monotonic trend 'procedures,
and similarly, the nonparametric step trend procedures are
special cases of the nonparametric monotonic trend proce-
dures. To apply the monotonic trend procedures in the step
trend case, the time variable is treated as a zero for the first
data set, and one for the second data set.

Deciding to use one procedure in preference to another
should be based on considerations of power and efficiency in
the kinds of cases one expects to encounter with actual data.
Power is the probability of rejecting the null hypothesis (of
no trend) given a particular type and magnitude of actual
trend. Efficiency is a measure of estimation error. In partic-
ular, a procedure’s relative efficiency can be measured by
the ratio of the mean square error of a competing procedure
to the mean square error of the particular procedure under
consideration. For any given significance level, the most
powerful test is the parametric procedure if residuals are
normally distributed. Similarly, the relative efficiency of
these procedures is higher when the residuals are normally
distributed. However, what should be at issue in selecting a
procedure is not performance under some ideal set of
conditions (i.e., normality) but the range of performance
abilities that occur for the types of distributions likely to
exist in the data to be analyzed.

Hirsch et al. [1982] demonstrated that water quality data
are commonly skewed. It is widely recognized that nonpa-
rametric procedures can have significantly higher power (or
efficiency) than parametric procedures in cases where there
is a substantial departure from normality and the sample size
is large (see, for example, Helsel and Hirsch [1988]). How-
ever, there is less confidence among water quality statistics
practitioners regarding the effectiveness of nonparametric
procedures in cases of minor departures from normality
and/or small sample sizes. Many of these practitioners are
inclined to consider the parametric procedure as the stan-
dard method and only use nonparametric procedures when
the data clearly demonstrate that the normal distribution
assumption is invalid. Thus is it particularly important to
consider cases where the departure from normality is suffi-
ciently small such that visual inspection of the data distribu-
tion or formal tests of normality are unlikely to provide
evidence for the lack of normality.

The following Monte Carlo analysis compares the perfor-
mance of parametric and nonparametric methods in cases of
small departures from normality and/or small sample sizes.
The results of the analysis illustrate that nonparametric
methods show modest advantages in terms of efficiency and
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Fig. 3. Normal distributions used in a Monte Carlo analysis of
parametric and nonparametric monotonic trend procedures. The
first distribution has a mean of 10 and a standard deviation of 1; the
second distribution has a mean of 11 and a standard deviation of 3.

power over parametric methods for data sets that depart
only slightly from normality. For the experiment, the data
are assumed to be distributed as a mixture of two normal
distributions. The predominant distribution has a mean of 10
and a standard deviation of 1, the second distribution has a
mean of 11 and a standard deviation of 3. Figure 3 displays
the two individual distributions and Figure 4 displays a
mixture consisting of 95% from the first distribution and 5%
from the second. Visual examination reveals only the slight-
est departure from symmetry. Given the sampling variability
that exists in an actual data set, it would be unlikely that
samples from this distribution would be identified as nonnor-
mal. Figure 5 displays a more substantial departure from
normality; it is a mixture of 80% of the first distribution and
20% of the second. There is a notable difference in the shape
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Fig. 4. A normal distribution used in a Monte Carlo analysis of
monotonic trend procedures and consisting of a mixture of data from
distribution 1 (95%) and distribution 2 (5%) shown in Figure 3.
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Fig. 5. A normal distribution used in a Monte Carlo analysis of
monotonic trend procedures and consisting of a mixture of data from
distribution 1 (80%) and from distribution 2 (20%) shown in Figure 3.

of the two tails of the distribution, but, again, the nonnor-
mality is not highly noticeable.

Random samples were generated from each of several
different mixture distributions denoted by the percentage of
the second distribution in the mixture. The mixtures consid-
ered were 0, 1, 2, 3, 4, 5, 7, 10, and 20%. Sample sizes
generated were either (N=) 6 or 36. Each sample was treated
as a time series, and for each series a slope of the data
(versus a time index) was computed by each of two methods:
regression and the Sen slope estimator. The population value
of the slope of each series was zero so the root mean square
error (RMSE) for each estimator is simply the square root of
the sums of squares of the estimates over the 1000 Monte
Carlo trials considered. The results, expressed as the ratio of
RMSE for the Sen estimator to the RMSE of the regression
estimator, are shown in Figure 6. These results show that for
the larger sample size (N = 36) the regression estimator is
more efficient (by less than 10%) when the data are normal,
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Fig. 6. The relative efficiency of the Sen slope estimator as
compared with a regression slope estimator. The efficiency is
expressed as the ratio of the RMSE of the Sen slope estimator to the
RMSE of the regression estimator and expressed as a function of
population mixture and record length.
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but with even modest amounts of mixtures the Sen estimator
becomes more efficient. In fact, at a 20% mixture the Sen
estimator is almost 20% more efficient. Interestingly, when
the sample size is very small (N = 6, smaller than one would
typically have in a trend study), the efficiency remains
virtually identical for the two estimators.

In light of these kinds of results, which show that the
nonparametric procedures suffer only small disadvantages
(in terms of efficiency or power) in the normal case, poten-
tially modest advantages when the data depart slightly
(perhaps imperceptibly) from normality, and large advan-
tages when they depart a great deal from normality [see
Hirsch et al., 1982): we have chosen to apply nonparametric
procedures routinely in studies involving multiple data sets.
It is often argued that one should attempt to transform the
data to normality and then carry out the procedure on the
transformed data. Such transformations are not always
possible (at least with the common, simple transformations)
due to heavy tails on the distribution. When such transfor-
mations are possible, it may be desirable to do so because
the parametric approaches do allow one to consider simul-
taneously (through multiple regression or analysis of co-
variance) the effects of multiple exogenous effects such as
flow variation or temperature, along with temporal trend.
Such simultaneous considerations of effects are difficult with
nonparametric techniques.

The use of parametric techniques on transformed data is
not well suited to analyses of multiple data sets. The
transformation appropriate to one data set may not be
appropriate to another. If different transformations are used
on different data sets then comparisons among results are
difficult, if not impossible. Another reason to avoid the
transformation to normality approach is that it contains an
element of subjectivity (in the choice of transformation). The
argument of the skeptic that ‘‘You can always reach the
conclusion you want if you manipulate the data enough™ is
not without merit. The credibility of results is enhanced if a
single statistical method is used for all data sets in a study.
The parametric methods, to be properly applied, require that
judgments be made about model fit, undue influence of
outliers, and distribution of residuals. Use of nonparametric
methods avoids both the effort and the potential for real or
perceived biases being imparted by the data analyst. Conse-
quently, we have used nonparametric procedures in virtually
all of the multirecord trend analysis studies we have con-
ducted. However, in an analysis of an individual record,
parametric methods, including use of transformations, can
be very suitable. Their use requires careful checking of
model fit and residuals. They are often more informative
than the nonparametric procedures in more complex appli-
cations.

CONCENTRATION VERSUS FLUX

Many time series of water quality data consist of a
sequence of instantaneous concentration measurements
(generally of a large number of chemical species) and con-
current measurements of river discharge. In fact, the exist-
ence of concurrent discharge data can be of great value in the
interpretation of concentration data as will be discussed
below under ‘‘removal of variance due to discharge.” If
discharge and concentration are both available, then the
choice can be made between examining trends in concentra-
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tions or trends in flux, the product of discharge and concen-
tration. Determination of which variable should be analyzed
for trend depends on the question to be answered. For
example, if the question is one of ambient quality in the
stream, then the concentration would certainly be the appro-
priate variable to evaluate for trends. The exposure of
organisms that reside in the stream to potentially harmful (or
beneficial) chemicals is determined by concentrations and
the time over which they persist. Flux is of no concern in this
example. Similarly, if the question is one of exposure of
some facility or population that withdraws water from the
stream, then concentration is again the variable of interest.

However, if storage of the water and its constituents is an
important factor, then flux may well be the appropriate
variable to analyze. For example, the flux of relatively
conservative constituents may be of interest in situations
where the sampling site is upstream of a reservoir, lake, or
estuary where the water has a long residence time (months to
years) and the exposure to chemicals by aquatic organisms
or populations that ingest the water is of concern. Studies
focused on mass balances (changes in the sources and sinks
of chemical species in watershed) should also lead to analy-
ses of flux. In addition, if rates of denudation of the land-
scape or rates of deposition in a large downstream water
body are of interest then analyses of flux would be appro-
priate.

It may be appropriate to evaluate trends in both concen-
tration and flux if there are multiple objectives for the study.
Knowing the trends in one of these measures will not
necessarily provide a clear indication of the trends one can
expect in the other measure. For example, one may find a
general upward trend in concentration in a case where there
are large increases in concentration occurring at low dis-
charges (associated with increased point source contribu-
tions of a contaminant), but at high flows the trends are
either nonexistent or so small that they are obscured by the
high variability of concentrations typical of high-flow condi-
tions. A trend analysis of flux would be dominated by the
ambiguous high-flow information and the large changes in
concentration at low flow would be viewed as inconsequen-
tially small.

TRANSFORMATION OF VARIABLES

One feature that is common to a great deal of water quality
data is that they depart substantially from a normal distribu-
tion. In many cases the concentration or flux data are
positively skewed with many of the observations lying close
to the lower bound of zero and a few observations lying one
or more orders of magnitude above the lower values. If the
extent of the analysis to be undertaken is simply a test for
trend over time, then the decision to make some monotonic
transformation of the data (to render them more nearly
normal) is of no consequence provided that a nonparametric
test is used. The nonparametric trend tests are invariant to
monotonic transformation (such as the logarithm or square
root). That means that in terms of significance levels the test
results will be identical whether the test was applied to the
raw data or the transformed data. The decision to transform
data is, however, highly important in terms of fitting various
models that are useful in trend analysis such as flow adjust-
ment (discussed in a later section), for computing signifi-
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Fig. 7. For the highly skewed concentrations of total phospho-
rus in this example, a trend is not evident in the raw concentrations
(p = 0.432 for trend test based on regression). A statistically
significant decline (p = 0.001) is detected using regression on
log-transformed concentrations (as shown by the solid trend line).

cance levels of a parametric test (see Figure 7), and for
computing and expressing slope or step size estimates.

Although a monotonic trend is unlikely to approximate a
linear pattern over time, one may still want to express as a
single linear equation, the history of the trend. This is true
particularly in the context of a multiple station trend analysis
where the comparison of trend slopes may be of interest. If
the actual trend is nonlinear (say, exponential or quadratic)
it is quite possible that a linear trend line fitted to the data
would predict negative values during some part of the period
of record. A fit of this type is certainly not a reasonable
approximation of the long-term trend.

One way to ensure that this will not occur is to take a log
transformation of the data prior to analysis of the trend. The
trend slope will then be expressed in log units. A linear trend
in the log units translates to an exponential trend in the
original units. To use the log transformation is not equivalent
to asserting that the trend is exponential, rather it provides
an exponential trend approximation to the actual trend in the
data (see example in Figure 8 and Table 1). To make these
trend slopes more interpretable, these log concentration
slopes can be expressed in percent per year. If B is the
estimated slope of a linear trend in natural log units then the
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Fig. 8. A linear trend fitted to log-transformed suspended sedi-
ment concentrations. In real concentration units this results in an
exponential trend. A linear trend fit to the actual concentration data
would result in negative fitted concentration values in the period
1986-1990. If the Seasonal Kendall test is used the significance of
the trend is identical for tests of concentration or log concentration.

TABLE 1. Predicted Concentrations of Suspended Sediment for
the Eel River at Scotia, California, for Selected Years

Predicted Concentration, mg/L

Equation 1972 1980 1990
(1) C = 249.8 - 18.7T* 249 100 -87
2 In C = 6.924 - 0.279T* 1016 109 7

Predictive equations (computed according to Sen) are based upon
actual and log-transformed concentrations for the 1972-1990 time
period. Equation (1) provides a linear estimate of trend in the actual
concentrations. Equation (2) is linear in the logarithms of concen-
tration. Note that equation (1) estimates a negative concentration in
1990.

*T is the difference in decimal years between the time of interest
and the base year of 1972,

percentage change from the beginning of any year to the end
of that year will be (eB - 1) x 100. If the trend is a step trend
rather than a monotonic trend and the data were transformed
prior to estimating the step size B, then the step size in
percentage terms will be (¢ — 1) x 100. If slopes or step
sizes in original concentration units are preferred, then
rather than multiply by 100 in these expressions one can
multiply by some measure of central tendency in the data (a
mean or median) to express the slope or step in the original
units.

Our experience has been that more resistant and robust
results can be obtained if log transformations are used for
data that typically have ranges of more than an order of
magnitude at a given station (see Figures 7 and 8). We have
used transformations in conjunction with parametric tests
and with nonparametric tests when the range of van'atio%is
quite large. However, in multiple record analyses, the deci-
sion to transform was made on the basis of the characteris-
tics of the class of variables being studied and not on a
case-by-case analysis. Variables on which log transforms
should typically be taken include: concentrations of sedi-
ment; total concentration (suspended plus dissolved) for a
constituent when the suspended fraction is substantial (for
example, phosphorus and some metals); concentrations or
counts of organisms; concentrations of substances that arise
from biological processes (such as chlorophyll); and flux for
virtually any constituent.

REMOVAL OF VARIANCE DUE TO DISCHARGE

In many cases a great deal of the variance in a water
quality variable (concentration or flux) is a function of river
discharge. This comes about as a result of two different kinds
of physical phenomena. One is dilution: a solute may be
delivered to the stream at a reasonably constant rate (due to
a point source or groundwater discharge to the stream) as
discharge changes over time. The result of this situation is a
decrease in concentration with increasing flow (see Figure
9a). This is typically seen in most of the major dissolved
constituents (the major ions). The other process is wash-off:
a solute, sediment, or a constituent attached to sediment can
be delivered to the stream primarily from overland flow from
paved areas or cultivated fields, or from streambank erosion.
In these cases concentrations as well as fluxes tend to rise
with increasing discharge (see Figure 95). Some constituents
can exhibit combinations of both of these kinds of behavior.
One example is total phosphorus. A portion of the phospho-
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Fig. 9. (a) LOWESS curve showing concentrations of major

ions released to the stream at a relatively constant rate, diluted by
increases in stream discharge. (b)) LOWESS curve showing concen-
trations of suspended sediment increasing stream discharge due to
_ the wash-off and transport of larger quantities of suspended sedi-
ment with increasing flow. (c) LOWESS curve showing that at low
to moderate levels of flow, phosphorus is released to the stream at
a relatively constant rate, and concentrations of total phosphorus
are diluted with increasing discharge. At higher levels of flow, the
wash-off and transport of greater quantities of phosphorus lead to
increases in concentrations of total phosphorus with increasing
discharge (1000 cubsic feet per second = 28.3 m3/s).

rus may come from point sources such as sewage treatment
plants (dilution effect), but another portion may be derived
from surface wash-off and be attached to sediment particles
(see Figure 9c¢).

The power and efficiency of any procedure for detecting
and estimating the magnitude of trends will be aided if the
variance of the data can be decreased (see example in Figure
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Fig. 10. (a) A test for trend in dissolved solids concentrations
with the Seasonal Kendall test is not statistically significant (p =
0.47). The Sen estimate of linear trend associated with the Seasonal
Kendall test is shown. (b) For the same data shown in Figure 10a),
following the removal of flow-related variability in dissolved solids
concentrations, a test for trend with the Seasonal Kendall test is
highly significant (p = 0.0001). The estimate of the magnitude of
trend in flow-adjusted concentrations is about twice the estimate of
the trend magnitude in raw concentrations. For purposes of con-
structing the plot, the residuals obtained from the concentration
versus flow regression were added to the mean dissolved solids
concentration for the period of record.

10). This can be done by removing discharge effects either
stagewise or simultaneously [Alley, 1988]. In the case of the
parametric procedure it is clearly preferable to simulta-
neously model the flow effect and the trend effect by using
multiple regression (for monotonic trend) or analysis of
covariance (for step trend). In either case, one uses dis-
charge (or some suitable transformation of discharge) as a
covariate. In the nonparametric case, the process must be
conducted in stages. The variation due to discharge is
modeled by a regression against discharge (or some trans-
formation of discharge) or by some robust curve fitting
procedure such as LOWESS (locally weighted scatterplot
smoothing [Cleveland, 1979]). Then the trend analysis is
conducted on the residuals from this relationship [see Hirsch
et al., 1982; Alley, 1988; Smith et al., 1982]. LOWESS and
linear regression fits of concentration and stream discharge
are compared for an example data set in Figure 11.

The results of such a trend analysis become, in effect, an
analysis of trends in the discharge-water quality relation-
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Fig. 11. A comparison of linear regression (solid curve) and

locally weighted scatterplot smoothing (LOWESS) (dashed curve)
fits of total phosphorus concentrations and stream discharge from
the Klamath River at Klamath, California (1000 cubic feet per
second = 28.3 m3/s).

ship. If the discharge record is stationary (trend free) then
the results of such an analysis of residuals becomes an
efficient means of detecting and estimating the magnitude of
trends in the water quality variable of interest. If the
distribution of discharge has changed over the period of
analysis, then trends in these residuals does not necessarily
translate to a trend in the distribution of the water quality
variable. Thus flow adjustment should not be used where
human activity has altered the probability distribution of
discharge, through changes in regulation, diversion, or con-
sumption during the period of the trend analysis.

REMOVAL OF SEASONAL VARIABILITY

An additional source of variation in water quality data may
be described as seasonal variation. Some constituents are
influenced by the changes in biological activity (both natural
activity and managed activity such as agriculture) in the
watershed and in the stream itself. This is certainly true of
nutrients due to the seasonal application of fertilizers and the
natural pattern of uptake and release by plants. Sediment is
also seasonally variable, due to different sources of water
dominant at different times of the year. For example, at a
given discharge in the spring the source of water may be
snowmelt, but in the summer it may be intense rainfall. The
seasonal rise and fall of groundwater can also be influential.
A given discharge in one season may derive mostly from
groundwater while the same discharge during the season of
low groundwater levels may derive from surface runoff or
quick flow through shallow soil horizons. The chemistry and
sediment content of these two sources may be quite dif-
ferent.

Some of the variation that may be initially viewed as
seasonal variation can in fact be statistically explained in
terms of variation in discharge. However, in many cases
even after the discharge effects have been removed, season-
ality remains in the data [see Hirsch et al., 1982). Conse-
quently, whether or not flow effects have been removed, it is
desirable to attempt to limit seasonal variations in the data.
In parametric procedures this can be done by the use of
trigonometric functions of time of year as explanatory vari-
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Fig. 12. Multiple linear regression with trigonometric functions
of time of year as a test for trend in concentration. Total phosphorus
concentrations, C, predicted from a multiple linear regression model
involving time, T, and season are shown with a solid curve. A
statistically significant (p < 0.001) increase in concentration is
detected by the model. A linear regression model that does not
account for seasonal variability in concentration also detects a
significant increase in concentration, but with less statistical confi-
dence (p = 0.603).

ables to remove the effects of an annual cycle (see Figure
12). Another approach is the use of qualitative variables (0 or
1 values) to indicate if a particular data value is in a
particular season. In the nonparametric procedures one can
remove the effects of seasonality without attempting to
explicitly model it as is done in the parametric case. This is
accomplished by performing the test on each of the several
individual seasons, summing the test statistics and summing
their expectations and variances. The overall test for trend
can then be carried out by using the summed test statistic
and its expectation and variance. One application of this
procedure is the Seasonal Kendall test [Hirsch et al., 1982),
and another is the Rank Sum test on grouped data [Bradley,
1968]. The estimators of trend magnitude are constructed by
taking all slopes (in the case of the Sen estimator) or all
differences (in the case of the Hodges-Lehmann estimator)
within a given season, and finding the median of all of these
values over all of the seasons (see Hirsch [1988] for a
discussion of this seasonally based Hodges-Lehmann esti-
mator).

TesTs FOR TREND IN CENSORED
WATER QUALITY RECORDS

- Water quality records of some metals and organic com-
pounds (including pesticides) commonly have data values
that are censored or reported as less than or equal to the
reporting limit of a particular analytical method. This com-
plicates the use of the previously discussed parametric
procedures and the stagewise methods for trend detection
described by Alley [1988] because the arbitrary choice of a
value to represent censored values (e.g., zero or the report-
ing limit) can give inaccurate resuits for hypothesis tests and
biased estimates of trend slopes or estimates of change
magnitude.

A parametric approach to the detection of trends in
censored water quality data is the estimation of the param-

\
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eters of a linear regression model relating water quality to
time and other explanatory variables through the method of
maximum likelihood estimation (MLE), also referred to as
Tobit estimation [Hald, 1949; Cohen, 1950). The effect of
time, discharge, season, and group (in the case of step
trends) on water quality may be modeled simultaneously in
this approach as can be done in a conventional multiple
regression. Because the MLE method assumes a linear
model with normally distributed errors, transformations
(such as logarithms) of water quality variables and discharge
are frequently useful to make the data more nearly normal
and improve the fit of the MLE regression. Failure of the
data to conform to these assumptions will tend to lower the
statistical power of the test and give unreliable estimates of
the model parameters. The type I error of the test is,
however, relatively insensitive to violations of the normality
assumption.

An extension of the MLE method was developed by
Cohen [1976] to provide estimates of regression model
parameters for data records with multiple censoring levels.
An adjusted MLE method for multiply-censored data that is
less biased in certain applications than the MLE method of
Cohen [1976) was also recently developed by Cohn [1988].
The availability of multiply-censored MLE methods is note-
worthy for the analysis of lengthy water quality records with
censored values since these records frequently have multiple
reporting limits that reflect improvements in the accuracy of
analytical methods (and reductions in reporting limits) with
time. :

The nonparametric procedures (namely the Seasonal Ken-
dall and the Rank Sum test) can be used for the detection of
trend in censored water quality data, but their use is re-
stricted to the analysis of non-flow adjusted or raw data
values since residuals cannot be computed for censored
values in either a regression or a LOWESS smooth. Because
the Seasonal Kendall test and the Rank Sum test involve
ranked comparisons of data values, only records with a
single reporting limit may be tested for trend. However,
these tests may be applied to water quality records with
multiple reporting limits if all censored and uncensored
values less than or equal to the highest reporting limit in the
record are considered to be tied with one another. The
application of the test under these circumstances may give
unsatisfactory results for records where the maximum re-
porting limit exceeds many detected values in the record (as
may occur if the reporting limit has changed significantly
over time). This is because the required recoding of data may
significantly increase the amount of censored data and
possibly restrict the evaluation of trend to a range of
concentrations that are rarely observed.

While the sign of the Sen estimate of trend magnitude
associated with the Seasonal Kendall test (and Hodges-
Lehmann estimator for step trends) is accurate for data
records with a large number of censored values, the magni-
tude of the slope estimate is likely to be in error for highly
censored records. The substitution of an arbitarily chosen
value between zero and the reporting limit for censored
values when applying one of these tests can give biased
estimates of the trend slope. While the amount of bias cannot
be stated precisely, the presence of only a few nondetected
values in a record (less than about 5%) is not likely to affect
the accuracy of the trend slope magnitude significantly.
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TABLE 2. Options for Testing for Monotonic Trends in
Uncensored Water Quality Data

Not Flow Adjusted Flow Adjusted

Fully para- Regression of C on time Regression of C on time,

metric and season season, and Q0
Mixed Regression of deseason- Seasonal Kendall on
alized C on time residuals from regression
ofConQ
Nonpara- Seasonal Kendall Seasonal Kendall on
metric residuals from LOWESS
of Con Q

C is concentration, Q is streamflow (may use a transformation of
flow), regression on season is using a periodic function of time of
year, deseasonalizing can be done by subtracting seasonal medians,
Seasonal Kendall test is Mann-Kendall test for trend done for each
season (the Seasonal Kendall test statistic is the sum of the several
test statistics), and LOWESS is locally weighted scatterplot smooth-
ing.

SUMMARY

Statistical procedures for the detection of monotonic and
step trends are summarized for uncensored data in Tables 2
and 3 and for censored data in Tables 4 and 5, respectively.
These tables provide a convenient summarization of the
various combinations of the techniques described in this
paper (although a few specific methods in the tables are not
explicitly described in the body of the paper).

The decision to examine water quality data for a step trend
(Tables 3 and 5) should be made prior to examination of the
data and should not be based on the observation of an abrupt
change during the period of record. Analysis for step trends
is most appropriate when a specific event occurred that is
likely to have resulted in a change in water quality and the
record may be clearly divided into a “‘pre” and ‘‘post’
period. Testing for step trends may also be suitable in
situations where two distinct data collection periods exist
separated by years during which data collection was discon-
tinued. In general, the monotonic trend procedures (Tables 2
and 4) are most appropriate for use if no prior hypothesis
regarding the timing of a change is known or if multiple
records that may be affected by different pollution sources
are being analyzed.

Both the monotonic and the step trend procedures in

TABLE 3. Options for Testing for Step Trends in Uncensored
Water Quality Data
Not Flow Adjusted Flow Adjusted
Fully para- Analysis of covariance C  Analysis of covariance
metric on season and group C on season, Q, and
(before and after) group
Mixed Two-sample ¢ test on Seasonal Rank Sum on
deseasonalized C residuals from regres-
sion of C on Q
Nonpara- Seasonal Rank Sum Seasonal Rank Sum on
-metric residuals from

LOWESS of C on Q

C is concentration, Q is streamflow (may use a transformation of
flow), regression on season is using a periodic function of time of
year, deseasonalizing can be done by subtracting seasonal medians,
Seasonal Rank Sum test is the Rank Sum test done for each season
(the Seasonal Rank Sum test statistic is the sum of the several test
statistics), and LOWESS is locally weighted scatterplot smoothing.
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TABLE 4. Options for Testing for Monotonic Trends in
Censored Water Quality Data

Not Flow Adjusted Flow Adjusted
Fully para-  TOBIT regression of ~ TOBIT regression of C
metric C on time and on time, season, and Q
season )
Nonpara- Seasonal Kendall No test available
metric

C is concentration, Q is streamflow (may use a transformation of
flow), TOBIT regression on season is using a periodic function of
time of year, Seasonal Kendall test is Mann-Kendall test for trend
done for each season (the Seasonal Kendall test statistic is the sum
of the several test statistics). ‘

Tables 2-5 are differentiated on the basis of their parametric
and nonparametric characteristics as well as by whether they
remove variation due to discharge. Those procedures clas-
sified as **mixed’’ in Tables 2 and 3 have both parametric and
nonparametric components that are typically executed in
separate steps. In general, the nonparametric and mixed
procedures perform appreciably better (greater power and
efficiency) than the parametric procedures for the highly
nonnormal distributions commonly encountered for many
water quality constituents. Even for small departures from
normality, the performance of the nonparametric procedures
is similar to or better than that for the parametric proce-
dures. The nonparametric and mixed techniques are partic-
ularly convenient to use in investigations of multiple data
sets because exhaustive checking of distributional assump-
tions is not required. Moreover, they offer greater compara-
bility of trend results among multiple records than may exist
in the use of the parametric procedures possibly requiring
different transformations. The parametric methods are fre-
quently more suitable in detailed studies of an individual
record where careful verification of the model fit and resid-
uals can be made.

The choice of a procedure involving flow adjustment
should be based primarily on the study objectives. If the
purpose of the study is to assess the effect of trends in
ambient concentrations on the suitability of water for use by
humans or aquatic organisms rather than to investigate the
cause of trend, then the removal of variability in concentra-
tion due to flow (or other natural causes) may not be
desirable.

Adjustment for seasonal variability is made in one of three
possible ways in the tests for use with uncensored data
described in Tables 2 and 3: (1) the use of trigonometric

TABLE 5. Options for Testing for Step Trends in Censored
Water Quality Data
Not Flow Adjusted Flow Adjusted

Fully para-  TOBIT analysis of TOBIT analysis of

metric covariance of C on covariance of C on

season and group season, @, and group

Nonpara- Seasonal Rank Sum No test available

metric

C is concentration, Q is streamflow (may use a transformation of
flow), TOBIT regression on season is using a periodic function of
time of year, and the Seasonal Rank Sum test is the Rank Sum test
done for each season (the Seasonal Rank Sum test statistic is the
sum of the several test statistics).
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functions of the time of year for the fully parametric proce-
dures; (2) the deseasonalization of concentration prior to
trend testing for the nonflow adjusted mixed procedures; and
(3) the summation of seasonal test results for the flow-
adjusted mixed procedures and for the nonparametric pro-
cedures.

The trend techniques for the analysis of censored data are
classified as either fully parametric or nonparametric in
Tables 4 and 5. Mixed procedures involving the stagewise
methods as described in Tables 2 and 3 are not applicable to
censored records because residual values cannot be com-
puted for censored data values. For the same reason, cen-
sored data records cannot be flow adjusted with nonpara-
metric procedures. Flow adjustment is only possible with the
parametric procedure, Tobit, through the inclusion of dis-
charge as a regression model term. Adjustment for seasonal
variability is made either through the use of trigonometric
functions of the time of year for the parametric procedure or
through the summation of seasonal test results for the
nonparametric procedures.

Given the widespread interest in environmental quality,
water quality assessments will continue to be an important
area of hydrologic investigation. A part of such assesment
activity is the collection of water quality data using large
networks of stations at which samples are collected and
analyzed according to a standard protocol. The proper
interpretation of these data for trends requires strict stan-
dardization of methods, adequate quality assurance, and the
proper application of statistical techniques suited to the
characteristics of the data and to the public policy questions
of interest.

The statistical tests and estimators described here, along
with the use of exploratory data analysis procedures (includ-
ing some of the types of graphics shown in this paper), can
be of great use in providing insights about water quality
trends at a given site and about water quality trends over
entire regions. The techniques presented here, and sugges-
tions about their applicability, are based on the authors’
collective experience with a wide variety of data sets over a
period of about a decade. There will continue to be needs to
develop and test new methods that improve on these. Two
particular issues that need additional development are meth-
ods that make the best possible use of existing data (in light
of potentially strong serial correlation in the data) in cases
where sampling frequencies have changed substantially over
time and robust approaches to analysis of data sets with
multiple censoring thresholds.
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