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ABSTRACT

REMOTE SENSING INVESTIGATIONS OF FUGITIVE SOIL ARSENIC
AND ITS EFFECTS ON VEGETATION REFLECTANCE 

E. Terrence Slonecker, PhD

George Mason University, 2007 

Dissertation Director: Dr. Barry N. Haack 

Three different remote sensing technologies were evaluated in support of the 

remediation of fugitive arsenic and other hazardous waste-related risks to human and 

ecological health at the Spring Valley Formerly Used Defense Site in northwest Washington 

D.C., an area of widespread soil arsenic contamination as a result of World War I research 

and development of chemical weapons.  The first evaluation involved the value of 

information derived from the interpretation of historical aerial photographs.  Historical aerial 

photographs dating back as far as 1918 provided a wealth of information about chemical 

weapons testing, storage, handling and disposal of these hazardous materials. When 

analyzed by a trained photo-analyst, the 1918 aerial photographs resulted in 42 features of 

potential interest.  When compared with current remedial activities and known areas of 

contamination, 33 of 42 or 78.5 % of the features were spatially correlated with current areas 

of contamination or remedial activity.  The second investigation involved the 

phytoremediation of arsenic through the use of Pteris ferns and the evaluation of the spectral 
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properties of these ferns.  Three hundred ferns were grown in controlled laboratory 

conditions in soils amended with five levels (0, 20, 50, 100 and 200 parts per million) of 

sodium arsenate.  After 20 weeks, the Pteris ferns were shown to have an average uptake 

concentration of over 4,000 parts per million each.  Additionally, statistical analysis of the 

spectral signature from each fern showed that the frond arsenic concentration could be 

reasonably predicted with a linear model when the concentration was equal or greater than 

500 parts per million.  Third, hyperspectral imagery of Spring Valley was obtained and 

analyzed with a suite of spectral analysis software tools.  Results showed the grasses 

growing in areas of known high soil arsenic could be identified and mapped at an 

approximate 85% level of accuracy when the hyperspectral image was processed with a 

linear spectral unmixing algorithm and mapped with a maximum likelihood classifier.  The 

information provided by these various remote sensing technologies presents a non-contact 

and potentially important alternative to the information needs of the hazardous waste 

remediation process, and is an important area for future environmental research. 
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1. Introduction 

The intentional or accidental release of hazardous substances into the environment 

is an inevitable consequence of anthropogenic activity.  Industrial, commercial, mining, 

military and even domestic activities can result in the release of substances into the air, 

land and water that are harmful to environmental quality and human health.  The 

combined industrialization and population growth of the twentieth century has resulted in 

an unprecedented release of fugitive contamination that today threatens many plant and 

animal species and may ultimately threaten the survival of the human race (Nriagu 1994).  

The discovery, detection and remediation of many hazardous waste problems consists of 

a variety of monitoring and analysis strategies that are time-consuming and expensive, 

such as laboratory chemical analysis.  One of the technologies that has an established and 

growing potential to provide a non-contact and cost-effective alternative to traditional 

sampling methods is remote sensing.  The purpose of this research is to evaluate the 

potential for relevant information to be provided to the hazardous waste remediation 

process by both traditional and emerging remote sensing technologies. 

Hazardous waste control, monitoring, remediation and related issues result in a 

staggering cost to society in terms of human and ecological health effects, negative 

externalities on real estate values (i.e., the ‘stigma’ of contamination) and the 

extraordinary burden of a massive regulatory infrastructure on economic productivity. 

    1 
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The United States Environmental Protection Agency (USEPA) estimates that complying 

with hazardous waste regulations cost nearly $32 billion in 2000, about 20 % of the cost 

for all United States (U.S.) pollution control laws (Sigman 1999).  In 1998, the U.S. 

Agency for Toxic Substances and Disease Registry (ATSDR) evaluated the medical and 

lost productivity costs from health conditions occurring in U.S. communities located near 

hazardous waste sites that were contaminated with volatile organic compounds (VOCs).  

For the 258 sites studied, the annual costs were in excess of $300 million (Lybarger et al. 

1998).

Substances are considered hazardous wastes if they are ignitable - capable of 

burning or causing a fire;  corrosive - able to corrode steel or harm organisms because of 

extreme acidic or basic properties;  reactive - able to explode or produce toxic cyanide or 

sulfide gas; or toxic - containing substances that are poisonous  to people and other 

organisms (USEPA 2006b).  In the U.S., the regulatory definition of hazardous 

substances are detailed in the Resource Conservation and Recovery Act (RCRA) and can 

be found under specific listings, along with accepted testing methods, in Chapter 40, 

Code of Federal Regulations, Section 261(40 CFR § 261) (USEPA 2006b).

Most hazardous waste is the by-product of industrial or commercial 

manufacturing processes but significant levels of hazardous substances are associated 

with agricultural chemicals such as pesticides.  However, even household waste contains 

substances such as bleach, gasoline, batteries and solvents that qualify as hazardous 

wastes.  Hazardous waste can also be naturally occurring substances, such as lead and 
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mercury, that are brought in much higher than normal exposure concentrations by 

anthropogenic processes. 

 The effects of fugitive hazardous waste are multiple and varied.  Hazardous 

wastes may pollute soil, air, surface water or underground water.  Pollution of soil may 

affect people who live on it, plants that put roots into it and animals that move over it.  

Pollution may concentrate in individual organisms and up the food chain, with serious 

additive effects in higher trophic organisms in processes called bioaccumulation and 

biomagnification (IUPAC 1993). 

The human health effects from exposure to fugitive hazardous wastes are highly 

variable but can range from acute toxicity and immediate danger to life to chronic 

exposures and a wide range of health effects.  Many studies have shown that in 

residential communities near a hazardous waste site, there is an increased risk of birth 

defects, neuro-toxic disorders, leukemia, cardiovascular diseases, respiratory and skin 

disorders (Vine et al. 2000; Berry and Bove 1997; Hall et al. 1996; Vianna and Polan 

1984).  In a comprehensive review of the literature, Vrijheid (2000) noted that there is a 

general weakness in almost all human health-hazardous waste site studies in that there is 

a lack of direct exposure measurement and this is a significant research need in order to 

better understand and quantify the risk of residential exposure to hazardous waste sites. 

Hazardous waste sites can have serious economic ramifications on the value of 

the contaminated property, as well as the value of surrounding properties and 

neighborhoods.  Research suggests that residential dwellings located near hazardous 

waste sites experience a negative impact on property values and that this impact is 
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directly related to distance from the site, generally disappearing between 3.2 and 4.8 km 

from the site (USEPA 2006a).  Interestingly some research suggests that the USEPA’s 

listing of a hazardous waste site on the National Priorities List (NPL) actually has a 

positive effect on surrounding real estate values because it leads to a formal clean-up plan 

and tends to remove uncertainty that affects market values (USEPA 2006a).  Commercial 

real estate values are often more severely affected by proximity to a hazardous waste site 

because of the fear of liability issues.  In recent years, some companies have actually 

been able to recover these “stigma damages” through legal action (Honigberg and Nolan 

2000).

On a global scale, the issue of hazardous waste is even more serious.  During the 

1980s, the development of strict environmental controls on hazardous waste in 

industrialized countries, such as the Superfund Act in the U.S., resulted in a black market 

for unregulated translocation of hazardous wastes from industrial to third-world countries 

(de Nava 1996).  International outrage at the activities of “toxic traders” led to the 

drafting and adoption of the Basel Convention of 1989.  Both the Basel Convention and 

the Rotterdam Convention of 1998 seek to stem the trans-boundary movement of 

hazardous substances and hazardous waste, especially to developing countries.  Also the 

central goal of the Basel Convention is “environmentally sound management” to protect 

human health and the environment by minimizing hazardous waste production whenever 

possible and promoting an “integrated life-cycle approach” to hazardous waste 

management which involves promoting institutional controls from the generation of a 
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hazardous waste to its storage, transport, treatment, reuse, recycling, recovery and final 

disposal (UNEP 2006). 

In the U.S., hazardous waste and hazardous waste cleanup are regulated by two 

federal statutes that are administered by the USEPA.  The RCRA was enacted by 

Congress in 1976 in order to (1) protect human health and the environment from the 

potential hazards of waste disposal, (2) conserve energy and natural resources and to 

reduce the amount of waste generated, and (3) ensure that waste is managed in an 

environmentally sound manner.  The Comprehensive Environmental Response, 

Compensation, and Liability Act (CERCLA) of 1980, commonly known as Superfund, 

and the 1986 Superfund Amendments and Reauthorization Act (SARA) provide strict 

guidelines regarding the responsibility of past and present property owners, as well as 

others, for the cost of toxic-waste cleanup.  Superfund empowers the USEPA to compel 

the owner of property contaminated by hazardous substances to clean up the site.  

Alternatively, the USEPA can conduct the cleanup and obtain reimbursement from the 

responsible parties at a later date.

A special class of hazardous waste problems relates to current or former military 

activity at active military facilities and at properties that were formerly owned by, leased 

to, or otherwise utilized by the U.S. under the jurisdiction of the Secretary of Defense.

Such properties are known as Formerly Used Defense Sites (FUDS).  The FUDS program 

is funded under the Defense Environmental Restoration Program (DERP) and 

administered by the U.S. Army Corps of Engineers (USACE).  There are over 4,400 

currently identified FUDS with an estimated cost to complete cleanup of between  
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15 and 20 billion dollars (GAO 2001).  One of the costliest and most politically charged 

cleanups of a FUDS is currently taking place in northwest Washington, D.C., at the 

American University and the surrounding neighborhood, known as Spring Valley.  The 

objective of the research described in this dissertation is the evaluation of the value of 

traditional and emerging remote sensing technologies for the cleanup of this hazardous 

waste site where remediation activity for unexploded ordnance (UXO) and inorganic 

arsenic is still in progress. 

1.1 The Legacy of Chemical Weapons (CW) 

Perhaps the most insidious and dangerous forms of hazardous waste are those 

substances that are precisely engineered and manufactured for the sole purpose of ending 

human life as quickly as possible.  

Chemical weapons, as defined by the United Nations,"… are chemical agents of 

warfare … whether gaseous, liquid or solid, which might be employed because of their 

direct toxic effect on man, animals and plants” (United Nations 1969).  The North 

Atlantic Treaty Organization (NATO) definition of a chemical agent is: "A chemical 

substance which is intended for use in military operations to kill, seriously injure or 

incapacitate people because of its physiological effects” (U.S. Army 1996). 

Poison gas weapons were first developed and extensively deployed during World 

War I (WWI).  Although some accounts differ, the first effective deployment of CW 

occurred at the battle of Ypres, Belgium, on April 22, 1915.  Chlorine gas was released 

by German forces and killed over 5,000 allied troops.  Both sides deployed and continued 
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to develop CW throughout the conflict with a total of over 92,000 killed and 1.3 million 

wounded by the end of the war (Heller 1984).  Research into new and more deadly types 

of CW continued throughout the war and saw the development of Mustard Gas, and 

deadly forms of inorganic arsenic and arsenical compounds such as arsine gas, Lewisite  

(2-chloroethenyldichloroarsine) and Adamsite (diphenylaminechlorarsine) (Bancroft 

1919).

When the U.S. finally entered WWI in 1917, one fact was disturbingly apparent;  

it was woefully behind in the development and utilization of CW and countermeasures 

such as protective clothing and gas masks.  An intense research and development 

program was initiated at several locations around the country including the American 

University, located in what is now northwest Washington, D.C.  The U.S. Army leased 

the entire campus of the college and an additional 243 hectares (ha) for the purpose of 

research, development and field testing of chemical warfare agents and countermeasures 

(Bancroft 1919). 

The legacy of that CW testing and development still exists in the area today in the 

form of UXO and soil and groundwater contamination from inorganic arsenic and other 

chemical compounds.  The American University and the surrounding neighborhood, 

known as Spring Valley, is currently the focus of a major FUDS cleanup.  

1.2 Remote Sensing and Hazardous Waste  

The process of discovering, characterizing and remediating fugitive contaminants 

in the environment is typically a long and costly endeavour.  The current cleanup of 
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Spring Valley has been underway for nearly ten years with at least another five to go and 

has cost in excess of 40 million dollars (Parsons 2003).  In the hazardous waste 

remediation process, one of the key steps is Site Characterization, the determination of 

the spatial extent and nature of the contamination.  Site characterization is often costly 

and time consuming, requiring extensive field sampling and laboratory analysis.  One 

technology that has been valuable in cleanup efforts and shows promise in providing an 

alternative to field sampling methods is remote sensing.   

Remote sensing is a generic term that encompasses a body of non-contact 

monitoring techniques that measure energy interactions to determine the characteristics of 

a target surface or medium.  Although remote sensing includes a wide variety of 

instruments and methods, such as lidar, radar, X-ray technology and acoustic instruments, 

it is most often associated with overhead imaging techniques, such as aerial photography 

and satellite imagery that record energy in the solar-reflected part of the electromagnetic 

spectrum (EMS) between 400 and 2,500 nm wavelengths.  Remote sensing has a long 

history of providing critical information to the process of identifying, characterizing and 

remediating hazardous waste problems (Titus 1982; Lyon 1987; Barnaba et al. 1991).  

Further, new and emerging remote sensing techniques show promise for characterizing 

site conditions and providing critical information to the hazardous waste cleanup process. 

The purpose of this study is to evaluate the information derived from three 

specific remote sensing analysis methods, aerial photographic interpretation, reflectance 

spectroscopy and imaging spectroscopy in the characterization and remediation of 

contamination in Spring Valley. 
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1.3 Aerial Photographic Interpretation 

One of the most fundamental forms of remote sensing is that of aerial 

photographic interpretation.  Aerial photographs have been routinely collected over the 

conterminous U.S. since the 1930s for engineering and agricultural purposes and they 

represent a rich archive of historical changes on the landscape.  The analysis of aerial 

photographs has been used for decades to assist in hazardous waste investigation and 

remediation and there is a long history of successful applications of this form of remotely 

sensed data in environmental monitoring.   

The USEPA has produced over 4,000 historical aerial photographic reports on 

hazardous waste activity that have been instrumental in environmental cleanup programs 

(Benger 2004).  These reports use the interpretation of historical aerial photographs to 

detail landscape activities, such as burial areas, landfills, vegetation stress and ground 

disturbance, as indicators of possible surface and sub-surface contamination.  While the 

use of historical aerial photographs has often been employed, there have been few, if any 

assessments of the accuracy or value of historical aerial photographic interpretation in the 

hazardous waste site cleanup process.  The relevance of historical imagery in hazardous 

waste cleanup has been documented by Titus (1982), Lyon (1987), Barnaba et al. (1991) 

and Slonecker et al. (2002).  Formal tests for the accuracy and consistency of 

photographic interpretation were developed by Congalton and Mead (1983) but these 

largely revolved around inter-analyst variability and were dependent on a relatively 

recent time frame in which landscape conditions were the same as when the photograph 

was taken and data could be field-verified.  There are inherent difficulties associated with 



10

evaluating subjective interpretation of historical photographs; most notably the inability 

to perform field checks or obtain reliable ground reference data for accuracy assessment.  

The Spring Valley FUDS remediation offers an excellent opportunity to perform a 

relative accuracy evaluation of photo-derived information by utilizing Geographic 

Information Systems (GIS) overlay technology.  This is the first of the three remote 

sensing components in this study.  By first georegistering historical aerial photographs to 

a common coordinate system, photo-interpreted features, such as ground scars and pits 

can be digitized into GIS format and overlaid on a current map of areas of known 

contamination.  This permits direct spatial correlation between features derived from 

historical aerial photographs and the areas of contamination requiring eventual 

remediation.  The results of this analysis provided a good indication of the value of 

historical photo-derived information. 

1.4  The Phytoremediation of Arsenic and Spectroscopy 

The process of remediating hazardous waste has seen the emergence of some 

interesting alternatives to the standard soil removal techniques, which are expensive, 

time-consuming and disruptive.  When soil is contaminated above certain established 

chemical concentrations, it must be removed and replaced with clean soil by regulation.  

Alternative use of innovative technologies for removal of soil contamination is also 

encouraged and one such innovative alternative for arsenic removal is that of 

phytoremediation.
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Phytoremediation is the removal of contamination by plants and in urban areas 

such as Spring Valley, phytoremediation offers distinct advantages to traditional 

techniques because it is inexpensive and far less disruptive to the community and the 

landscape than the standard soil excavation and replacement.  Phytoremediation of 

arsenic is currently being utilized in the Spring Valley cleanup and is the result of the 

discovery that the Pteris genus of ferns hyperaccumulates inorganic arsenic (Ma et al.  

2000).  The Chinese Brake Fern (Pteris vittata), the Spider Brake Fern (Pteris multifida)

and the Cretan Brake Fern (Pteris cretica) have been shown to uptake so much inorganic 

arsenic that they can actually reduce the soil arsenic concentration of a moderately 

contaminated site to acceptable levels in just a few growing seasons (Edenspace 2004; 

Blaylock et al. 2006).

Spectroscopy is the science of measuring the interaction of energy with matter 

and is a fundamental form of remote sensing investigation.  Spectroscopy has been used 

extensively in chemistry and astronomy for material identification and, with the 

development of new instrumentation, is being increasingly utilized in traditional remote 

sensing investigations.  The spectral reflectance of vegetation growing in soils containing 

heavy metals has long been a topic of remote sensing investigation and the spectral 

analysis of ferns that hyperaccumulate arsenic is an especially interesting application of 

this form of remote sensing.  Early laboratory spectroscopic and remote sensing imaging 

research successfully identified spectral signatures of heavy metal stress and applied 

these techniques to applications involving mineral prospecting and environmental 

contamination (Milton et al. 1983; Milton et al. 1989; Milton et al. 1991). 
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The second objective of this research is to study the spectral reflectance of Pteris

ferns, and other common vegetation, subjected to varying levels of soil arsenic, in a 

controlled greenhouse environment.  These results should be a valuable addition to 

remote sensing science and could potentially lead to the ability to remotely monitor via 

vegetation reflectance, both the existence of soil arsenic and the level of arsenic 

extraction.

1.5  Hyperspectral Remote Sensing (HRS) 

Spectral reflectance of vegetation and other landscape conditions has received 

renewed interest by the remote sensing community during the past decade because of the 

development of a new class of imaging technology called hyperspectral remote sensing, 

also known as imaging spectroscopy.  Many of the early and definitive studies in spectral 

reflectance utilized spectroscopic measurement instruments in a laboratory setting.  These 

instruments measured reflected energy and produced spectra, which could then be 

analyzed using standard techniques.

HRS not only collects information about reflected energy, but also collects 

imagery in very narrow bandwidths across the solar reflected part of the EMS.  The result 

is a digital file of hundreds of bands of imagery, sometimes called a ‘cube”, that can be 

analyzed with the same methods as laboratory spectra and can identify certain 

compounds, materials and conditions based on the interaction of photons with the 

molecular structure of the target material.  Spectroscopic analysis techniques can now be 

employed outside of the laboratory through the use of HRS imaging techniques and 
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portable field spectroradiometers.  The third objective of this research is to evaluate 

hyperspectral imagery (HSI) and field spectroscopic measurement techniques in the 

characterization and analysis of arsenic contamination at the Spring Valley site. 

1.6  Research Rationale 

The primary objectives of this research are the assessment of remote sensing 

technology’s ability to provide information to the decision-making processes in 

hazardous waste site investigation and remediation. While remote sensing technology, in 

its various forms, is routinely used in hazardous waste site characterization and 

remediation, it is typically utilized in very narrow and specific issues.  The rationale of 

this research effort is to link remote sensing information processes from field, laboratory 

and overhead sensors and to apply the science of remote sensing to the remediation of 

hazardous waste at an active hazardous waste remediation activity: the Spring Valley site 

in Washington, D.C.  This research will ascertain the value of traditional and emerging 

remote sensing technologies in these types of clean-up scenarios and will also expand the 

range of potential applications of remote sensing systems for future hazardous waste 

remediation. 

This research is focused on determining the effectiveness of selected remote 

sensing technologies to provide critical information along three specific lines of 

investigation.  The first involves the use of historical aerial photography in identifying 

past landscape activities that relate to current pollution problems.  The second involves 

the use of laboratory spectroscopy and a controlled greenhouse environment to document 
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the effectiveness of Pteris ferns for soil-arsenic phytoremediation and to detect the effects 

of fugitive arsenic in the soil as expressed by changes in the reflectance patterns of 

vegetation.  The third line is the evaluation of HSI to determine arsenic-induced 

vegetative stress in areas of known arsenic contamination.  This study hypothesizes three 

specific questions:

1.  What is the relative value of information derived from historical imagery to the 

information needs of the hazardous waste investigation/remediation  

process?  Stated as a set of research hypotheses: 

H0  =  Spatially explicit patterns of landscape disturbance, as derived from 

  historical aerial photographs, are NOT spatially related to future  

hazardous waste remediation requirements.   

H1  =  Spatially explicit patterns of landscape disturbance, as derived from  

historical aerial photographs, ARE spatially related to future hazardous  

waste remediation requirements. 

2.  In a controlled laboratory environment, can arsenic phytoextraction be detected and/or 

quantified, via the spectral reflectance and spectroscopic analysis of hyperaccumulating 

Pteris ferns?  Stated as a set of research hypotheses: 

H0 =  Arsenic phytoextraction by Pteris Ferns can NOT be predicted by spectral

reflectance data in the 450 – 2,500 nm region of the EMS. 

H1 = Arsenic phytoextraction by Pteris Ferns CAN be predicted by spectral

reflectance data in the 450 – 2,500 nm region of the EMS. 
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3.  In a field application, can arsenic stress and/or arsenic phytoextraction be detected 

and/or quantified via HSI and spectroradiometric data collection and analysis?  Stated as 

a set of research hypotheses: 

H0 =  Arsenic stress in common lawn grasses can NOT be identified and mapped  

by the analysis of HSI in the 450 – 2,500 nm region of the

EMS.

H1 =  Arsenic stress in common lawn grasses CAN be identified and mapped by  

the analysis of HSI in the 450 – 2,500 nm region of the

EMS.

The benefits that could be derived from this research are potentially significant.  

First, although historical imagery has been used for decades, there have been few, if any 

attempts to quantify its importance or the predictive value of information derived from 

historical photographic interpretation as related to the actual areas of hazardous waste 

contamination that require cleanup. 

Second, the spectral characterization of the hyperaccumulating Pteris ferns would 

add to the current state of knowledge about this new and potentially very important, 

phytoremediation option.  Although the Pteris ferns have been established as legitimate 

hyperaccumulators of arsenic, little is known about the physiological basis of the arsenic 

uptake (Bondada and Ma 2003).  A study of the reflectance properties of these ferns 

during the phytoremediation process could lead to an improved understanding of the 

relationship between the plant physiology and arsenic uptake of the Pteris ferns. 
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Third, the detection of stressor contaminants in the soil by way of changes in 

vegetation reflectance could be an important new tool in site characterization.  The 

traditional soil sampling process is very time-consuming and expensive.  When taking 

into account quality control factors, the standard laboratory methods and the human labor 

involved, the cost of the average soil sample today is around $2,000 per sample (Schilling 

2004).  Further, even with grid sampling procedures, soil samples are still only discrete 

points taken across a soil continuum, creating the possibility of errors of omission.  

Reliable spectral signatures from cover vegetation would be more likely to represent the 

true distribution of contamination across a continuous surface.  

Finally, demonstrating the efficacy of information derived from these diverse 

remote sensing systems across this broad spectrum of remedial data requirements would 

further not only the science of remote sensing but also its practical application in the area 

of monitoring and remediating hazardous waste sites and fugitive contamination.  Figure 

1 shows a conceptual diagram of the information flow in the process of hazardous waste 

site remediation and how the geospatial products of this type of remote sensing research 

might fit into a larger context of information management and risk reduction. 
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Figure 1.  Remote Sensing Inputs to a Geospatial Decision Making Process. The conceptual flow of 
information from remote sensing systems through the hazardous waste remediation and cleanup 
process.
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1.7 Dissertation Organization 

The remainder of this dissertation is organized in the following manner.  Chapter 

2 presents the details of several key background issues including UXO, arsenic 

contamination and the phytoremediation of arsenic.  Chapter 2 also includes a historical 

background of WWI and the activities at the American University Experiment Station 

(AUES), along with a general review of the phytoremediation of arsenic with Pteris

ferns.  Chapter 3 contains a general literature review of remote sensing topics that are 

relevant to this research.  Chapter 4 outlines the data collection and analysis methods. 

Chapter 5 presents the basic results of analyses.  Chapter 6 discusses and synthesizes the 

results, and Chapter 7 articulates the lessons learned and opportunities for additional 

research.
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2. Spring Valley, Arsenic and the American University Experiment Station  

 The historical background and context of the hazardous waste contamination and 

cleanup issues in Spring Valley are an important component to understanding the unique 

problems and challenges of this type of hazardous waste cleanup.  The Spring Valley site 

is one of the highest profile FUDS remediation efforts in the U.S.  New discoveries and 

remediation activities there attract the attention of the news media and Congressional and 

District of Columbia officials (Fatz 2001; GAO 2002).  See Figure 2. 

2.1 The Spring Valley Study Site 

The control of hazardous substances and hazardous waste facilities are regulated 

by a number of key environmental statutes such as the RCRA, CERCLA, SARA, the 

Toxic Substances Control Act (TSCA), the Clean Water Act (CWA) and the Clean Air 

Act (CAA).  Spring Valley represents a special class of hazardous waste problems 

resulting from former military activity in areas no longer under the administration of the 

Department of Defense (DOD).  The FUDS program was established as part of the 

Defense Environmental Restoration Program (DERP) under Section 211 of the SARA of 

1986.  Section 211 was codified in Title 10 of the United States Code (USC), Section 

2701.  Under the provisions of CERCLA and SARA, the cleanup and liability for FUDS 

areas is the responsibility of the DOD.

         19 
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2.2 World War I (WWI) and the American University Experiment Station 

WWI was the first global-scale conflict to employ the technology of the industrial 

revolution on the battlefield.  Although aircraft, submarines, tanks, wireless 

communication and increasingly sophisticated artillery changed the face of warfare 

forever, perhaps the most significant of the emerging technologies was the widespread 

use of CW by both sides in this conflict.  WWI was the first widespread use of such 

weapons in human history. 

 The first reported use of CW was on the Eastern Front (Germany/Russia) on 

January 3, 1915, when artillery shells filled with a tearing agent were fired from German 

positions.  The first significant use of gas on the battlefield was the second battle of 

Ypres on April 22, 1915.  German forces released Chlorine Gas, which drifted over allied 

positions and caused widespread panic and death (Irwin 1915).  British and Allied forces 

started utilizing poison gas by September of 1915 (Heller 1984). 

 The age of chemical warfare had begun and both sides' use of various types of 

CW escalated throughout the remainder of the war.  When the U.S. formally entered the 

conflict on April 6, 1917, military leaders were keenly aware that the U.S. did not possess 

the technology or expertise to deal with the CW that were being deployed on the 

European battlefields (Fries and West 1921). 
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 Therefore in order to rapidly develop and test CW and countermeasures, the U.S. 

Federal Government leased the entire campus of the American University and an adjacent 

243 ha from five private landowners.  The facility was renamed the American University 

Experiment Station (AUES) and by October 1917, laboratories, facilities, test ranges and 

proving grounds had been constructed for the development and testing of CW such as 

Mustard Gas and Lewisite (Fries and West 1921). 

Figure 2. The Spring Valley Study Area.  The Boundary of the Spring Valley Study Site in 

northwest Washington D.C. overlain on the 1994 USGS Digital Orthophoto Quarter Quadrangles 

(DOQQ), Washington West NW and Washington West SW.



22

 Research and testing included both offensive and defensive measures.  This 

included ordnance and delivery mechanisms such as artillery shells and grenades, human 

and animal toxicity, chemical persistency in the environment and poison gas 

countermeasures such as gas masks and protective fabric for clothing, tents and trench 

curtains.  Figures 3 and 4 show ground photos of weapons and smoke candle testing 

being conducted at the AUES during the 1917–1918 operations. 

When the armistice was signed on November 11, 1918, the AUES was in full 

operation and found itself suddenly without an urgent mission.  Over the next several  

months, the station was shut down.  Troops and staff were released, buildings were razed 

and much of the chemical and munitions inventory was either moved or buried at various 

locations around the AUES property.  As a result, the Spring Valley area was left with a 

toxic legacy of buried munitions and soil contamination from inorganic arsenic. 

 The area today mostly consists of single family residential homes.  American 

University occupies most of the original AUES ground in the southeast corner of the 

study area and Sibley Hospital is located in the southwest corner.  See Figure 2. 

In spite of anecdotal evidence, the environmental situation went generally 

unnoticed until March 1986 when officials of American University, because of planned 

building construction, requested that the USACE conduct an investigation into possible 

buried chemical munitions on the campus.  The USACE completed its investigation in 

October of that year and concluded that there was no evidence of buried munitions and 

no further action was necessary.    
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Figure 3.  Ordnance Testing at the AUES: Above:  A CW-laden mortar shell explodes releasing 

shrapnel and chemical agent to volatilize in the air.  Below: field testing of smoke candles (AUES

1918).
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Figure 4.  Livens Battery Firing at AUES.  Live fire tests utilizing Livens mortars fired 

from the Western edge of American University to the west towards the Dalecarlia Woods 

(AUES 1918).
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 In 1993, a construction crew accidentally unearthed several 75 mm mortar shells 

near the 52nd Court cul-de-sac in the northwest part of the study area.  This resulted in a 

full Superfund remedial investigation.  Although the USACE removed over 200 pieces of 

ordnance from a burial pit near the 52nd Court cul-de-sac, the final recommendation of 

the Remedial Investigation, signed by both the USACE and the USEPA was “No further 

action is necessary” (Parsons 1995). 

 In 1998, at the request of the Health Department of the District of Columbia 

(DCDOH), the USACE returned to investigate possible munitions on the property of the 

Korean Ambassador on Glenbrook Road.  Two major burial pits were discovered 

resulting in the removal of another 200+ pieces of ordnance and other items.  This 

resulted in the initiation of a second Spring Valley investigation (termed Operation Safe 

Removal) and has resulted in several significant UXO extractions and the discovery of 

elevated levels of arsenic in the soils around Spring Valley (Parsons 2003).  This work is 

ongoing and this research will contribute to the cleanup and risk assessment decisions in 

the current remediation effort. 

2.3  Unexploded Ordnance (UXO) and Arsenic Contamination 

The pollution profile in Spring Valley consists of two primary elements:  UXO 

and inorganic arsenic.  An example of unearthed UXO from Spring Valley is shown in 

Figure 5.  Livens and 75 mm mortar shells have been discovered still containing 

explosives and chemical agents from the AUES operations.   
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UXO is a legacy of modern warfare and a worldwide threat to human and 

ecological health and safety.  UXO is defined as: Explosive Ordnance that has been 

(1) primed, fused, armed or otherwise prepared for action; (2) fired, dropped, launched, 

projected, buried or placed in such a manner as to constitute a hazard to operations 

installations, personnel or material; and (3) that remains unexploded either by design, 

malfunction or for any other cause (United Nations 2004).  UXO consists of land mines, 

bombs, grenades, mortars and other types of explosive warfare devices that are left in the 

upper soil horizons after military activity has ceased.  They may have been placed below 

the soil as a result of direct battlefield tactics, as in land mines, aerial bombing, mortar or 

artillery warfare or, as in the case of Spring Valley, disposal.  UXO devices usually 

remain explosive and present a serious risk.  In addition, some UXO, as in Spring Valley, 

can carry a secondary and more serious threat, in terms of a chemical warfare agent, 

which could harm others beyond the immediate impact of the explosion.  UXO is a 

serious problem in countries such as Vietnam, Afghanistan, Angola, Bosnia, Cambodia, 

Nicaragua and Zimbabwe.  Over 800 people are killed each month as a result of 

accidental UXO explosions (Siegel 1995).  In the U.S., it is estimated that there are over 

16,000 UXO sites that need remediation (Knickerbocker 2002). 
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 Arsenic is the other major contamination problem in Spring Valley and in many 

of the FUDS locations that were involved with CW development.  Because of its toxicity, 

arsenic and arsenical compounds were used as the basis for many of the chemical warfare 

compounds that were developed in WWI.  Over 200 arsenical compounds were 

experimented with at the AUES (Fries and West 1921). 

  Arsenic is an elemental substance that has been known to be highly toxic to 

human health since Greek times.  Arsenic is toxic at very low doses and the current 

USEPA action level for arsenic removal from soil is only 43 parts per million (ppm) 

Figure 5.  Examples of UXO. Unexploded 75 mm artillery shells excavated from a pit in 

Spring Valley.  Some shells still contained explosives and deadly arsine gas. 
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(CERCLA 1980).  Although it has been used throughout history in various medicinal 

purposes, it is generally associated with its toxicity and killing powers, having gained 

nicknames like “the inheritance powder” in France and has been one of the most popular 

substances used in malevolent poisonings through the 19th Century (Gorby 1994).

Arsenic is a waste product of many mining processes, has been used extensively in the 

pesticide industry and until recently, used widely as a wood preservative (Azcue and 

Nriague 1994). 

 Although it is often associated with heavy metals, arsenic is classified as a 

transition element and a metalloid, reflecting the fact that it commonly forms complexes  

with metals.  It also readily reacts to form covalent bonds with carbon, hydrogen and 

oxygen.  Because of these chemical properties, arsenic readily bonds to soil, especially 

soils that contain iron as are found in Spring Valley.

           Arsenic is a major contaminant of soils and waters in the U.S. and other countries.  

Contamination of surface water, ground water and drinking water by arsenic poses 

significant health risks to humans and animals.  Arsenic is a known carcinogen and 

mutagen, is detrimental to the immune system and contributes to skin, bladder and other 

cancers (NRC 1999).  According to the U.S. Geological Survey (USGS), in 24 % of the 

counties in the U.S. where data are available, at least 10 % of water samples have arsenic 

concentration exceeding 10 parts per billion (ppb), the World Health Organization’s 

(WHO) arsenic limit in drinking water (Focazio et al. 1999).  Approximately 6 % of the 

U.S. small public water supply systems had water arsenic concentrations exceeding 10 

ppb and 1 % of such systems had concentrations exceeding 50 ppb, the current U.S. 
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maximum limit of arsenic in drinking water (Focazio et al. 1999).  In some parts of the 

world, arsenic occurs naturally in groundwater.  For example, a recent survey indicates 

that 80 % of total area, and 40 million people, are at risk of arsenic poisoning in 

Bangladesh, where more than 7,000 patients are seriously affected by arsenic in drinking 

water (Karim 2000). 

 Arsenic is a naturally occurring element in rocks, soils and the waters in contact 

with them.  Before 1968, inorganic forms of arsenic were used extensively in agriculture 

as insecticides and herbicides.  Frequent application at high rates of these chemicals 

caused significant arsenic accumulation in orchard soils.  Inorganic forms of arsenic have 

since been replaced with organic forms because of their reduced phytotoxicity and overall 

environmental burden.  However, excessive additions of any arsenic compounds can 

cause pollution of nearby ground and surface waters (Duble et al. 1978).  Arsenic 

concentrations as high as 500 ppm have been reported in soils having a history of arsenic 

pesticide or herbicide applications.  These types of arsenic-contaminated soils can also 

become a source of contamination in surface water, ground water and drinking water.  

Fugitive environmental arsenic is still produced today as a result of various mining, 

industrial and manufacturing operations (Azcue and Nriague 1994).   

 High levels of soil arsenic have been detected throughout Spring Valley and often 

require extensive soil sampling and expensive removal for remediation.  Arsenic in many 

places in Spring Valley could be related to ordnance, chemical experiments and 

production in the AUES laboratories.  High soil arsenic could also be the result of 

outdoor “persistency” testing or the result of air deposition from outdoor tests of weapons 
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and candles that created arsenic laden clouds that drifted across the landscape and were 

deposited on the surface by wind and other weather conditions.  An innovative, non-

contact method for characterizing levels of arsenic contamination through the reflectance 

characteristics of surface vegetation, such as lawn grasses, would be a tremendously 

useful and cost-effective alternative to traditional soil sampling here and at many arsenic 

contaminated areas around the world. 

2.4 Arsenic Phytoremediation 

Phytoremediation is the process of removing contaminants from the environment 

using plants.  In general, when plants uptake water and nutrients from the soil, they 

sometimes uptake hazardous chemicals or metals also where they are stored in the plant 

tissues, reduced to less dangerous forms or changed into gases and released into the air.  

Plants can also aid cleanup by sorbing hazardous materials to their roots or reducing 

chemicals to less dangerous forms as a result of microbial or bacterial action from the 

plant roots (USEPA 2001).  Phytoremediation is most often used to remove contaminants 

from soils, but has also found applications in air and for groundwater (USEPA 2001; 

Boyajian and Devedjian 1997; Peart 1993).  Phytoremediation is an attractive alternative 

to conventional soil removal and replacement techniques because it is a natural process 

that does not disturb the landscape, it does not potentially expose workers or citizens to 

dangerous substances and it is generally much more cost-efficient (USEPA 2001). 

 In 2001, the Chinese Brake Fern (Pteris vittata) was shown to hyperaccumulate 

inorganic arsenic in soils (Ma et al. 2001).  Although there are other plants that are 



31

known to hyperaccumulate metals, the Chinese Brake is the first embryophyte (land 

plant) to hyperaccumulate arsenic and store it in the leaf cells and with its relatively large 

biomass, it instantly became a model for phytoremediation of one of the world’s major 

soil contaminants (Bondada and Ma 2003).  Since the original discovery of the Chinese 

Brake Fern, several other ferns from the Pteris family, have also been found to be 

hyperaccumulators of inorganic arsenic.  The Cretan Brake Fern (Pteris cretica) and the 

Spider Brake Fern (Pteris multifida) appear to be efficient arsenic hyperaccumulators 

(Wang et al. 2006).  Researchers have recently reported several discoveries of new 

arsenic hyperaccumulating species of Pteris taxa.  Srivastava et al. (2006) have shown 

Pteris biaurita, Pteris quadriaurita and Pteris ryukyuensis to be arsenic 

hyperaccumulators.  Wang et al. (2006) reported Pteris fauriei, Pteris aspericaulis and

Pteris oshimensis from southern China to be similar arsenic hyperaccumulators.  

However, Wang et al. (2006) also reported that Pteris ensiformis, Pteris semipinnata and 

Pteris setuloso-costulata showed no evidence of arsenic hyperaccumulation. 

The Pteris vittata fern has been shown to accumulate up to 22,630 ppm arsenic in 

the frond dry weight.  Furthermore, the bioconcentration factor, defined as the ratio of 

shoot arsenic concentration to soil arsenic concentration, was greater than ten although 

phytotoxic effects were observed once the concentration exceeded approximately 10,000 

ppm dry weight (Wang et al. 2002; Tu and Ma 2002).  The arsenic hyperaccumulating 

Pteris ferns possesses three key features that are typical of metal/metalloid 

hyperaccumulating plants; an efficient root uptake, an efficient root to shoot 

translocation, and a greatly enhanced tolerance to metal/metalloids inside the plant tissues 
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(Wang et al. 2002; Ma et al. 2001).  During the summers of 2004, 2005 and 2006 Pteris

ferns were utilized in arsenic phytoremediation pilots in Spring Valley. 

2.4.1 The Mechanisms of Arsenic Uptake 

Arsenic is a not an essential nutrient for plants, and in its inorganic form is 

generally highly phytotoxic.  In aerobic soils, arsenate is the predominant arsenic form 

and in anaerobic conditions arsenite dominates (Smith et al. 1998).  Arsenate acts as a 

phosphate analog and can disrupt phosphate metabolism, whereas arsenite reacts with 

sulfhydryl groups of enzymes and tissue proteins, eventually leading to inhibition of 

cellular function and death (Meharg and Hartley-Whitaker 2002).  Most plant species do 

not transfer significant levels of arsenic from the soil to the above ground biomass of the 

plant.  This is likely due to generally low bioavailability of arsenic in typical soils and the 

phytotoxic effects of arsenic in plant tissues (Wang et al. 2002).  The speciation of 

inorganic arsenic in the soil is critical to its availability to plants.  Arsenic in soils can 

exist as the corresponding salts of arsenite [As(III)], arsenate [As(V)], monomethyl 

arsenic acid (MMA) and dimethyl arsenic acid (DMA).  Different arsenic species have 

different solubilities and mobilities, and thus differing bioavailability to plants.  

Several researchers have demonstrated the translocation of arsenic from the soil to 

the plant and the distribution of arsenic within the plant.  Singh and Ma (2006) showed in 

controlled growth experiments that arsenic distribution was greatest in the fronds, 

followed by the rhizomes and roots in Pteris vittata and Pteris ensiformis. Wang et al. 
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(2006) showed similar results for several Pteris species from China.  Zhang et al. (2002) 

showed the same general distribution in both field and in greenhouse conditions. 

When growing in soils with moderate or high arsenic concentrations, some plants, 

such as tomatoes, accumulate arsenic in the root system, probably as part of an exclusion 

strategy (Carbonell-Barrachina et al. 1997; Dahmani-Muller et al. 2000).  When high 

arsenic concentrations are present in shoots but not in roots an efficient root-to-shoot 

transport system must be present and is likely an important component of the plant’s  

overall arsenic tolerance.  Figure 6 shows the distribution of arsenic with the different 

parts of Pteris vittata fern after growth in arsenic-amended soils in both field (~150 ppm) 

and greenhouse (~100 ppm) applications.  It has been suggested that the translocation of 

arsenic from the roots to the mature leaves may be part of a detoxification process to 

remove sequestered arsenic from the plant as the old leaves senesce and fall away (Zhang 

et al. 2002). 

There are several other important factors relating to arsenic uptake in the Pteris

taxa.  The oxidation state of arsenic appears to be very important and even suggest that 

the Pteris ferns converts As(V) arsenate to As(III) arsenite during the translocation from 

roots to fronds.  Singh and Ma (2006) showed that, after one day of exposure, As(V) was 

the dominant form of arsenic in all tissues of the Pteris vittata.  However, after five days 

or more, As(III) was the dominant form in the fronds and the rhizomes even through 

As(V) was the only form of arsenic supplied in the soil amendments.  Since arsenite is 

generally much more toxic to plants than arsenate, this transformation is not well 

understood.  See Figure 6. 
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6a

6b

Figure 6a.  The Distribution of Arsenic in Pteris vittata. The distribution of arsenic with 

the different parts of Pteris vittata fern after growth in arsenic soils in both field and 

greenhouse environments.  Figure 6b. The chromatograms of a Pteris vittata frond 

showing both As(III) and As(V) when only arsenate was available in the soil showing that

the Pteris ferns, to some extent, reduces arsenate to arsenite internally.  From Zhang et 

al. 2002, pages 171 and 175.
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Singh and Ma (2006) showed that the presence of multiple other heavy metals in 

the soil matrix, can have negative effects on plant growth and arsenic uptake in Pteris

vittata.  They also showed that other heavy metals in the soil tend to decrease arsenic 

bioavailability and decreases overall arsenic uptake. 

The previous chapter has presented some important background information for 

the current hazardous waste remediation in Spring Valley.  The WWI research and 

development of chemical warfare agents and the role of inorganic arsenic as a base 

compound for many of these agents along with the innovative use of phytoremediation, 

establishes the landscape context for the application of remote sensing technologies for 

providing information to assist in the remediation process.  The next chapter will present 

a review of the relevant scientific literature on the remote sensing technologies 

applied in this research. 
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3.  Literature Review 

This chapter provides a review of the relevant scientific literature on the science 

of remote sensing and the emerging developments in remote sensing technology as 

related to the application of the basic remote sensing systems that will collect the primary 

data for each of the experiments in Spring Valley; aerial photographic interpretation, 

reflectance spectroscopy and imaging spectroscopy.  A core, overall theme in the 

research is to ascertain the value of remote sensing as an alternative to more traditional 

methods in collecting the information necessary to remediate hazardous waste problems 

at locations such as those in Spring Valley.

3.1  Photographic Interpretation and Historical Aerial Photography

The first known aerial photographs were taken in 1858 on board a tethered 

balloon by a Frenchman named Gaspard Felix Tournachon.  Tournachon, who later 

became known by the nickname “Nadar”, successfully photographed the landscape 

around Paris, France.  Shortly thereafter, the aerial perspective proved to be so valuable 

that General George McClellan used tethered balloons to photograph and study enemy 

positions in the U.S. Civil War (Babbington-Smith 1957; Simonett et al. 1983).  Until the 

early 1900s, balloons, kites and even pigeons were used as platforms to hoist cameras 

above the land to photograph the surface below (Colwell 1997).  These platforms were, 

       36 



37

however, relatively stationary, limited in altitude and range and vulnerable (Slonecker et 

al. 2002). 

     After the advent of the airplane in 1903, the value of aircraft-based photography 

became readily apparent to many, including Wilbur Wright who took the first recorded 

photographs from an airplane in 1909.  The airplane soon became the primary platform 

for the acquisition of overhead photography.  Regular use of cameras from airplanes 

continued until WWI, when the formal development of reconnaissance systems and 

photographic interpretation science became so accurate that they completely changed the 

tactics of battlefield warfare (Colwell 1997).  Between WWI and WWII, the continuing 

development of both aircraft and photographic technology made the use of aerial 

photographs commonplace for military and intelligence applications, domestic mapping, 

planning and natural resource management.   

During WWII, the role of aerial photography and interpretation was so critical 

that it prompted German General Oberst von Fritsch to predict in 1938 that the nation 

with the best photographic interpretation will win the next war (Colwell 1997).  It is 

estimated that between 60 and 90 % of all Allied intelligence was derived from 

photographic interpretation of enemy-held areas (Colwell 1997).   

It was also during this period that the scientific discipline and training in aerial 

photography and interpretation began to become established.  Formal lines of study for 

basic photographic interpretation, photogrammetry and cartography were developed for 

military, and, after the war, for civil purposes such as geology, agriculture and forestry.  
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Universities developed courses on photographic interpretation and photogrammetry and 

adapted the technology to an ever increasing base of applications.

The art and science of photographic interpretation, along with photogrammetry 

and cartography, continued to develop throughout the post WW II period and to expand 

into new areas such as non-photographic imaging sensors like radar and thermal infrared 

(IR) imaging.  In 1961, the first photographs were taken aboard an orbital platform and 

satellite remote sensing was born.  With the application of computer graphics and 

database management software, the revolution in GIS technology began in the 1980s, and 

aerial photographs became a regular part of the typical GIS database development 

process.

As new systems, sensors and technologies became available, it became 

increasingly clear that the routine use of aerial photographs for a number of purposes had 

created a tremendous archive of historical information that could not be duplicated by the 

most sophisticated of current technologies.  Applications of historical imagery began to 

develop and continue to this day based solely on the ability of the aerial photographs to 

freeze, record and document a moment in time (Slonecker et al. 2002). 

In the 1970s, environmental awareness of the hazardous waste problems of the 

U.S. came to the forefront of public conscientiousness and led to the passage of the 

CERCLA (Superfund) in 1980.  The main goal of the Superfund program was to clean up 

abandoned hazardous waste sites, and just as in Spring Valley, the archive of historical 

aerial photographs became an invaluable source of information relating to landscape 

activities of the past.  Historical aerial photographic analysis of abandoned hazardous 
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waste sites became, and still is, a routine part of the CERCLA remedial investigation 

process.  Titus (1982) documented the critical use of historical photography in the 

assessment of hazardous waste activity relating to the groundwater contamination from 

the textile industries in Woburn, Massachusetts.  The use of historical aerial photographs 

and maps in the study of hazardous waste sites was further developed by a number of 

researchers including Erb et al. (1981), Garofalo and Wobber (1974), Lyon (1982) and 

Lyon (1987) where a temporal chronology of landscape events was reconstructed from 

the analysis of aerial photographs and maps.  Nelson et al. (1983), Philipson et al. (1988), 

Barnaba et al. (1989) and Barnaba et al. (1991) used historical and current aerial and 

satellite photographs to perform area-wide inventories of abandoned waste sites as well 

as to develop a methodology for prioritizing sites for remedial action. 

Interpretation of historical and current aerial photographs has also proved to be 

extremely valuable to the plant sciences.  Even though color and color infrared aerial 

imagery was impractical to implement on a large scale until the 1950s, early black and 

white aerial photographs were used in a number of vegetation-related applications.  

Forestry surveys with aerial photographs date back to 1919 using WWI aircraft and aerial 

photographs soon became a regular tool in many forestry applications (Parry 1973; 

Colwell 1997).  Interpretation keys based on texture, pattern, branching, height, crown 

cover, topographic location and other spatial observables were developed for the 

identification and inventory of forest products.  Zsilinsky (1963), Hegg (1967) and Sayn-

Wittgenstein (1978) all developed practical methodologies for the identification of tree 

species.
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Similarly, aerial photo applications in agriculture developed rapidly.  Thaman 

(1974) listed 71 specific applications of aerial photography for agriculture including crop 

analysis, crop maturity, livestock population, disease infestations, soil moisture and 

fertility and many others.  Crop identification with aerial photographs was the subject of 

intense research and development around 1960 (Goodman 1959, 1964; Colwell 1960; 

Erb 1968; Wood 1968).  Because of the strategic importance of estimating agricultural 

production globally, crop identification and analysis has continued through the present 

with complementary research variations with color and color infrared imagery, satellite 

imagery and combinations of large- and small-scale aerial photographs. 

   Crop identification remained a primary research topic in agricultural aerial 

photographic interpretation through the 1980s.  Researchers tested airphoto identification 

capabilities on different types of crops in different parts of the world, comparing the use 

of panchromatic versus color/color infrared film, and attempting to identify the optimum 

photo scale for aerial collection that maximized areal extent while preserving the 

necessary spatial resolution for specific crop identification (Ryerson and Curran 1997). 

In terms of Spring Valley research, the most important aspect of the use of analog 

aerial imagery lies in the techniques that were developed to identify biotic and abiotic 

stress in vegetation.  Pests, diseases, pollution, weather, environmental conditions and 

other factors that limit yields, and have major economic and human health consequences 

often affect productivity of forests and agricultural systems.  The ability to detect 

vegetation stress was one of the key aspects in the overall development of the remote 

sensing profession. 
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Murtha (1997) traces the earliest known reference for vegetation stress detection 

to Wood (1910) who described practical infrared photography “…by invisible rays”.

Taubenhaus et al. (1929) identified cotton root rot from aerial photographs.  Bawden 

(1933) reported that diseased parts of the leaf were clearly evident in infrared 

photography while negligible to the eye.  In 1935, Babel developed the first practical 

understanding of infrared reflectance in assessing vegetation health (Murtha 1997).  Van 

Atta (1936) and Ives (1939) were successful at utilizing infrared imagery to assess 

vegetation condition. 

 However, it was not until after WWII that the potential for the use of infrared 

imagery in vegetation started to be realized.  Three key papers in the late 1940s, Clark 

(1946) and Spurr (1948, 1949), established the operational parameters for the use of 

panchromatic and infrared film, filters and procedures (Murtha 1997).  Research on  

photographic interpretation of infrared film and vegetation continued through the 1950s 

with key works from Keegan and O’Neill (1951), Keegan et al. (1955) and a seminal 

paper from Colwell (1956) in identifying crop diseases from aerial photography. 

 As aerial photographic research was progressing, parallel scientific investigations 

in the laboratory of the more fundamental relationships between vegetation and energy, 

were starting to yield new, detailed understanding of specific wavelengths of the EMS 

and how those wavelengths of energy interacted with leaf structure and pigmentation in 

the process of photosynthesis and this became the basis of future spectral analysis 

applications of vegetation stress, such as the current application in Spring Valley. 
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3.2  Reflectance Spectroscopy and the Analysis of Vegetation 

 During the same period that photographic interpretation and remote sensing 

research was discovering and developing the value of imagery, and especially near 

infrared imagery, to monitor and evaluate vegetation condition and stress, other scientists 

were utilizing laboratory techniques to gain a better understanding of the component 

wavelengths of the solar reflected part of the EMS and how energy interacts with 

vegetation, pigments and leaf structure.  Laboratory spectroscopic methods generally 

employ instruments and methods that record reflected energy in very specific 

wavelengths.  These methods do not produce imagery, but instead produce spectra, a 

graphical plot of the record of energy interactions at specific wavelengths.  Figure 7 

shows a basic spectra of healthy green vegetation.  This type of  laboratory spectroscopic 

analysis of vegetation is directly related to the second remote sensing research issue in 

Spring Valley; the ability to detect and quantify, with high-resolution spectral reflectance 

data, the concentration of arsenic within Pteris ferns in the phytoremediation process. 

The use of laboratory spectral reflectance methods to gain an understanding of 

photosynthesis and related vegetative processes is a field of scientific study that has been 

ongoing for decades.  Laboratory instruments called spectrometers, spectrophotometers, 

spectrographs or spectroradiometers are all different names for instruments that 

essentially use some type of prism to separate light into its component parts and measure 

the reflectance and absorption of those component parts from a target surface.  Early 

instruments separated light into the basic colors of the spectrum.  Modern instruments 

separate light into individual nanometers of reflectance energy. 
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Using a hand held spectrograph, Rood (1879) analyzed typical vegetation and 

reported a low reflectance in the blue, a high reflectance in the green, a low reflectance in 

the red and a rapid rise in reflectance in the infrared.  Willstatter and Stoll (1913, 1918)  

investigated the interaction of light with the typical structure of the leaf using selective 

spectral absorption (Murtha 1997).  Schull (1929) studied and measured the reflectance 

of various leaves using a prism spectrophotometer to attempt to better explain leaf-energy 

interactions that occur in photosynthesis.  Measuring between 430 and 700 nm, at 

roughly 20 nm intervals, he was able to determine the basic chlorophyll absorption 

pattern of most green vegetation and even reported the common chlorophyll absorption 

Figure 7.  Basic Vegetation Spectra.  The basic solar reflected energy spectra of all green 

vegetation are characterized by reflectance peaks around 550 nm and 780 nm.  The 

absorption well at 680 nm represents the process of photosynthesis. From ENVI (2004).
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well at 680 nm, increased reflectance in mildew-stressed lilac leaves and a red shift in the 

reflectance maximum that corresponded to the development of anthocyanins in the leaf.  

McNicholas (1931), through laboratory methods, defined the spectral characteristics of 

carotin and xanthophyll, and the absorption changes that occurred during oxidation. 

The spectral characteristics of vegetation have enjoyed a wide range of interest 

through the years for military, agricultural and environmental applications.  Key papers 

by Gates et al. (1965) and Guyot et al. (1992) summarize the diverse applications of 

laboratory spectral research for vegetation studies.

All green vegetation shows a similar pattern of spectral reflectance in the visible 

and near infrared regions.  Figure 8 shows the library spectra of several different types of 

vegetation, all showing similar chlorophyll-based reflectance patterns.  The highlighted 

area represents the area of classic bimodal reflectance that is typical of healthy 

vegetation.  The bimodal reflectance pattern is caused by the chlorophyll absorption of 

blue and red wavelengths, at about 450 and 680 nm respectively, and by the reflectance 

of chlorophyll in the green wavelengths causing the peak at around 550 nm.  The second 

larger spectral peak around 780 nm is caused by the internal structure of leaf tissue that 

reflects significant amounts of energy in the near infrared.  This internal mesophyll tissue 

generally consists of irregularly shaped cells separated by interconnected openings.

Infrared radiation is strongly scattered by this structure, which combined with a general 

decrease in pigment absorption at the edge of the visible portion of the spectrum, causes a 

significant increase in reflected energy at the edge of the infrared part of the spectrum 

(Campbell 1987).   
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 Gates et al. (1965) performed some of the initial research into the spectral 

properties of specific vegetation.  Using a laboratory spectrophotometer, they measured 

and reported the reflectance, transmittance and absorption spectra for several different 

species including magnolias, red rose, cottonwood, oak and several desert succulents. 

They identified a pattern of temporal change in spectra, especially in the near infrared 

region, as a result of growing season and chlorophyll content.

Figure 8.  Spectral Similarity in Vegetation.  Spectra of several different vegetation species 

from a standard spectral library (ENVI 2004).  Note the same pattern of bimodal reflectance 

peaks in the green near 550 nm and in the near-infrared around 780 nm. 
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3.2.1 The Red Edge 

 One of the fundamental concepts that has been developed in the spectral analysis 

of vegetation has been the “Red Edge” of vegetation reflectance.  An area usually 

centered around the 720 nm area and represented by the typical sharp rise in reflectance 

in the 680–760 nm range of the classic vegetation spectral signature.  The location, size, 

shape and shifts in this Red Edge form one of the central concepts in spectral monitoring 

of vegetation condition.  See Figure 9.  Vegetation undergoing stress from exposure to 

fugitive arsenic in the soil, such as in Spring Valley, is very likely to exhibit symptoms of 

that stress in the Red Edge region. 

Although the general concept of the Red Edge is easily understood as the area of 

the sharp rise in reflectance, generally between 680 and 760 nm, a variety of definitions 

and quantitative methods for computing the Red Edge are found in the literature.  Ray et 

al. (1993) define the Red Edge as the sharp transition between absorption by chlorophyll 

in the visible wavelengths and the strong scattering in the near infrared from the cellular 

structure of leaves.  The Red Edge ( re) is defined by Horler et al. (1983) as the 

wavelength of maximum R/  , where R is reflectance and , is the specific 

wavelength.  Guyot et al. (1992) defines the Red Edge as an inflection in the sharp rise in 

reflectance between 670 and 760 nm.   

Horler et al. (1983) studied the feasibility of utilizing a Red Edge measurement as 

an indication of plant chlorophyll status.  Using derivative reflectance spectroscopy in the 

laboratory, plant chlorophyll status and Red Edge measurements were made of single 
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leaves of several different species.  By using spectroscopic and laboratory methods to 

measure the chlorophyll content of the same leaf samples, direct evidence of the Red 

Edge - chlorophyll correlation was obtained.  Important was the fact that the correlation 

was strongest when leaf chlorophyll was described on a leaf-area basis and somewhat 

weaker on a weight or thickness basis.  Ray et al. (1993) discovered significant 

differences in the size and shape of the Red Edge in different types of arid vegetation and 

found that for a common yellow grass species, there was no chlorophyll “bump” and no 

detectable Red Edge.

Figure 9.  The Red Edge. An important region of vegetation spectra known as the Red 

Edge.  Much research has focused on measuring shifts in this region corresponding to 

stress or enhancement of chlorophyll.  Basic spectra from ENVI (2004). 
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Another critical analytical feature of spectral analysis of vegetation is the shift in 

absorption and reflectance features that occur as a result of chemical and nutrient 

exposures.  A general relationship between increases in chlorophyll concentration and a 

“red shift” towards longer wavelengths has been established by several researchers.

Gates et al. (1965) showed the basic relationship between the increased chlorophyll and 

plant health and the shift of the Red Edge towards longer wavelengths.  Guyot et al. 

(1992) similarly showed that the Red Edge inflection point shifts to longer red 

wavelengths as chlorophyll concentrations increase.  This general correlation between 

chlorophyll content and red shift was confirmed by Horler et al. (1983) and Baret et al. 

(1987) for different crop species. 

More important to the Spring Valley research however, is the “blue shift” of 

vegetation spectra that occurs when vegetation has undergone stress from some mineral 

or chemical agent.  Collins et al. (1977) showed a basic blue shift in conifers affected by 

metal sulphide in the 700–780 nm region.  Horler et al. (1980) found similar blue shifts in 

tree species subjected to heavy metal concentration in the soil.  Similar blue shift results 

have been reported by Schwaller and Tkach (1985) and Milton et al. (1989, 1991).  Rock 

et al. (1988) demonstrated a 5 nm blue shift in spruce and fir species in Vermont and 

Germany as a result of stress caused by airborne acid deposition. 

Horler et al. (1980) studied the effects of heavy metals on the reflectance spectra 

of plants.  Utilizing both natural vegetation growing in known areas of metal 

concentrations, and specific greenhouse experiments, they established relationships of  
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metal stress to total chlorophyll, chlorophyll a/b ratios, and reduced reflectance at specific 

wavelengths.  Controlled experiments with pea plants and other species showed that the 

general effect of exposure to cadmium (Cd), copper (Cu),  lead (Pb) and zinc (Zn) was 

growth inhibition.  Also the pea plants showed changes in the leaf chlorophyll a/b ratios 

for exposure to Cd and Cu but showed no changes for Pb and Zn.  Metal-treated plants in 

both controlled and natural environments showed a decrease in reflectance at 850, 1,650 

and 2,200 nm and an increase at 660 nm.  Metal concentration in the soil has strong 

negative correlations to reflectance at 1,650 and 2,200 nm and strong positive 

correlations at 660 nm.  In general, the ability to measure stress effects from heavy metals 

is dependent on species, the phase of the growth cycle, and environment.  The pattern of 

vegetation stress from heavy metals and the band locations at which their effects are 

observed are likely to be similar to those in the vegetation on Spring Valley. 

3.2.2 Vegetation Indices 

The use of Vegetation Indices (VIs) has been a fundamental part of the remote 

sensing analysis of vegetation for decades.  VIs are mathematical manipulations of digital 

number values of two or more bands of data.  VIs typically stretch or enhance a particular 

part of the reflected EMS known to relate to specific vegetation qualities such as 

chlorophyll content, leaf moisture, pigment ratios and stress level.  The search for 

stressed or unusual growth patterns in cover vegetation, such as the potential arsenic 

stress patterns that might be seen in Spring Valley, would likely be enhanced by the use 

of one or more VIs that have been reported in the scientific literature. 
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The most widely known and used VI is the Normalized Difference Vegetation 

Index (NDVI), which is calculated by the following general band formula: 

                                                                   NIR  -  Red 

NDVI  =  ------------------------- 

         NIR  +  Red 

The NDVI was first proposed by Pearson and Miller (1972) and has been widely utilized 

as a general measure of vegetation condition and although the NDVI has been the most 

widely used vegetation index, it has clear limitations.  NDVI saturates in areas of multi-

layered canopy and shows non-linear relationships with critical vegetation parameters 

such as Leaf Area Index (LAI).  As a result, there has been substantial effort to develop 

new indices that improve on the shortcomings of NDVI.   

For example, the Enhanced Vegetation Index (EVI) (Running et al. 1994) was 

developed as an improvement to the NDVI for the Moderate Resolution Imaging 

Spectrometer (MODIS) instrument.  While the EVI is calculated similarly to NDVI, it 

corrects for some distortions in the reflected energy caused by the particles in the air as 

well as the ground reflectance underneath the vegetation. 

Examples of other VIs that have been used with spectroscopic data are listed in 

Table 1.  These, along with several others, will be utilized in the examination of HSI of 

Spring Valley.  Vegetation indices have often been developed for specific purposes and 

optimized to assess a specific condition or process.  Also, the emergence and increasing  
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Table 1. 

Examples of different Vegetation Indices (VI) derived from the literature. 

Index Name  Acronym General Formula   Source 

Ratio Vegetation Index   RVI     NIR/RED        Jordon 1969 

Transformed Vegetation    TVI  SQRT((B/B+G+R) + 0.5)            Rouse et al. 1973  
Index

Red Index  RI     RED/(BLUE+GREEN+RED)      Kleman & Fagerlund 1981

Green Index  GI     GREEN/(BLUE+GREEN+RED)      Kleman & Fagerlund 1981

Blue Index  BI     BLUE/(BLUE+GREEN+RED)      Kleman & Fagerlund 1981

Perpendicular              PVI  -.8736(RED) + .4866(NIR)       Richardson et al. 1983 
Vegetation Index 

NIR-Green   NG  NIR/GREEN        Demetrides-Shah   
& Court 1987 

Green-Red  GR  GREEN/RED        Demetrides-Shah  
& Court 1987 

Soil Adjusted    SAVI  (1+L)(R800 – R670)       Huete 1988 
Vegetation Index                                            (R800 + R670 + L)

Green(NIR/Red)  GNR  GREEN(NIR/RED)       Vygodskaya et al. 1989 

Red(NIR/Green)  RNG  RED(NIR/GREEN)       Vygodskaya et al. 1989 

Normalized NIR Green  NNGI  NIR-GREEN/NIR+GREEN      Vygodskaya et al. 1989 
Index

RED/(Green+Red+NIR) RGRN  RED/(GREEN+RED+NIR)      Bracher 1991   

Enhanced Vegetation    EVI     G *  NIR –RED/             Running et al. 1994 
Index                                                                           NIR+ACred – ACBlue + L 

Renormalized Difference RDVI  (R800– R670) / (R800 + R670)
1/2           Rougean & Breon 1995 

Vegetation Index      

Modified Simple Ratio  MSR       (R800 / R670– 1) / (R800 / R670+ 1) 1/2       Chen 1996 
        

Yellowness Index YI        2R/  2         Adams et al. 1999 

Reduced Simple Ratio RSR           SR (1 – (SWIR – SWIRmin)      Brown et al. 2000 
                  (SWIRmax –SWIRmin)
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availability of hyperspectral data and imagery has resulted in a new class of VIs, known 

as “narrow-band” indices that capitalize on the increased spectral resolution of 

hyperspectral data. 

For example, Chappelle et al. (1992) developed the Ratio Analysis of Reflectance 

Spectra (RARS) index to estimate the concentrations of chlorophyll a, chlorophyll b and 

carotenoids in soybean leaves.  Gamon et al. (1992) developed the Photochemical 

Reflectance Index (PRI) to estimate physiological parameters of sunflowers undergoing 

nitrogen stress.  A Reduced Simple Ratio (RSR) index was developed specifically to 

estimate LAI for Jack Pine and Blue Spruce canopies (Brown et al. 2000). 

The Modified Chlorophyll Absorption Ratio Index (MCARI) (Daughtry et al. 2000) and 

the Triangular Vegetation Index (TVI) (Broge and Leblanc 2000) were developed as very 

precise measures of chlorophyll concentration and absorption and depend on very 

specific narrow wavelengths.  Haboudane et al. (2004) successfully modified the MCARI 

and TVI indices to be less sensitive to chlorophyll effects and more sensitive to LAI.  

Penuelas et al. (1994) developed several narrow-band VIs, such as the Edge Green First 

derivative Normalized difference (EGFN) index which correlates with nitrogen content 

and was used successfully by Reusen et al. (2003) to identify stress from zinc deposition 

in pine trees using Compact Airborne Spectrographic Imager (CASI) data. 
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3.2.3  Spectral Derivatives 

 One of the key concepts in the analysis of spectral phenomena is the ability to 

extract hidden absorption and reflectance features based on the use of derivative 

functions of the polynomial spectral curve.  In situations like Spring Valley where the 

expression of vegetation stress or arsenic uptake may be only a very subtle spectral 

feature, derivatives can play a critical role in isolating and identifying those types of 

subtle, but critical features.

The derivative is a basic concept from calculus that is defined as the limiting 

value of the rate of change of a process.  At any point on a curve, the y value is changing 

with respect to x and the derivative is often defined, in its simplest terms as the change in 

y over the change in x, or y/ x.  In spectroscopy, the derivative is often defined as

R/ , where R is the reflectance and  is a specific wavelength.  The R/  function is 

often called the first derivative and subsequent or higher derivatives are created from 

simply repeating the process.  Figure 10 shows a graphic example of the first four 

derivative curves that are derived from a Gaussian band shape.   

Many researchers have utilized derivatives to bring out critical, subtle features in 

spectral analyses.  Martin et al. (1998) used the first difference spectra of forest canopies 

to identify species based on the specific patterns of nitrogen and lignin concentrations in 

the leaf.  Chen et al. (1992) used derivative reflectance spectroscopy to estimate 

suspended sediment concentrations and found that the derivative relationship was much 

less affected by environmental/atmospheric variables than the direct spectra record.  

Demetriades-Shah et al. (1990) showed that derivative spectral indices were superior to  
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broad-band measures, such as NDVI, for monitoring chlorosis in vegetation.  Tsai and 

Philpot (1991) showed that derivatives could be used to minimize the effects of 

atmospheric conditions.  

 Derivatives have been used extensively in analytical chemistry to reduce the 

effects of background noise and resolve overlapping spectra.  The first derivative has 

Figure 10.  Spectral Derivatives.  A normal Gaussian curve and a band pair with the first four 

derivatives of each.  Different levels of derivatives bring out different and subtle characteristics of 

the spectral curve that may not be readily apparent in the original spectra.  From , and Ram 

(1985, page 318). 
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often been used to isolate the specific Red Edge inflection point in vegetation spectra 

(Dockray 1981; Horler, et al. 1983).  Wessman et al. (1988) and Yoder and Pettigrew-

Crosby (1995) used the first derivative of hyperspectral reflectance data to investigate 

canopy chemistry such as nitrogen and lignin.  

Derivatives of a second order or higher can be valuable for analysis of 

hyperspectral remote sensing data because they are relatively insensitive to variations in 

illumination, sun angle, cloud cover and topographic shadow (Tsai and Philpot 1998).  

Kosmas et al. (1984) used the second derivative of reflectance spectra for the analysis of 

iron oxide minerals.  Adams et al. (1999) developed a yellowness index as a measure of 

chlorosis, which approximated the second derivative and correlated well with NDVI 

measurements from Advanced Visible InfraRed Imaging System (AVIRIS) data.  Chen et 

al. (1993) developed a derivative-based green vegetation index (GVI) that showed a 

greatly enhanced ability to estimate green cover levels and minimize the effect of 

background noise. 

 All spectra are essentially sets of x, y pairs that represent energy interactions 

against some scale of magnitude.  For imaging spectroscopy applications, the x variable 

is wavelength and the y variable is radiance or percent reflectance.  From Dixit and Ram 

(1985), the first order derivative is defined as the change in y over the change in x, or 

simply, y/ x, and can be computed for spectral data with the formula: 

 y/ x  =  (y i + 1– yi ) /  (x i + 1–xi ) 
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that determines the complete first derivative when applied to the all pairs in the spectra.  

The same formula, when applied to the results of the first derivative, results in the second 

derivative and so on. 

 Analysis of derivative data can be approached in much the same way as direct 

spectral measurements.  Values for specific band locations, such as R680 can be calculated

for the first-, second- and nth-order derivatives.  Also, spectral features of the derivative 

graph, such as the wavelength maximum and minimum reflectance can be evaluated.   

 In the Spring Valley application, the spectral effects of arsenic on cover 

vegetation and in the phytoremediation applications are generally unknown and the use of 

derivatives, along with statistical tools, may help to isolate, or even quantify, the level of 

arsenic exposure and/or uptake. 

3.3. The Evolution of Remote Sensing Technology

 The science of remote sensing has undergone tremendous change in the last 

twenty years.  In addition to significant changes in the commercial, legal and policy 

arenas in which remote sensing scientists operate, there has been a virtual revolution in 

the mechanics and technical capabilities of sensors, platforms and processing.  One of the 

most significant developments has been in the evolution of HSI (Green et al. 1998). 

 Traditional multispectral imaging sensors, such as the Landsat Multi-Spectral 

Scanner (MSS) which was developed in the early 1970s, utilized a complex system of 

optical/mechanical filters and discrete detectors to capture four individual bands at broad 

spectral resolutions on the order of 100 - 200 nm, and a spatial resolution of 
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approximately 80 m.  These detectors transmit reflected photons for each individual pixel 

through specific filters that pass broad portions of the visible and near-infrared spectrum 

and turn these signals into electronic, digital measurements.  The Landsat Thematic 

Mapper (TM) has seven bands with similar spectral resolutions and a spatial resolution of 

30 m.  These detectors transmit reflected and emitted energy for each individual pixel 

through specific filters that pass broad portions of the visible, near-infrared, and for the 

TM, also the mid- and thermal-infrared parts of the spectrum and turn these signals into 

electronic, digital measurements.  The bands were selectively placed in the spectrum to 

correspond to atmospheric transmission windows and maximize information content. 

HRS became possible in the late 1970s with the development of dispersing 

elements, grating spectrometers and line detector arrays that were capable of capturing 

the reflected electromagnetic energy over hundreds of narrow, discrete, contiguous, 

spectral bands (Green et al. 1998).  Figure 11 graphically shows the evolution of spectral 

bandwidth capabilities.  Early HRS instruments, such as the NASA Advanced Solid state 

Array Spectrometer (ASAS) and the Advanced Imaging System, developed by NASA in 

the late 1970s and early 1980s served as test bed systems that provided not only valuable 

advances in detector technology, but also provided critical proof-of-concept research for 

the continuing development of hyperspectral technology.  Commercial development of 

systems also provided critical research during the 1980s. 



58

 The power of hyperspectral technology can be seen in Figure 12 which compares 

the spectral resolution capabilities of multispectral and hyperspectral systems.  With the 

advent of HRS imaging systems were capable of providing spectroscopic analysis 

information that was previously conducted only in the laboratory.   

A major development in hyperspectral technology came with the NASA AVIRIS 

instrument which first flew in 1987.  Still operational today, this instrument images 224 

bands across the 400–2,500 nm range of the EMS and has provided data for numerous 

successful research applications in imaging spectroscopy (Green et al. 1998).  Significant 

Figure 11.  The Evolution of Spectral Remote Sensing Systems.This graphic demonstrates 

spectral resolution from basic multispectral systems into hyper- and ultra- spectral sensors 

capable of discriminating materials based on molecular structure.  Adapted from the 

Multispectral Users Guide (1995, Pages 1-7). 
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commercial hyperspectral instrument developments have also followed and HSI can now 

be purchased commercially. 

 Two unfortunate events in the development of HRS should be noted here.  First, 

the HIgh Resolution Imaging Spectrometer (HIRIS) instrument that was planned to be 

part of the NASA Earth Observing System (EOS) suite of sensors, was canceled due to 

funding considerations.  Second, the loss of the LEWIS instrument due to launch failure 

in 1996 denied the research community its first orbital hyperspectral instrument.  

However, NASA has since successfully deployed both the MODIS and Hyperion 

Figure 12.  Differences in Sensor Spectral Resolution  The reflectance spectra for the mineral, 

Alunite, as derived from the Landsat TM, MODIS and a hyperspectral laboratory 

spectrometer.  The advantages of the narrow bandwidth, as indicated in the figure above, and 

the continuous nature of the hyperspectral data for analytical purposes are readily apparent in

the detailed reflectance and absorption patterns in the hyperspectral data.  From Clark (1997, 

page 5). 
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satellites that are now operational.  Table 2 lists some early hyperspectral instruments, 

manufacturers and spectral ranges.   

 Because of area wide sampling in the study area,  there are significant data on soil 

arsenic levels and distribution.  The vegetation and soil arsenic patterns in Spring Valley 

will be analyzed with a HSI data set acquired by the HyMAP sensor in October 2000. 

3.4 The Analysis of Vegetation by Imaging Spectroscopy

As a final stage in technological evolution of sensors and systems, it is now 

possible to link the analysis of vegetation from laboratory spectroscopy (Section 3.2) 

with the development of hyperspectral imaging technology (Section 3.3) and emerge with 

the synoptic imaging capabilities of remote sensing, coupled with the spectral analysis 

capabilities of spectroscopy, to achieve one of the major research goals in Spring Valley; 

determining the ability to identify arsenic-stressed vegetation from overhead, HSI.  

Imaging spectroscopy is a relatively new scientific capability within the field of remote 

sensing that has emerged as a result of technical improvements in sensor array and 

electronic systems.  Airborne and satellite hyperspectral imaging systems can now 

measure the response of reflected and emitted electromagnetic energy in hundreds of 

individual bands across the EMS.  In many cases, the measurement of this energy gives 

unique information related to the structural or chemical composition of the material or 

substance being sensed. 
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Table 2 

Examples of Existing and Planned Hyperspectral Instruments 

Spectral

Sensor Name   Manufacturer  Bands  Range 

ASAS  Advanced Solid-State NASA   62  400 - 1,200 
  Array Spectrometer           (Goddard) 

AHS  Airborne Hyperspectral  Daedalus  48  433 - 12,700 
  Scanner 

AIS-1  Airborne Imaging  NASA   128  800 - 1,600 
  System 1  (JPL)     1,200 - 2,400 

CIS  Chinese Imaging   Shanghai Institute of 91  400 - 12,500 
  Spectrometer  Technical Physics 

Dais 7915  Digital Airborne   GER Corp  79  400 - 12,000 
  Imaging Spectrometer 

VIMS-V  Visible Infrared   ASI   512  300 - 1,050 
  Mapping Spectrometer 

AVIRIS  Advanced Visible  NASA   224  400 - 2,500 
  and Infrared                       (JPL) 
  Imaging Spectrometer 

HYDICE Hyperspectral Digital NRL   210  400 - 2,500 
  Imagery Collection 
  Experiment 

HYMAP Airborne Hyperspectral Integrated   128  400 - 12,000 
  Scanner   Spectronics 

MAS  Modis Airborne  Daedalus  50  530 - 14,500 
  Simulator 

TRWIS III TRW Imaging  TRW   384  300 - 2,500  
  Spectrometer 

MODIS  Moderate Resolution NASA   36  400 - 14,400
  Infrared Spectrometer 

Hyperion         Hyperion  TRW   384  300 - 2,500 

NEMO  Navy Earth Map  U.S. Navy  210  400 - 2,500 
  Observer 

Warfighter 1 Warfighter  U.S. Air Force  280  400 - 5,000 
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A vector of the reflected energy of a reflectance-calibrated hyperspectral image is 

a profile of an individual pixel location through all of the hyperspectral bands.  When 

viewed in graphical form, it represents the same energy and matter interactions that are 

recorded in the spectra that are derived in standard laboratory methods of reflectance 

spectroscopy. These two data sources can be analyzed with the same techniques. 

 Although early applications of HSI were focused on the identification of minerals, 

vegetation applications soon followed.  The chlorophyll absorption features centered at 

480 and 680 nm are the result of photosynthesis and are clearly evident in hyperspectral 

image data.  It was soon discovered that subtle changes in the reflectance of these regions 

were the result of biochemical changes, often in response to external factors.  The earliest 

applications of HSI for vegetation revolved around mineral exploration and the 

identification of geochemical stress in vegetation from mineral deposits (Collins et al. 

1983; Milton et al. 1983; Chang and Collins 1983). Airborne hyperspectral data have 

been used to investigate canopy chemistry by Peterson et al. (1988), Curran (1989) and 

Martin and Aber (1993, 1997).  Ecological patterns of vegetation productivity have been 

identified from HSI by Gamon and Qiu (1999), Ustin et al. (1993) and Wessman (1994).  

Vegetation type and in some cases, actual species identification has been accomplished 

with AVIRIS data by Martin et al. (1998) and Roberts et al. (1998).

  Agricultural applications of HSI analysis have been conducted by Strachan et al. 

(2002) and Thenkabail et al. (2000) where very-narrow, crop-specific VIs were 

developed from HSI and applied to the assessment of agricultural productivity.  In 

general, the use of VIs has seen a significant increase with the development and 
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availability of HSI.  Elvidge and Chen (1995), Blackburn (1998) and Thenkabail et al. 

(2000) have demonstrated the effectiveness of narrow-band VIs which continues as one 

of the most important analytical approaches in the area of spectroscopic analysis of 

vegetation.

 This literature review has presented the historical background and relevant 

literature relating to several aspects of remote sensing technology that will be utilized in 

Spring Valley research.  First, the process of utilizing historical imagery to identify  

patterns of landscape disturbance and their relationship to possible hazardous waste 

disposal or exposure is not cutting-edge science but it is an unusual and often-overlooked 

source of information.  Also, the extraction of information by the qualitative 

photographic interpretation process is sometimes viewed as less-than fully scientific and 

may account, to some extent, for the lack of full exploitation of this information resource.  

This study will evaluate the potential of this historic information source in the operational 

context of Spring Valley remediation. 

 Second, the review of laboratory reflectance spectroscopy and vegetation-specific 

research is directly related to the second Spring Valley research issue of arsenic stress 

and arsenic uptake in the phytoremediation process.  The ferns and grasses grown in the 

laboratory in soils amended with arsenic afford the opportunity to study the spectral 

phenomenon of arsenic stress and uptake in a controlled environment and potentially 

provide a “stand-off “ method for the identification of fugitive arsenic.  This review 

described the background science and techniques that have evolved in the laboratory for 



64

vegetation analysis and that will be relevant to the laboratory spectral study of the effects 

of arsenic on ferns and grasses.

Third, while the spectral study of arsenic and vegetation in the laboratory is 

important in its own right, it is also an important connection to the third aspect of this 

Spring Valley research, the analysis of HSI.  The background on the evolution of remote 

sensing systems to the point where they can now record the same energy-matter 

interactions as spectroscopy in the laboratory, as well as provide the advantages of 

synoptic spatial coverage, shows the emerging potential of this technology and its 

direct potential application for identifying fugitive arsenic in Spring Valley. 
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4.  Data Collection and Analysis Methods 

 Each of the three phases of this research are related to the direct information 

needs of the hazardous waste remedial process and to different aspects of remote sensing 

in providing that information.  The first phase involves an evaluation of the landscape-

level information derived from the interpretation of historical aerial photographs.  The 

second phase is centered on the investigation of the spectral properties of arsenic stress 

and uptake in vegetation in a laboratory environment.  The third phase focuses on the 

analysis of HSI in the identification and mapping of the spectral indicators of arsenic 

stress in Spring Valley vegetation.

This chapter is organized in the following manner.  Section 4.1 discusses the basic 

process of historical aerial photographic research, acquisition, analysis and reporting.

Section 4.2  presents the spatial overlay and analysis methodology that was used to 

evaluate photo-interpreted data against known remediation requirements.  Section 4.3 

explains the information about the greenhouse growth chamber, chemistry procedures 

and the laboratory spectral data collections.  Section 4.4 outlines the statistical analysis 

methods used to evaluate the relationship between reflectance spectra and arsenic 

concentration.  Section 4.5 examines the methods typically used for processing and 

analyzing HSI and Section 4.6 reviews the concept of land cover mapping as related to 
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Spring Valley.  Section 4.7 describes the techniques used in the statistical evaluation of 

remote sensing classification accuracy as will be employed for the Spring Valley HSI. 

4.1  Photographic Interpretation and Historical Aerial Photography 

The goal of the historical aerial photographic analysis in this study is the 

determination of the accuracy and relative value of information derived from 

interpretation of historical aerial photographs for the hazardous waste investigation 

process.  Historical aerial photographic interpretation has often been used to investigate 

past landscape activities that might be related to the disposal of hazardous waste (Lyon 

1987).  However, because of the inherent problems with verifying historical data, there 

has been little or no evaluation of the accuracy or practical value of this information.  

Since active clean-up operations have been taking place in Spring Valley for several 

years, there is extensive data available on soil sampling, geophysical investigations, UXO 

and contaminated soil removal and other potential environmental effects.  This 

information represented an excellent reference data set and was used to assess the spatial 

correlation between of data derived from the interpretation of historical aerial 

photographs and actual remediation requirements. 

This section describes the basic methodology used to develop the original 

photographic interpretation report on Spring Valley by Stout (1986).   This report, 

performed by an independent imagery analyst, Kristen K. Stout, is the only photographic 

analysis being evaluated in this study.  Although several detailed investigations of 

historical imagery of Spring Valley have been accomplished (Stout 1986; Kartman and 
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Slonecker 2001; Mata 2002; Williams 2002), this analysis focused only on the 1986 

report since it was performed before any discovery of hazardous waste or remedial 

activity had started and was conducted with little or no collateral information about the 

facility available to the analyst.  

4.1.1.  Basic Historical Aerial Photographic Methods 

 A search of government and commercial imagery archives was conducted in order 

to identify historical imagery in a time frame that may be of value for the identification of 

landscape activities that were the direct result of historical AUES-related activity.  

Imagery research was conducted at the U.S. National Archives and Records 

Administration (NARA), the U.S. Library of Congress (LOC), American University 

(AU) and other places for aerial photographs, reports, monographs, newspaper articles 

and any other records that potentially contained information about the WWI activities at 

the AUES.  Although several historical aerial photographs were discovered and acquired, 

three proved to be critical to the eventual hazardous waste investigation and are listed in 

Table 3. 

Duplicate negatives of all relevant images and copies of all reports and maps 

identified in the historical research were obtained.  Aerial photographic interpretation was 

accomplished according to standard USEPA methods (USEPA 2005).  Photo analysis 

was conducted by viewing film positives on a backlit light table with double ocular 

microscopes/stereoscopes.  When available, overlapping aerial photographs were 

analyzed in three-dimensional stereo, which gives the analyst a depth and topographic 
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perspective of the landscape.  Specific photo-identified features were extracted first as 

graphics markings and annotations on a mylar overlay to photographic print of the same 

image, along with the analysts written description of the features and the surrounding 

landscape context.  In the context of hazardous waste, photographic interpretation 

involves the identification of a distinct set of photographic observables, activities or 

conditions such as ground scars, active digging or waste disposal, that are identified and 

extracted to meet the specific information needs of the investigation.  The formal 

definitions of the specific photographic observables and standard operating procedures 

can be found in the report “Photo Interpretation: Hazardous Waste Sites.  Standard 

Operating Procedure” (USEPA 2005). 

Table 3 

Historical Aerial Photographs of the Spring Valley Area

Photo               Date of           Original       Film 

Source           Acquisition        Scale          Type               Comments  

AU           8/17/1918   1:7,500        B&W Positive uncontrolled mosaic 

USACOE    1922  unknown      B&W Print         uncontrolled mosaic 

NARA     1927  1:10,000       B&W Positive       frames 53, 96-98, 557-558
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For GIS analysis, all historical photographs were scanned at a minimum 

resolution of 1,300 dpi and registered to the Maryland State Plane Coordinate System for 

entry into a GIS database.  The overall registration accuracy for the 1918 image 8.34 m.  

All photo-interpreted features were then digitized as points, lines and polygons in a GIS 

format and attributed with appropriate descriptions.  

4.1.2.  Reference Data from Remedial Activities 

As reference points for the evaluation of historical photographic information, a  

verification dataset was developed from a variety of actual hazardous waste cleanup 

activities that have taken place over the past eight years in Spring Valley.  These include 

the following activities/events: 

1. UXO burial areas. 

2. Chemical waste burial areas. 

3. Properties with high soil arsenic concentrations, from site-wide soil 
arsenic screening. 

4. Properties with detected levels of chemical warfare agents or their 
breakdown products. 

5. Areas of relevant and confirmed contextual activities, such as the 
mustard field testing area, derived from historical document research. 

6. Areas of unusual human health problems or other activities that were 
reported, and verified by the Area of Interest Task Force, a multi-
agency team established to investigate all potential problems in Spring 
Valley.

These features, derived from ongoing remedial activities, provide documentation 

and defensible information about landscape level effects of AUES activities and establish 
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an excellent source of reference information for the evaluation of historical photographic 

interpretation features.  Features derived from aerial photographic interpretation were 

overlain with the reference data in a GIS environment to determine the spatial correlation 

between photo-interpreted features and the future requirements for hazardous waste 

remediation.  An example of photo-derived information displayed on a georegistered 

image of part of the American University area is shown in Figure 13.  

4.2 Statistical Methods Used in the Aerial Photographic Analysis 

 The first phase of this research, the evaluation of the relative relationship between 

the landscape features derived from 1918 aerial photographs and current remediation 

activities, is basically a spatial overlay/correlation process.  It is a deterministic 

evaluation of a single set of geospatial data points through time and their relationship to 

current spatial features related to hazardous waste remediation.  A test for significance 

can be accomplished by comparing the relationship between historical aerial 

photographic points of interest with a set of random points and their relationship to 

remediation (i.e., the number of aerial photographic points that fall within known 

remediation areas and the number of random points that fall within remediation areas).  

These two sets of binary data points can be tested with a chi-square statistic in a logistic 

regression model (SAS 2004).   
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4.3 Reflectance Spectroscopy of Arsenic Stress and Uptake 

A laboratory environment was used to investigate the spectral reflectance 

properties of arsenic stress and uptake in vegetation.  The primary goal of this phase of 

the research was the identification of any potential spectral signature, index, shift or other 

spectral observable that was linked to, and was predictive of, arsenic stress and/or arsenic 

uptake during phytoremediation.  To do this, Pteris ferns and common lawn grasses were 

grown in a controlled laboratory environment under contract to Edenspace Incorporated, 

Figure 13.  GIS Features Extracted by Aerial Photographic Analysis. An example of  

features derived from historical aerial photographic interpretation displayed as 

vectors on a georegistered image in a GIS environment.  Adapted from Kartman and 

Slonecker (2001). 
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the holder of the patent on phytoremediation of arsenic with ferns.  Plants were harvested 

every 4 weeks, dried and sent to a commercial chemistry laboratory for analysis of total 

metals.  Spectral reflectance data were collected for each plant just prior to harvest. 

4.3.1 Growth Chamber Methods 

From April to October 2004, 300 individual ferns and 20 individual pots of 

common lawn grasses were grown in soils amended with varying levels of sodium 

arsenate to achieve five distinct concentrations of arsenic from 0 to 200 ppm  (Blaylock 

2005).

 The ferns consisted of 100 each of two arsenic-hyperaccumulating varieties, 

Pteris cretica mayii and Pteris multifida and one non-arsenic accumulating variety, 

Nephrolepis exaltata, used as a control.  See Figure 14.  Twenty individual sporelings 

from each variety were transplanted in 10 cm pots of each of the five soil-arsenic 

concentrations.

Seeds from two types of lawn grasses common to the Spring Valley area, rye 

(Secale cereale) and fescue (Festuca arundinacea) were planted in 20 pots, two in each 

soil concentration.  All ferns and grasses were maintained and grown for specified 

periods up to a total period of 20 weeks.  Weekly fertilizer supplements were provided 

using a .025-.025-.025 (Nitrogen-Phosphorous-Potassium plus micronutrients) solution 

applied as part of the regular watering schedule. 

The soil consisted of clean, homogeneous sandsodium arsenate to achieve 

approximate concentrations of 0, 20, 50, 100 and 200 ppm.  The sand was limed to 
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achieve a neutral pH of 7 and fertilized to 100 ppm nitrogen, 50 ppm phosphorous and 

100 ppm potassium plus other micronutrients.  The soil medium was equilibrated for two 

wetting and drying cycles to homogenize the arsenic and fertilizer mixtures.  Samples 

from each of the five concentration batches were collected for laboratory analysis by 

USEPA 3050 method for total metals (USEPA 2004).  The analysis showed final, pre- 

concentrations of < 2.5, 18, 34, 64 and 183 ppm respectively (Blaylock 2005). 

 The open air greenhouse environment was controlled by ambient temperature and 

solar lighting conditions for the April–October time frame.  Pots containing fern plants 

were placed in trays grouped by soil arsenic concentration to avoid cross contamination 

of arsenic between different levels.  The open air greenhouse (cold frame) was covered 

with 60 % shade cloth to reduce light transmittance and provide improved growing 

conditions for the fern plants.  Figure 15 shows the actual plants in the greenhouse at the 

  Figure 14.  The Three Ferns Used in This Study. The three ferns grown in the  greenhouse

  study of the spectral qualities of arsenic  uptake.  From left to right, Pteris cretica mayii, Pteris

 multifida and the control fern,  Nephrolepis exaltata.
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beginning of the experiment and Figure 16 is a diagram of the general layout of the plants 

in the greenhouse experiment. 

The main purpose of this phase of the research was to grow accumulating and 

non-accumulating ferns in different levels of bioavailable soil arsenic and measure the 

spectral vegetation reflectance response, as a function of the arsenic concentration in the 

above ground biomass of the plant.  This design did not address the assumptions of 

parametric statistics such as a Latin Square randomization.  The primary analytical 

endpoints of this phase of the research were the arsenic concentrations in each individual

Figure 15. Ferns Growing in the Greenhouse  The 300 ferns in the greenhouse, arsenic-

uptake experiment at the beginning of the experiment.  Three types of ferns were grown in 

five different arsenic soil treatments. 



75

Figure 16.  General Layout of the Greenhouse Experiment.  The layout of the ferns and 

grasses in the greenhouse as part of the experiment on controlled growth and exposure to soil 

arsenic.
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plant which were to be determined by standard chemistry methods and the corresponding 

spectral reflectance response as measured by an Analytical Spectral Devices (ASD) Full 

Range spectrometer.  Therefore, biases in local greenhouse conditions were not a primary 

concern.  After data analysis was completed, there was no detectable pattern in plant 

growth or arsenic uptake that would indicate any type of critical bias based on 

greenhouse conditions.

4.3.2 Chemical and Spectral Data Collection 

Four replications of each fern variety and two replications of each grass variety 

were harvested at 4 week intervals after transplanting for a total of 20 weeks (4, 8, 12, 16 

and 20 weeks).  The plants were harvested by cutting the above ground material 2.5 cm 

above the soil surface.  The vegetation samples were oven dried at 85°C for 24 hours and 

the dried samples were weighed and shipped to a commercial laboratory and analyzed for 

total metals via USEPA Method 6010b, Inductively Coupled Plasma/Atomic Emission 

Spectrometry (ICP/AES) (USEPA 2004).  Soil samples were collected at the end of the 

study from the pots of each plant species at each soil concentration for evaluation.  Soils 

were analyzed for arsenic and total metals by USEPA Method 3050 (USEPA 2004). 

Reflectance spectra of ferns and grass were collected just prior to each 4 week 

harvest using an ASD spectrometer.  This instrument utilizes grating prisms, three 

separate detector arrays and fiber optics to collect reflected energy in the 400 - 2,500 nm 

range, known as the “solar reflected” part of the EMS.  The spectral resolution of this 

instrument is 1 nm (ASD 1997).  A Dell Latitude C640 laptop computer was connected to 
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the spectrometer and used to execute the spectral collection instrument software.  The 

fiber optic cable of the spectrometer is housed in a pistol grip assembly and mounted on a 

standard camera tripod to be perpendicular to the target.  Spectra were calibrated against  

a white Spectralon surface and processed according to the standard techniques outlined in 

ASD (1997).  A Lowell lamp was used as a light source for all spectral collections and 

was mounted on a 60 degree angle to the spectral target.  Each spectral collection event 

utilized nine observations and was conducted according the following standard 

procedure:

1. Optimization of the spectrometer (internal calibration). 

2. Collection of two white references (WR) from the Spectralon standard. 

3. Collection of five spectral readings from the target, altering the plant 

orientation or slightly moving the fern after each reading. 

4. Collection of two white references from the Spectralon standard. 

Spectra were processed by standard techniques based on the following general formula 

for relative reflectance (ASD 1997): 

Reflectance (Band_x) = ((Radiance (Band_x)  / White Ref. (Band_x) * 100) * Ref. Std. (Band_x))

4.3.3 Field Phytoremediation Spectral Data

As a result of widespread soil testing conducted in Spring Valley as part of the

remedial investigation process, several areas of high soil arsenic have been identified and 

scheduled for remediation according to standard procedures.  See Figure 17.  Because of 
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the dynamic nature of the urban setting and the complexities of large-scale excavations in 

urban areas, phytoremediation techniques, using Pteris ferns, are also being tested in 

several areas of moderate arsenic concentration as an alternative to the traditional soil-

removal and replacement techniques.  The collection of spectral data of some of these 

ferns growing in an actual phytoremediation application presented an excellent  

opportunity to test any predictive model of arsenic concentration that may have been 

developed as part of the laboratory spectra data collection and analysis.

One of these phytoremediation tests was conducted in a high soil arsenic area 

adjacent to the Van Ness reservoir.  During the summer of 2004, Pteris ferns were

planted in April and were harvested and tested for arsenic in September.  Just prior to 

harvest, field spectra were collected with the ASD field spectrometer for 24 individual 

  Figure 17.  Pteris Ferns in the Spring Valley Phytoremediation Pilot. Pteris ferns being used 

   in a phytoremediation pilot study next to the Van Ness Reservoir in Spring Valley.
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ferns (12 Pteris cretica mayii and 12 Pteris multifida) distributed throughout the 

remediation area.  These individual ferns were separately bagged, marked and sent to the 

USACE laboratory in Vicksburg, Mississippi for chemical analysis of arsenic 

concentration.

4.4  Statistical Methods Used in the Analysis of Laboratory Reflectance Data 

The statistical analysis of the relationship between the spectral reflectance of the 

ferns and grasses and their corresponding biomass arsenic concentration were conducted 

with standard summary statistical methods and with two multivariate techniques; partial 

least squares (PLS) and stepwise liner regression (SLR).  These methods were used to 

develop linear and predictive models of the relationship between plant reflectance and  

plant arsenic concentration. 

The analysis of spectra reflectance data presents unique problems for standard 

multivariate techniques because of the large numbers of independent variables (> 2,000 

spectral bands) and the highly correlated nature of those variables, which stems from the 

fact that each individual spectral band is only 1 nm away from the spectral bands above 

and below it.  The result is that each spectral band records an energy pattern that is a very 

similar to its neighboring bands and is thus highly correlated.  Highly correlated 

independent variables create a condition known as collinearity, which violates the

assumptions of linear regression.  To develop a predictive and effective linear model, 

variables must be independent.  The overall result of a collinearity condition is that 

correlated independent variables have unstable coefficients, and although the model 
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developed may have a high R2 value and low residuals, it will perform poorly outside of 

the immediate data set that was used to develop it. 

Partial least squares was first introduced by Swedish mathematician Herman 

Wold (1966) as an exploratory analysis technique in the field of econometrics and was 

specifically designed to help researchers in situations of small, non-normally distributed 

data sets with numerous but highly correlated explanatory variables.  General PLS and all 

of its variants consist of a set of regression and classification tasks as well as dimension 

reduction techniques and modeling tools.  Sometimes called a “soft” modeling technique, 

the strength of PLS resides in its relaxation, or “softening” of the distribution, normality 

and collinearity restrictions that are inherent in standard multiple linear regression 

techniques (Tobias 1997; Abdi 2003).

The underlying assumption of all PLS methods is that the observed data are 

generated by a system or process which is driven by a small number of latent (not directly 

observed or intuitive) variables.  Projections of the observed data to its latent structure by 

means of PLS is a variation of principal component analysis (PCA).  PLS generalizes and 

combines features from PCA and multiple regression and is similar to Canonical 

Correlation Analysis (CCA) in that it can also relate the set of independent variables to a 

set of multiple dependent response variables and extract latent vectors with maximum 

correlation (Höskuldsson 1988; Rosipal and Kramer 2006). 

PLS is one of a number of covariance-based statistical methods which are often 

referred to as structural equation modeling or SEM.  Also known as a “latent variable” 

approach to modeling the covariance structures, the PLS model attempts to find the 
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multidimensional direction in the X space that explains the maximum multidimensional 

variance direction in the Y space.  According to its developer, Herman Wold, the term 

“PLS” is also and more correctly termed “Projection to Latent Structures” (Wold 1975; 

Wold 1985).  Wold’s son, Svante, has been largely responsible for the development and 

widespread use of PLS methods in the field of chemometrics and chemical engineering 

(Wold et al. 2001).  Statistician John F. MacGregor (2004) had great success applying 

PLS techniques to industrial process control (Kresta et al. 1991).  It has also been used 

successfully in the study of spatial pattern analysis of imagery of human brain functions 

(Nyberg et al. 1996; Macintosh et al. 1996; Habeck et al. 2005).  More recently, in the 

field of landscape ecology, PLS has been used to describe how structural variation in 

landscape metrics are related to biological and chemical properties of surface water (Nash 

et al. 2005). 

Instead of finding hyperplanes or vectors of maximum variance, as in PCA, PLS 

attempts to find a linear model between a matrix of predicted values and a matrix of 

observed values.  PLS regression is especially useful in cases where the number of 

descriptors (independent variables) is comparable to or greater than the number of 

dependent variables and/or there exist other factors leading to correlations between 

variables (Abdi 2003).  In this case the solution of the classical least squares problem 

does not exist or is unstable and unreliable.  Such is the case with spectral reflectance 

data where the 1 nm difference between band centers leads to highly correlated data that 

could not be analyzed in a traditional multiple regression model because the data would 
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violate the collinearity assumption (Höskuldsson 1988; Martens 1989; Eriksson et al. 

2001).

 PLS is also used as an exploratory/data mining and analysis tool in remote 

sensing.  As a relatively new technique, the full utilization of PLS is still evolving but it 

is clear that it has a major application in several types of spectral, remote sensing 

analyses, due to the large numbers of potential predictive variables and the highly 

correlated nature of hyperspectral reflectance and hyperspectral imaging data. 

Kooistra et al. (2004) used two spectral VIs, the Difference Vegetation Index 

(DVI) and the Red Edge Position (REP), along with PLS regression to predict the level of 

metal contamination in the soil based on the spectral reflectance of grasses.  Bogrekci and 

Lee (2005a, 2005b, 2006) utilized PLS in evaluating visible and infrared reflectance data 

to predict soil phosphorus concentrations.  Rossel et al. (2006) used PLS techniques to 

predict a number of complex soil properties from mid-infrared data.  ElMasry et al. 

(2006) demonstrated the very practical application of PLS and hyperspectral analysis as a 

nondestructive method of determining the moisture content, total soluble solids and 

acidity in strawberries.

Xu et al. (2007) suggests extending the variable selection capabilities of PLS by 

weighting variables through the use of a particle swarm optimization algorithm.  The 

variable weighting method is demonstrated by optimizing calibrations of near-infrared  

(NIR) spectral data of meat and pharmaceutical quality control.  However, Kruse et al. 

(2006) showed that standard VIs like NDVI, Stress1 (R706/R760) and Stress2 
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(R706/R813) ratios did a better job than PLS at predicting chlorophyll content and 

nitrogen status in creeping bent grass.

Although there are several variations on the basic PLS process, the general 

method applied to spectral studies is shown in Appendix A on one of the applications of 

fern data in this study.  The overall goal of PLS processing of spectral data in this study is 

the reduction of 2,151 variables (bands 350–2,500) down to a manageable number of 20 

to 25 variables that have a high probability of significance in a predictive model.  The 

PLS regression produces a number of significant factors using a “leave-one-out” cross-

validation method (Nash et al. 2005).  At several stages in the PLS process, diagnostic 

checks are performed, sometimes graphically, to help isolate variables for deletion in the 

model that do not have any significant predictive value or are outliers.  The end result of 

a PLS run is a Variable Importance for Projection (VIP) table.  The VIP represents the 

value of each variable in fitting the PLS model for both predictors and response.  The 

VIP for each factor is defined as the square root of the weighted average times the 

number of predictors.  If a predictor has a relatively small coefficient (in absolute value) 

and a small value of VIP, then it is a prime candidate for deletion (Nash et al. 2005).  

Wold (1995) considers a value less than 0.8 to be “small” for the VIP. 

Variables with VIP values less than 0.8 and outliers are dropped from the model. 

The VIP table results are then typically divided into 4 to 9 groups.  The PLS analysis 

process is then repeated on the individual groups of variables.  Typically the process is 

iterated 2 to 5 times until a manageable subset of variables can be identified based on the 

top VIP scores in each group and some a priori knowledge of the process being modeled. 
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PLS can itself be used to construct a predictive model but has some drawbacks.  

One of the strengths of PLS is its relaxation of collinearity and distribution assumptions 

but this also can result in a set of collinear or redundant independent variables.  Also, the 

best combinations of variables are not necessarily reflected in the VIP table values.  In 

spectral applications, a common practice is to take the final subset of variables and then 

place them into a SLR model.  The stepwise method is a modification of the forward 

variable selection technique and differs in that variables already in the model do not 

necessarily stay there.  A SLR model computes the F-statistic for each variable and 

contains parameters for significance levels for variables to ENTER and to STAY in the 

model.  The SLR process computes all possible combinations of linear variables and ends 

when none of the variables outside the model has a significance (p-value) at or below the 

ENTRY level and every variable in the model is significant at the STAY level.  Using 

this sigma-restricted parameterization and general linear model methods, the SLR process 

simply regresses all possible combinations of input variables and returns the model with 

the best regression coefficient and the lowest residuals (Nash et al. 2005). 

This combination of PLS and SLR techniques was the primary analytical method 

used to develop predictive models of arsenic concentration from spectral reflectance data.  

Analysis was conducted for all three fern species and the PLS procedure was used to 

reduce the number of potential predictive variables.  These variables were input into a 

SLR model which then developed and optimized a linear regression model. 
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4.5 Hyperspectral Imagery Processing and Analysis Methods 

Hyperspectral remote sensing represents a merger of laboratory spectroscopic 

analysis methods with the spatial and synoptic advantages of overhead imagery.  

Hyperspectral imaging systems record, at lower spatial and spectral resolution, the same 

energy-matter interactions that are recorded by spectroradiometer instruments in 

controlled laboratory environments.  The third experiment in this research attempts to 

extend the concept of spectral analysis of vegetation health that was developed from the 

laboratory spectral analysis of arsenic stress in grasses during the greenhouse experiment, 

to the spectral patterns of vegetation recorded by a hyperspectral imaging system.  

Patterns of known soil-arsenic contamination in Spring Valley were used to test the 

ability of HSI to detect the same patterns of vegetation stress that were observed in the 

laboratory spectral data.

Hyperspectral Imagery of the Spring Valley area were acquired on October 20, 

2000, by the HyMAP System (Mission HY20001020f06r06, HyVISTA Corporation, 

Sydney, Australia).  HYMAP is a commercially available hyperspectral sensor with 126 

bands in the 450–2,500 nm region of the EMS and an approximate 4 m spatial resolution.  

An example of the HyMAP imagery of Spring Valley is shown in Figure 18.   

 Image preprocessing consisted of a radiance calibration, an atmospheric removal  

correction, a spectral noise reduction filtering and calibration to apparent surface 

reflectance, all of which are described in the following section.  Geometric corrections 

are typically not performed on hyperspectral data until after the analysis phase so as to 

preserve the spectral integrity of the data which might be reduced by resampling. 
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 However, the analysis of HSI and the information that can be extracted from it 

 are still in a developmental stage largely because of the interference that is caused by 

atmospheric conditions.  As energy travels through the atmosphere from the sun and is 

reflected back to the sensor, it is absorbed, scattered and attenuated by atmospheric gases 

and conditions.  Water vapor, oxygen, ozone, carbon dioxide, nitrogen dioxide, carbon 

monoxide and methane, along with some chlorofluorocarbons all have undesirable effects 

on the spectral integrity of reflected solar energy.  Although new and better algorithms 

Figure 18.  Example of HyMAP Hyperspectral Imagery of the Study Area. A portion of the 

HyMAP hyperspectral image that was collected over Spring Valley in October 2000.  Spectra 

of arsenic stress in grasses, developed during the greenhouse experiment, were used to map 

potential area of arsenic contamination.
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for correcting atmospheric interference are constantly being developed, the process is not 

yet 100 % accurate and enough artifacts of atmospheric noise remain in the data to 

prevent the use of standard laboratory methods such as spectral library matching. 

 Hyperspectral imagery is also affected by the “mixed pixel” problem that has 

often been a difficulty with multispectral image systems.  The mixed pixel occurs when 

the reflectance value of a single spatial unit (pixel) is influenced by a heterogeneous 

combination of surfaces.  This can occur when the spatial footprint of the pixel 

encompasses different surfaces, with different reflectance values, or when the reflectance 

of a single pixel is influenced by stronger material reflectances in the surrounding 

location.

Hyperspectral imagery does offer a unique advantage of spectral over-sampling.  

The word “hyper” is derived from the Greek huper meaning “over” or “too many” and 

oversampling occurs when there are more spectral samples than there are spectral 

dimensions in the imagery (Boardman 1995).  Goetz and Calvin (1987) demonstrated in 

the laboratory that most earth materials could be spectrally identified with a spectral 

resolution of 20 nm and a spectral resampling interval of at least 10 nm across the EMS.  

Laboratory spectrometers and HSI instruments exceed these spectral requirements by 

factors ranging from 2 to 20 times.  Research in HRS has developed a number of unique 

image processing methods to take advantage of this oversampling and extract an 

increased information content from HSI.   

The minimum noise fraction (MNF) transform is commonly used in HSI 

processing to determine and reduce the inherent dimensionality of image data.  The MNF 
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transform also segregates noise in the data and reduces the size of the data set and 

computational requirements for subsequent processing (Boardman and Kruse 1994).  A 

variation on PCA, the MNF transform is based on the spectral oversampling and inherent 

redundancy of HSI data.  Hunt and Sierra (2003) demonstrated that spectral oversampling 

could be traded for spectral precision and improved classification accuracy using both 

supervised and unsupervised algorithms.  Vélez-Reyes et al. (2004) utilized the spectral 

oversampling of HSI data to enhance spectral resolution across the image, resulting in 

improved classification and material identification accuracy. 

4.5.1 Basic Processing of HSI 

Although there are different approaches to processing HSI, the following general 

approach and processing steps were adapted from the spectral processing tools contained 

within the Environment for Visualizing Images (ENVI) image processing software 

(ENVI 2004).

4.5.1.1 Atmospheric Correction 

HSI data are typically delivered in the form of raw radiance values of reflected 

energy.  However, these values are not absolute and are significantly affected by specific 

temporal conditions such as relative humidity, sun angle and several atmospheric gases.  

To compensate for this, data are typically processed to correct for atmospheric 

interferences.  Atmospheric corrections were performed on the Spring Valley HyMAP 

data set with the ATmospheric REMoval (ATREM) software program (Gao et al. 1993).  
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ATREM is an operational code for retrieving "scaled surface reflectance" from spectral 

imaging data to model water vapor and atmospheric gas absorption as well as molecular 

and aerosol scattering effects and converts the calibrated sensor radiance measurements 

to apparent surface reflectance (Gao et al. 1993). 

4.5.1.2  Minimum Noise Fraction (MNF) Transformation 

Because HSI systems record energy in hundreds of very narrow bands, there is 

significant redundancy and noise in the data set.  Reducing the data to the most 

significant bands of spectral information is a key processing step that minimizes 

computational requirements of the subsequent processing steps (Green et al. 1998; ENVI 

2004).  This is accomplished using a variation on PCA called the Minimum Noise 

Fraction (MNF).  The minimum noise fraction utilizes two principal component 

transformations.  The first transformation decorrelates and rescales the noise in the data 

and results in transformed data in which the noise has unit variance and no band-to-band 

correlation (ENVI 2004). The second step is a standard principal components 

transformation of the noise-whitened data (Boardman and Kruse 1994).  Typically the 

result of MNF processing, just like the principal components transformation used in 

traditional multispectral image processing, is a dataset reduced to only the bands that 

have any significant variance and that can provide information to the subsequent image 

processing steps.  With HyMAP data over a heterogeneous urban environment, the MNF 

transform typically results in a 60–68 band data set, reduced from the original 128 bands. 
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4.5.1.3 Pixel Purity Index 

 HSI processing theory assumes that in every scene, the recorded spectral 

reflectance in most pixels is a mixture of a limited number of spectrally pure pixels, 

known as endmembers.  Establishing these image endmembers is fundamental to 

understanding the basic dimensionality of a data set and in successfully identifying 

spectral targets of interest.  A unique, automated method of identifying the spectrally 

purest pixels within a scene has been developed for spectral image processing called the 

Pixel Purity Index (PPI) (Boardman 1993; Boardman et al. 1995).  The PPI is computed 

by repeatedly projecting the MNF transformed data cloud (scatterplots of pixels in 

hyperspectral space) onto a series of random vectors.  When a pixel “hits” a vector, it is 

counted in the distribution for that vector.  After each projection, the distribution of pixels 

and vectors is computed and a running total is kept for all vectors.  This process is 

repeated, usually a minimum of 10,000 times.  The vectors that have the most hits are 

considered to be extreme and are likely candidates to be the endmembers in the image. 

4.5.1.4 N-Dimensional Visualizer 

Multidimensional data distributions are difficult conceptualize.  To help the image 

analyst understand the identity of the spectral complexities in an image, ENVI has 

developed a visualization tools called the N-Dimensional Visualizer.  The N-Dimensional 

Visualizer is an interactive tool that shows the results of the PPI in N-space and allows 

the users to investigate image and spectral properties of the HSI data by moving through 
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and manipulating the N-Dimensional clouds of data and endmembers and by visually 

correlating these with the image pixels.  Figure 19 shows an example of the N- 

Dimensional Visualizer displaying the results of the PPI data of the Spring Valley 

HyMAP dataset used for this research.  The vectors are the result of the PPI processing 

showing the number of hits for each vector. 

 The N-Dimensional display is interactive and can be rotated on the axes of the 

PPI vectors to better display a grouping or distribution of pixels.  A subset of pixels can 

also be selected by manually drawing a polygon around them and those particular pixels 

Figure 19.  N-Dimensional Visualization. The N-Dimensional visualization of part of the 

Spring Valley HSI dataset.  In hyperspectral space, the red pixels represent arsenic-affected 

grass and the green pixels represent unaffected grass.  The inherent problems with the 

separability of these two classes are evident. 
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will then be highlighted in the image.  This tool allows the analyst to graphically picture 

the spectral dimensions of the image and relate the statistical distributions back to the 

original image. 

4.5.2  Intermediate and Final HSI Processing 

Hyperspectral data processing involves a number of novel processing applications 

that are generally different from standard multispectral methods because they are 

specifically designed to explore the range of spectral information content of hyperspectral 

image data sets and maximize the advantage of the spectral “over-sampling” with special 

statistical tools (Hunt and Sierra 2003).  However, standard multispectral image 

classification approaches are also used with hyperspectral image processing depending on 

the specific application.  A basic hyperspectral image may be processed into one of 

several intermediate forms before a classification process is attempted.  These include a 

linear spectral unmixing, which is a linear transformation of each pixel into its 

component percentages based on training signatures or spectra; spectral feature fitting 

which is a least squares match between image and reference spectra; and a pixel purity 

index which is an automated method of determining the purest, or endmember pixels in 

the image (ENVI 2004).  Table 4 lists the combinations of basic and intermediate 

processing and classification algorithms used in this Spring Valley study (ENVI 2004). 

Spectral profiles, or raw spectral signatures, are the necessary information 

components that drive all of the hyperspectral mapping methods.  Spectral profiles can 
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usually only be generated in one of three ways: (1) statistically from the dimensionality 

of the image, such as the pixel purity index; (2) from supervised interaction in the image 

processing to identify known areas of the image as target spectra, analogous to supervised 

classification; and (3) from external or library spectral of materials or specific conditions.   

All three methods of developing spectral profiles were utilized in this experiment. 
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Table 4 

Hyperspectral Imagery Processing Methods 

(from ENVI 2004) 

Base Processing   Method 

Minimum Noise Fraction  Layered Principal Components reduces noise and  data dimensionality. 

Continuum Removal  Removes atmospheric constants and standardize spectral band depths. 

Intermediate Processing 

Pixel Purity Index  Random selection of pixels identifies endmembers in spectral space.  

Linear Spectral Unmixing  Linear transformation to determine the subpixel composition of each  
raster element based on endmember statistics. 

Matched Filter   A method of spectral identification based on linear spectral unmixing 
     results and detailed and refined spectral endmembers. 

Mixture Tuned Matched Filter A specialized form of spectral matched filtering that creates and utilizes
     an infeasibility image, a pixel by pixel map of the probability of a false 
     positive, to identify unique spectral signatures, relatively noise-free. 

Spectral Feature Fitting A least squares fit between reference and image absorption spectra.   
Requires Continuum Removal. 

Specialized Intermediate Processing 

Vegetation Indices A set of spectral index values, as take from the remote sensing 
literature, for specific vegetation parameters. 

Classification Decision Rules 

Parallelepiped   Classification based on a range of specific band values in n-dimensions.

Mahalanobis Distance  A direction-sensitive distance classifier that classifies each pixel into 
the statistically closest class of training or endmember data. 

Maximum Likelihood  Classifies each pixel into the class of highest probability based on a 
     normal distribution of the training classes. 

Minimum Distance Calculates the Euclidean distance from each pixel to the mean vector for
each class. The pixel is assigned the classification of the shortest vector.

Binary Encoding   Classification technique that encodes the data and endmember spectra  
into zeros and ones, and utilizes Boolean functions to match image to  
reference spectra. 

Spectral Angle Mapper Spectral classification that matches image to reference spectra based  on 
the similarity between the two spectra and by calculating and treating 
the angle between them as a vector in a space with dimensionality equal 
to the number of bands. 
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The primary goal of this image processing research was the classification and 

mapping of accurate land cover and especially the identification and discrimination of 

grasses growing in and stressed by fugitive arsenic from other normal grass cover.  A 

subset of polygons of confirmed land cover classes was used as a “training” data set from 

which various image classification algorithms could establish statistical and/or spectral 

parameters for classification of the whole image.  A second, independent set of known 

land cover classes was used as a reference file for accuracy assessment and statistical 

analysis of the quality of each of several classification processes.  After the classification 

has been accomplished, the result is a raster GIS map of pixels as they have been 

assigned into land cover classes by a particular classification method.   

4.6 Land Use and Land Cover Mapping 

The final phase of this research involves the identification and mapping of arsenic 

 stress in common lawn grasses in the study area using HSI.  The identification of the 

areal extent of specific vegetation, cover condition or any surface phenomena is a process 

called land use and land cover (LULC) mapping and is one of the most fundamental uses 

of remotely sensed data.  LULC maps provide critical information in a variety of 

applications and are typically developed from spectral imagery based on the differences 

in reflectance of major categories of land cover (i.e., forests, urban, open water, etc.).  

Thematic LULC mapping involves generalizing certain spectral and spatial landscape 

characteristics into regions or polygons of LULC categories.
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While the primary goal of this image processing research was the identification 

and discrimination of grasses growing in and stressed by fugitive soil arsenic from other 

normal grass cover, a more robust land cover classification system was developed in 

order to put the results of grass classification in a full LULC context, and to help identify 

the LULC classes that might contribute to the misclassification of grass and arsenic-grass 

land cover classes.  An eight-class LULC classification was developed and used to guide 

the rest of the LULC mapping process.  The classification scheme follows. 

Land Cover Classification Scheme 

1. Arsenic-affected grass areas. 

2. Non-Arsenic affected grass areas. 

3. Tree and forest cover. 

4. Buildings 1 (commercial). 

5. Buildings 2 (residential). 

6. Asphalt surfaces. 

7. Bare and exposed soil. 

8. Concrete surfaces. 

   After a working knowledge of the spectral properties of the data set had been 

established through field work, image analysis or the development of spectral data in the 

laboratory, two subsets of LULC data were developed from the HSI data for the Spring 

Valley area.  The first subset of LULC classes was used to calibrate various classification 
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algorithms on the statistical and/or spectral parameters of each LULC class.  The second 

subset was used as a validation data set for the accuracy assessment of each classification 

method.  Figure 20 shows both the calibration and validation data sets overlain on a 

single band of the Spring Valley HSI data.

4.7 Statistical Methods Used in HSI Processing and LULC Mapping  

  After the classification has been accomplished, the result is a raster GIS map of 

pixels as they have been assigned into one of the eight land cover classes by a particular 

classification method.  Remote sensing and mapping accuracy assessment is typically 

accomplished by comparison of the independent file of reference classes to the 

classification results and the computation of the standard remote sensing “Confusion 

Matrix” (Story and Congalton 1986; Congalton 1991).  The confusion matrix classifies 

errors of omission (false negatives) and commission (false positives) per land cover class 

and also calculates two general measures of agreement; the overall accuracy percentage 

and the Kappa coefficient which is a measure of the number of pixels classified correctly 

versus the number of pixels that might be classified correctly by random chance. 

The statistical evaluation and quality control of land cover mapping is 

complicated by the uneven distribution of land cover categories of general interest, and 

by the fact that some categories often do not display unique reflectance signatures in 

spectral space.  Further, because of the large areal extents of many land cover mapping 

applications and the high cost of field verification, it is impractical to collect independent 
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data for accuracy assessment without the use of a statistical sampling design and that 

creates a number of issues with respect to edge effects, sampling units, sample size and 

rare classes (Fiztpatrick-Lins 1981).

A distinct paradigm in remote sensing and thematic mapping accuracy assessment 

has evolved since the mid-1980s (Story and Congalton 1986) centered around some type 

Figure 20.  Training/Validation Data for Hyperspectral Image Processing. A single band of 

HyMAP imagery of American University and the surrounding area showing calibration and 

verification polygons digitized for a basic LULC classification including grass growing in areas of 

arsenic-contaminated soil. 
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of random or stratified random sample and the use of the error (sometimes called 

“confusion matrix”).  The confusion matrix provides a quantification of pixel by pixel 

errors of omission and commission as measured against field derived samples or some 

source information of a higher spatial and/or spectral resolution and reliability.   

In addition to the matrix classification of errors of omission and commission, the  

key metric in map accuracy evaluation is a statistical measure of agreement known as  

the Kappa Coefficient (Congalton et al. 1983).  In typical map accuracy evaluations and 

reporting, two overall metrics are calculated and reported;  the overall accuracy 

percentage and the Kappa, or K-hat, statistic.  K-hat is calculated by the formula: 

k = (d-q)/(N-q) 

where d is the number of cases classified correctly and located in the diagonal cells of the 

confusion matrix and q is the number of cases expected to be classified correctly and 

located in the diagonal cells by chance.  N is the total number of cases (Congalton 1991).  

K-hat is one for perfectly accurate data (all N cases on the diagonal), zero for accuracy no 

better than chance. 

The K-hat metric was adapted from the Cohen's Kappa coefficient used in 

education and psychology research.  Cohen’s Kappa is a measure of statistical 

concordance designed to measure agreement in dichotomous or classification data 

(Cohen 1960).  It was originally developed as a measure of inter-rater reliability and is 
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generally thought to be a more robust measure of agreement that the simple percentage 

because Kappa is influenced by a measure of chance agreement.   

A variation of Cohen’s Kappa is Fleiss’ Kappa which was developed to assess 

agreement between more than two groups (Fleiss 1981).  Where Cohen’s Kappa only 

measured two raters, Fleiss’ Kappa can utilize multiple raters 

 There exists a significant level of criticism of the use of the Kappa statistic in both 

education and psychology (Mclure and Willett 1987) and in mapping and remote sensing 

(Stehman 1997, 2000).  Especially used as a reliable metric of  accuracy and 

quantification in areas outside of subjective scoring of  categorical attributes, the use of 

the Kappa metric may be especially inappropriate.  As Stehman (1997) points, adjusting 

for the level of random agreement may be completely inappropriate in assessing map 

accuracy.

 Because most remote sensing and mapping software packages do not report a 

significance value with Kappa, to test the null hypothesis in this study, it was necessary 

to compute Kappa separately in another software application.  Cohen’s Kappa can be 

computed in SAS as an option in “Process Frequency” and Fleiss’ Kappa can be 

computed in SAS with the ‘magree_macro’ (SAS 2002).  An alternative significance 

testing method of calculating the 95 % confidence intervals from the confusion matrix 

was also used. 

For the purposes of this research, a separate raster data layer was created that 

represents a sample of the areas of known arsenic contamination in the soil.  Also, to 

understand the context of the arsenic contamination with an urban community and to 
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enable the evaluation of the classifier in a full land cover context, a basic land cover 

classification was adopted.  Reference data were developed from USACE and USEPA 

soil sampling results and DOQQ data and used to assess the accuracy of each HSI 

processing method and to create an error matrix for evaluation. 

This chapter has presented the details of the analytical methods and statistical 

tests that were used to evaluate three separate remote sensing systems; historical aerial 

photographs, laboratory reflectance spectroscopy and HSI/imaging spectroscopy for their 

ability to provide information in the Spring Valley hazardous waste remediation context. 

Chapter 5 presents the results of these analyses.
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5. Data Analysis and Results 

The results of the three main experiments conducted in the course of this research 

are presented in this chapter along with a discussion of significant findings.  This chapter 

is organized in the following manner.  Section 5.1 presents the analysis of the aerial 

photographic results.  Section 5.2 reviews the results of the uptake and stress from the 

greenhouse experiment.  Section 5.3 explains the results of the analysis of laboratory 

reflectance of the arsenic uptake and stress from the greenhouse data.  Section 5.4 

examines the results of the processing and classification of HSI of the Spring Valley area. 

5.1 Aerial Photographic Interpretation 

The purpose of the investigation of aerial photographs was not to provide a 

rigorous statistical analysis of photographic interpretation results but rather to provide a 

practical measure, by simple percentage, of the relative value of the information derived 

from the acquisition and analysis of historical aerial photographs.  While the analysis of 

historical photographs is somewhat subjective and very basic in terms of modern 

scientific analysis, information derived by this means has a long history of practical 

value, and sometimes critical significance, to the investigation and remediation of 

hazardous waste.  In 1986, the EPA produced a photographic interpretation report, 

“Historical Aerial Photographic Analysis, American University, Washington, D.C.” 
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(Stout 1986).  The photo-analysis in that report was performed prior to any public 

knowledge of the nature or extent of the contamination issues in Spring Valley.  It was 

also performed without benefit of the extensive collateral information that has resulted 

from 15 years of historical research in libraries, archives and historical holdings of 

American University, the U.S. Federal Government and the government of Washington, 

D.C.

 The photo-analyst, using standard hazardous waste imagery analysis techniques 

identified 50 features on the 1918 aerial photograph that were of potential relevance to 

hazardous waste disposal and the current environmental cleanup activities.  Figure 21 

shows the photographic interpretation features overlaid on the 1918 aerial photograph 

and Figure 22 shows the same features overlaid on a 1991 image of the Spring Valley 

area.  Figures 23 and 24 depict enlargements of the 1918 aerial image with the 

photographic interpretation features.  These are presented here for improved clarity of the 

landscape detail. 

Eight of the photographic interpretation features identified in the 1986 report were 

omitted from this analysis because they were provided in the original report for locational 

context only.  These features include: tents, barracks, support buildings, general buildings 

(B1 - B10), the Weaver Farm House, Massachusetts Avenue and Nebraska Avenue. 

Of the remaining 42 features, each was investigated for spatial correlation to any 

potential environmental contamination or cleanup issue.  This was accomplished by 

digitizing and georeferencing the photographic interpretation features into a vector GIS 

data layer.  Another GIS data layer was created consisting of all known areas of past, 
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current and future remediation activity.  These consisted of (1) all known areas of CW or 

UXO removal; (2) all known parcels with arsenic levels exceeding the residential 

standard; (3) any parcels that specialty sampling results showing detectable levels of 

other (non-arsenic) contaminants of concern; (4) areas of known contextual activities 

(areas of documented AUES activities, such as animal toxicity testing) that have not been 

cleared by subsequent investigations; and (5) verified citizen reports of unusual activities, 

events or documented health problems. 

Of the 42 features analyzed, 33, or over 78.5 %, were spatially related to a past or 

present FUDS cleanup issue.  Table 5 lists the site by site analysis and the contamination 

issue related to each location and Figure 25 shows this graphically. 

Fourteen of the photo-identified areas of interest were related to properties of 

confirmed soil arsenic contamination.  The arsenic contamination thresholds currently 

being utilized in Spring Valley are 20 ppm for residential properties and 43 ppm for all 

other properties (Parsons 2003). 

Ten of the photo-identified features were related to actual ordnance or specific 

areas of known ordnance testing.  Three areas were related to reported human health 

problems and six areas correlated with known activities of contextual importance, such as 

animal toxicity testing and chemical persistency testing.  One area was related to known 

mercury and antimony contamination. 
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Table 5 

1918 Aerial Photographic Features and Spring Valley Remedial Activity 

Photo-interpreted              Feature   Past/Current FUDS Relevant Finding or 

        Features                 ID #   Investigation?           Remedial Activity   

   

  Double Ring of Trenches  1 YES  52nd Court Trench - ER Removal  
  Pit    2 YES            Soil As & Ordnance / 4700 Block Woodway 
  Scattered Ground Scars  3 NO 
  Possible Test or Target Site  4 NO 
  Ground Scar   5 NO 
  Possible Firing or Observation Stalls 6 YES            High Soil As / 4000 Block 52nd Street  
  Smoke    7 YES   Confirmed  Smoke Candle & Gas Testing Area 
  Possible Munition Storage Pads 8 YES  Chemical Persistency Test area / High Soil As 
  Possible Graded Area  9 YES            AOI 8 / Reported Health Issues 
  Light-Toned Feature  10 YES            AOI 8 / Reported Health Issues 
  Possible Target or Test Site  11 YES            Partial Livens Shell Casing 
  Possible Target or Test Site  12 NO      
  Possible Test Area  13 YES  Area of  Animal Toxicity Testing / High Soil As 
  Possible Fence   14 YES            Area of  Animal Toxicity Testing / High Soil As 
  Small Crater Scars  15 YES           AOI Investigation Sedgewick Ground Scars 
  Double Ring of Trenches  16 YES           Sedgewick Trenches / Several Actions 
  Probable Structure   17 YES           High Soil As / 5000 Block Sedgewick Street 
  Possible Pit   18 YES           High Soil As / 5000 Block Sedgewick Street 
  Possible Pit   19 YES           High Soil As / 4700 Block Fordham Street 
  Probable Tent Platform  20 YES           High Soil As / 4700 Block Fordham Street 
  Old Mustard Field   21 YES           High Soil As / 4800 Block Sedgewick Street 
  Deep Erosion Gully  22 YES          High Soil As / 4900 Block Rodman Street 
  Turnout    23 NO 
  Small Crater Scars  24 YES  High Soil As / 4900 Block Quebec Street 
  Possible Old Airstrip  25 YES  AOI 1 / Reports of Health Problems  
  Structures (3)   26 YES  AOI 4 - Magazine Gunpowder Area 
  Ground Scars   27 YES  AOI 4 - Magazine Gunpowder Area 
  Trenches   28 YES  Mercury and Antimony Contamination Areas 
  Shell Pit    29 YES  High Soil As & Ordnance / 4700 Block Woodway 
  Possible Pit   30 YES  High Soil As & Ordnance / 4700 Block Woodway 
  Possible Trench   31 YES  High Soil As & Ordnance / 4700 Block Woodway  
  Small Crater Scars  32 YES  High Soil As / 4900 Block Quebec Street 
  Concrete Shell Pit   33 YES  Known Ordnance Testing 
  Probable Vertical Tank  34 YES  High Soil As & Ordnance / 4800 Block Glenbrook 
  Probable Trench or Ditch  35 NO      
  Probable Pit   36 YES  High Soil As & Ordnance / 4800 Block Glenbrook
  Stacked Materials   37 YES  High Soil As / American University 
  Crates    38 YES  High Soil As / American University 
  Probable Vertical Tank  39 YES  High Soil As / American University 
  Open Storage Area  40 NO      
  Probable Trench or Ditch  41 NO      
  Ground Scar   42 NO 
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Ongoing photo research and interpretation has also led to the discovery of two 

additional major contamination areas in Spring Valley that might have been otherwise 

missed in the normal remedial process.  First, the location of an undiscovered ordnance 

burial pit, located on Glenbrook Road, was identified and mapped from historical aerial 

and ground photographs.  The pit appears on the 1918 photograph and in the 1986 report 

and a pit was excavated in the same vicinity in 1998.  The issue revolved around the 

question of whether the previously excavated pit and the photo-identified pit were 

actually the same.  After numerous photogrammetric and GIS analyses, the photo-analyst 

concluded that the previously excavated pit and the photo-identified pit were not one and 

the same, meaning that another pit likely existed in the general area.  After several 

months of debate among the partnering regulatory agencies (USACE, USEPA and the 

DCDOH) concerning the location and significance of the aerial photographic evidence, 

an intrusive ground investigation was undertaken in the summer of 2002 to determine if a 

third pit did actually exist and presents any risk to human or ecological health in the area.   

In the first test pit excavated, WWI-era mortar shells were discovered and over 

200 mortar shells have since been located and removed.  Subsequent analysis revealed 

that many of these shells were filled with highly toxic arsine gas.  Also, several glass 

containers filled with chemical warfare agents were also recovered.  These items 

represented a serious environmental hazard and their discovery and remediation removed 

a potentially major environmental risk from a residential area.  Figure 26 shows the pit  

location on the 1918 and 1991 aerial images and Figure 27 shows examples of the mortar 

shells and glass containers recovered from the pit. 
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Figure 26.  1918 and 1991 Aerial Photographs of the Glenbrook Road Pit . The discovery of the

Glenbrook Road Pit from interpretation and mapping of historical aerial photographs.
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Figure 27. Glass Containers and Mortar Shells. WWI glass containers of chemical warfare 

agents and unexploded 75 mm mortar shells that were discovered in the disposal pit along 

Glenbrook Avenue.  Photographic interpretation played a critical role in the discovery and

remediation of this major environmental threat. 
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Second, in 2004, interpretation of a newly-discovered 1927 aerial photo revealed 

a series of trails leading to a ravine in the back portion of the American University 

property.  Initial investigations revealed the presence of very high arsenic as well as 

laboratory glassware and equipment of the WWI era.  Subsequent investigations have 

identified a large landfill area containing chemical laboratory equipment and containers 

that has yielded confirmed CW materials and other dangerous contaminants.  Figure 28 

shows an example of the laboratory glassware in the soil and Figures 29 and 30 show the 

trails and disposal area on both 1927 and 1991 aerial photographs.  These trails were 

present on the imagery in the 1986 report but were not identified as significant, because 

the general area of the AUES had been razed and small trails were common in the image. 

Figure 28.  Buried Glass Laboratory Waste from AUES.  A piece of glass tubing from one of the 

AUES chemistry laboratories that was discovered as part of an investigation triggered by the 

identification of a series of trails on a 1927 aerial photo. 
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5.1.1  Summary and Discussion of Aerial Photographic interpretation Results 

Although sometimes overlooked in a world of dynamic scientific instrumentation 

and emerging information processes from sophisticated satellite sensors, historical aerial 

photographs represent a rich and sometimes invaluable source of landscape level 

information related to hazardous waste disposal and remediation, or any issue where past 

activity on the landscape is relevant. 

As pointed out by Philipson (1997), the importance of photographic interpretation 

can not and should not be downplayed or minimized because it is a fundamental 

information process in itself but, perhaps more importantly, it is the foundation of many 

sophisticated, digital, remote sensing analysis techniques.  A cursory review of current 

literature reveals numerous applications of photographic/imagery interpretation in 

providing critical land use and land cover information that includes time frames that 

predate satellite image availability (Imbernon 1999); verification of computer models 

predictions of earthquake damage (Marzorati et al. 2003); and as a more reliable method 

of developing specific landscape metrics in describing holistic aspects of complex 

landscapes (Antrop and Eetvelde 2000). 

In this application in Spring Valley, information derived from the interpretation of 

historical aerial photographs was directly responsible for the discovery and removal of 

several serious risks to human and ecological health and these sites might still be 

undiscovered if it had not been for the utilization and interpretation of this basic form of 

information.  
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Also, used as a screening tool in the early stages of a remedial investigation, a 

78.5 % correlation with specific areas and conditions that will eventually require 

remedial action, could make this type of information a very cost-effective screening tool 

in a time when resources for environmental cleanups are dwindling.  A more detailed 

scientific investigation of the relationship between information derived from historical 

imagery interpretation and confirmed hazardous waste conditions across a statistically 

significant sample of hazardous waste sites, could reveal a quantifiable level of 

information confidence related to human and ecological risk.  Additionally, it could 

facilitate a cost-benefit type of economic analysis that could document efficiencies and 

cost savings over other investigative techniques.  Finally, a study of the effectiveness of 

information provided by aerial photographic interpretation could underscore the need to 

invest in archival sciences and preserve invaluable sources of historical photographic 

information. 
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5.2 Plant Growth and Arsenic Uptake

 To study the spectral response of arsenic uptake and stress, 100 plants of each of 

three ferns, Pteris multifida, Pteris cretica mayii and Nephrolepis exaltata were grown in 

greenhouse conditions in soils amended with sodium arsenate in concentrations of 0, 20, 

50, 100 and 200 ppm.  Two common lawn grass species, fescue and rye, were also grown 

in identical soil, arsenic and greenhouse conditions.  Plants were harvested at 4-week 

intervals, dried and tested for arsenic concentration by standard acid digestion and 

ICP/AES methods. 

5.2.1 Fern Uptake Results 

Plant growth in soils contaminated with arsenic is generally inhibited and the 

effects range from depressed biomass production to extreme toxicity (Eisler 1994).  The 

Nephrolepis exaltata control fern showed moderate to severe symptoms of phytotoxicity, 

including chlorosis, diminished growth, leaf necrosis and plant death and these symptoms 

increased with the soil arsenic concentration.  The Pteris ferns showed a pattern of 

decreased biomass as arsenic concentrations increased.  In all ferns and grasses, including 

the Pteris ferns, there was a general inverse relationship between the soil arsenic 

concentration and the plant biomass at harvest.  See Figures 31 and 32.  Tables 6, 7 and 8 

show the results of the chemical analysis for arsenic for each of the three fern species 

over the entire study period.  Summary statistical results for Tables 6, 7 and 8 are located 

in Appendix B. 
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Figure 32a.  Arsenic concentration and dryweight. The general inverse relationship between 

arsenic and plant biomass for all ferns in this study. 
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Figure 32b.  Arsenic concentration and dryweight. The general relationships between arsenic and 

plant biomass for the non-accumulating control fern, Nephrolepis exaltata and for the two 

hyperaccumulating Pteris species. 
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Table 6 

Summary Results for Nephrolepis exaltata

Plant    Soil As        Harvest      Frond      SE      Biomass                 SE            Bioconc

Species     (ppm)          Week As                              (g DW)                                 Factor

Nephrolepis    0   4 ND  NA 2.29  0.91  NA 
exaltata   8 ND  NA 4.32  1.70  NA 

12 ND  NA 6.46  0.61  NA 
16 ND  NA 9.22  1.54  NA 
20 ND  NA 9.21  1.83  NA 

       20  4 33  14 1.56  0.50  1.83 
   8 33  12 3.01  0.38  1.83 
   12 28  4 5.38  0.49  1.56 
   16 67  25 4.66  1.23  3.72 
    20 19  9 5.08  0.76  1.06 

                     50  4 64  27 1.90  0.77  1.88 
8 143  74 2.72  0.66  4.21 
12 78  27 4.82  0.73  2.29 
16 181  132 3.29  1.04  5.32 
20 241  151 3.20  1.50  7.09 

      100  4 508  694 1.34  0.44  7.94 
   8 649  457 1.45  0.64  10.14
   12 509  152 2.57  1.05  7.95 
   16 467  364 2.59  1.18  7.30 
    20 1422  700 1.22  0.37  22.22

     200        4 248  70 1.54  0.36  1.36 
  8 5695  3532 0.36  0.15  31.12

12 4920  4938 1.01  0.42  26.89
16 5179  6872 0.57  0.06  28.30

20 4036  2605 2.35  3.78  22.05
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Table 7 

Summary Results for Pteris cretica mayii

Plant    Soil As        Harvest      Frond      SE      Biomass                 SE            Bioconc 

Species     (ppm)          Week As                            (g DW)                                             Factor

Pteris      0  4 ND  NA 4.99  1.59  NA 
cretica   8 ND  NA 5.14  2.30  NA 
mayii   12 ND  NA 7.37  2.17  NA 
   16 ND  NA 6.86  1.17  NA 
    20 ND  NA 6.37  2.01  NA 

      20  4 887  400 4.57  0.60  49.28 
   8 1326  577 5.04  2.18  73.67 
   12 743  405 5.70  0.92  41.28 
   16 1025  370 6.07  2.01  56.94 
    20 670  76 6.06  2.01  37.22 

     50  4 1157  959 5.40  1.64  34.03 
   8 1625  749 4.91  0.87  47.79 
   12 2359  589 4.37  0.45  69.38 
   16 2806  1193 5.72  2.63  82.53 
    20 1868  620 6.06  1.57  54.94 

    100  4 2725  1071 3.54  2.17  42.58 
   8 3463  574 5.71  1.58  54.11 
   12 4138  401 4.56  1.27  64.66 
   16 5584  1322 5.54  1.86  87.25 
    20 3792  350 3.99  1.05  59.25 

    200  4 3428  398 3.55  1.64  18.73 
   8 3727  490 3.76  0.22  20.37 
   12 4894  329 5.14  1.22  26.74 
   16 4436  605 5.46  2.58  24.24 

    20 4009  264 3.77  1.14  21.91 
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Table 8 

Summary Results for Pteris multifida

Plant    Soil As        Harvest      Frond      SE      Biomass                 SE            Bioconc 

Species     (ppm)          Week As                            (g DW)                                             Factor 

Pteris      0  4 ND  NA 4.19  0.86  NA 
multifida  8 ND  NA 5.00  0.49  NA 
   12 ND  NA 7.07  1.86  NA 
   16 ND  NA 6.62  2.45  NA 
    20 26  13 6.11  3.17  NA 

      20  4 1097  376 5.59  2.15  60.94 
   8 1322  189 6.30  1.63  73.44 
   12 837  289 7.66  1.35  46.50 
   16 1053  363 8.46  3.38  58.50 
    20 843  155 12.67  3.01  46.83 

      50  4 2415  292 5.29  0.90  71.03 
   8 3189  677 6.77  1.23  93.79 
   12 3095  787 6.21  0.88  91.03 
   16 2702  623 6.04  0.56  79.47 
    20 1830  549 8.09  2.09  53.82 

      100  4 3684  592 4.38  1.50  57.56 
   8 3659  1098 5.53  1.00  57.17 
   12 4079  780 6.13  1.83  63.73 

 16 4058  1898 6.24  1.42  63.41 
  20 3498  753 6.28  0.78  54.66 

      200  4 3790  1138 4.52  1.40  20.71 
   8 5510  1675 6.29  1.45  30.11 

 12 4723  1074 7.81  3.42  25.81 
 16 3707  1025 7.87  2.96  20.26 

  20 4441  736 4.29  1.67  24.27 
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Both Pteris ferns displayed significant uptake of arsenic at the first 4-week 

harvest and consistently throughout the study.  At the 200-ppm soil concentration, the 

control fern Nephrolepis exaltata showed significant concentrations of frond arsenic 

beginning at the 8-week harvest and through the rest of the study.  However, as the 

Nephrolepis exaltata fern was generally displaying symptoms of phytotoxicity at the 200 

ppm soil concentration, the plant arsenic concentrations are probably due to processes 

and effects other than uptake alone.  Figures 33–35 show the arsenic concentration and 

total arsenic removed for each fern species. 

The Pteris ferns are known to concentrate arsenic in the fronds and the harvested 

frond arsenic concentrations generally correlated with the soil arsenic concentration for 

both Pteris multifida (r2 = .55) and Pteris cretica mayii (r2 = .57).  There were some 

notable exceptions. Pteris cretica mayii, at the 8- and 16-week harvests, and the Pteris

multifida at the 16- and 20-week harvests, both show that either arsenic concentration or 

total arsenic was higher at the 100 ppm soil level than the 200 ppm soils, suggesting that 

there may be an upper boundary for soil arsenic concentrations and conditions between 

100 and 200 ppm and that there are species-specific differences in uptake rate and 

tolerance between Pteris species. 
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Figure 33.  Arsenic Uptake Summary for Nephrolepis exaltata.  Arsenic concentration and content 

in the control fern Nephrolepis exaltata in this study.  One of the surprising results was the 

consistently high frond arsenic concentrations of Nephrolepis exaltata ferns grown in the 200 ppm 

arsenic/soil concentration.  Whiskers show the standard error. 
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Figure 34.  Arsenic Uptake Summary for Pteris cretica mayii.  Arsenic concentration and content in 

the arsenic-hyperaccumulating fern Pteris cretica mayii.  Peak concentration and content were 

observed after 16 weeks and, in several cases, Pteris cretica mayii seemed to accumulate more arsenic 

from the 100 ppm concentration than the 200 ppm concentration. 
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Figure 35. Arsenic Uptake Summary for Pteris multifida.  Arsenic concentration and content in the 

arsenic-hyperaccumulating fern Pteris multifida.  Peak concentration and content were observed 

between eight and 12 weeks and, like, Pteris cretica mayii accumulated more arsenic from the 100 ppm 

concentration than from the 200 ppm concentration in some cases.
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 On the final fern harvest at 20 weeks, the roots of the ferns were also collected 

and tested for arsenic concentration using the same methods as the fronds.  Results 

showed that Nephrolepis exaltata, Pteris cretica mayii and Pteris multifida had root 

arsenic levels of 154, 701 and 776 ppm respectively.  Figure 36 shows the distribution of 

root/frond arsenic levels for all three ferns for the 200 ppm soil level at 20 weeks.  

The root/frond distribution of arsenic in the Pteris species is consistent with

previously published results by Bondata and Ma (2003), Srivastava et al. (2006) and Wei 

and Chen (2006).  One of the working definitions of a hyperaccumulating plant is the 

ability to rapidly translocate a metal or metalloid from the roots to the above ground 

biomass. 

      Figure 36.  Root/Frond Arsenic Distribution.  Arsenic concentration in the roots and

      fronds of the three fern species. Nephrolepsis exaltata was near death for all replicates.
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5.2.2 Grass Uptake and Stress Results 

The two grass species, fescue and rye, sprouted from seed, generally showed 

moderate to severe symptoms of phytotoxicity, including chlorosis, diminished growth, 

leaf necrosis and plant death.  In the 200 ppm arsenic soil concentration, neither of the 

grass species sprouted or grew to any appreciable degree.  In the 100 ppm arsenic soil 

concentration only one replicate of each grass species grew and survived for 20 weeks. 

 Significant concentrations of arsenic were observed in the grass samples that were 

harvested at 16 and 20 weeks.  However, at the 100 ppm soil arsenic level, all plants of  

both species were showing signs of extreme stress and, like the Nephrolepis exaltata

ferns at the 200 ppm arsenic soil concentration, the resultant levels of arsenic detected by 

analysis are probably related to processes other than normal plant uptake.

5.2.3  Summary and Discussion of Greenhouse Results

 Although previously reported by Wei and Chen (2006), Wang et al. (2006) and 

others, this study reconfirms that Pteris cretica mayii and Pteris multifida are arsenic 

hyperaccumulators.  Both Pteris ferns achieved frond arsenic concentrations in excess of 

5,000 ppm with no visual phytotoxic effects, although decreased biomass was observed at 

the 200 ppm soil arsenic level.  The Pteris multifida ferns removed more arsenic than the 

Pteris cretica mayii ferns.  The maximum level of frond arsenic concentration was 

achieved at 8 weeks for Pteris multifida and at 16 weeks for Pteris cretica mayii 

suggesting individual species differences in arsenic uptake.  Also, at several harvests, 

both species showed that the maximum concentration of frond arsenic and/or the 
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maximum total arsenic was higher in the 100 ppm soil arsenic category than in the 200 

ppm soil arsenic category, suggesting that there may be a upper limit for optimal arsenic 

hyperaccumulation for both species in the 100 to 200 ppm soil arsenic concentration 

range.

 The control fern Nephrolepis exaltata and the rye and fescue turf grasses showed 

extreme phytotoxic effects in soil arsenic levels of 100 ppm or greater.  Significant 

concentrations of arsenic were detected in the fronds of Nephrolepis exaltata growing in 

the 200 ppm soil arsenic concentration but with decreased biomass and with extreme 

phytotoxic effects. 

Even though there was significant uptake of arsenic by both Pteris ferns, they still 

were negatively affected by arsenic uptake and there was a general negative relationship 

between fern biomass (dry weight) and frond arsenic concentration. 
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5.3 Greenhouse Spectral Analysis

Reflectance spectra of all ferns and grasses were collected at 4-week intervals 

prior to harvesting for chemical analysis.  Spectra were collected with an ASD full range 

spectroradiometer under controlled light conditions.  Reflectance spectra of all ferns and 

grasses grown in the laboratory study were analyzed to establish predictive relationships 

between soil and plant arsenic and plant spectral reflectance parameters as expressed in 

either enhanced growth or stress effects.  Spectra for each individual fern in each of the 

three species was summarized in spreadsheets showing the laboratory control values, 

plant dry weight, arsenic concentration, arsenic content and the 2,151 spectral values 

representing 1 nm wavelength increments of the solar visible wavelength range of 350 - 

2,500 nm.  Figure 37 shows an example spreadsheet and graph of the basic management 

of spectral data. 

 Spectral analysis was conducted with three statistical methods including simple 

correlation analysis, PLS regression and SLR.  All statistical analyses were conducted 

with SAS, version 9.0 (The SAS Institute, Apex, North Carolina) software, and SYSTAT 

10 (SPSS Inc., Cambridge, Massachusetts). 

  Three tracks were investigated for establishing predictive relationships between 

spectral response and arsenic concentration: (1) reflectance spectra, (2) derivative spectra, 

and (3) spectral indices.  Because of the highly correlative nature of hyperspectral data, 

analysis presents special statistical problems with autocorrelation and two statistical 

techniques, PLS and SLR have emerged in the literature as successful approaches for the 
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     Figure 37.  Spectral Data in Spreadsheet Format. The basic management of laboratory and 

     spectral data through spreadsheet software.



134

analysis of hyperspectral data, especially as it relates to vegetation (Hansen et al. 2002; 

Kooistra et al. 2004; Schmidtlein 2005). 

 Each of the three fern species-specific data sets, collected at 4-week intervals, 

resulted in 85 individual plant observations and 2,151 spectral values for each 

observation.  As an initial data mining step, the spectral values for each band were 

correlated against the known arsenic concentration and content for each plant.  Figure 38 

shows the results of this analysis for all three fern species.  Although none of the 

correlation coefficients show a strong relationship, it is still evident that there is a pattern 

between plant arsenic and wavelength that is likely related to basic photosynthetic 

processes.  Several key peaks and valleys in this spectral range are located in areas of 

known plant phenomena.   

The fern that was most efficient at arsenic uptake, Pteris multifida, shows the 

least amount of spectral variation and Nephrolepis exaltata, the non-accumulating fern, 

shows the greatest amount of spectral variation.  Each of the ferns shows a negative 

correlation in the area of 530 nm (green reflectance peak) and a positive correlation at 

680 nm  (red light absorption).  Other spectral areas of potential interest include a trough 

at 750 nm, commonly referred to as the “Red Edge” and related to plant stress.  Shoulders 

near 980 nm and 1,180 nm are likely related to leaf or atmospheric water.  Peaks near 

1,460 nm and 1,950 nm probably also relate to atmospheric water vapor absorption and 
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Figure 38.  The Spectra - Arsenic Correlations.  The first data visualization investigates 

the correlation between spectral bands and arsenic concentration and content, that shows 

the areas of the spectrum that might be sensitive to yield information about the levels of 

arsenic in the plant. 

Pteris cretica mayii
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the trough at 1,685 could potentially be related to nitrogen or proteins containing 

nitrogen.

A second basic data visualization technique is shown in Figure 39 that displays 

the extreme arsenic exposure over time and the resulting spectra.  The average spectra of 

four replicates for each species is displayed at 4 weeks in the 0 ppm soil arsenic, at 12 

weeks in 50 ppm soil arsenic and at 20 weeks in 200 ppm soil arsenic.  These three 

collections of spectra generally show the entire range of change effects that have 

occurred with arsenic exposure.  Distinct patterns are evident in all three fern species.

These include changes in the green peak around 560 nm, changes in the red absorption 

trough at 680 nm and loss of the infrared shoulder around 750 nm.  Other potential 

diagnostic features include peaks at 1,120, 1,310, 1,685, 1,860, 2,020 and 2,230 nm and 

absorption features at 1,150, 1,200, 1,460, 1,685, 1,940 and 2,170 nm. 

5.3.1 Analysis of Spectral Reflectance Data 

One of the three main objectives of this research is the development of a 

predictive model for arsenic uptake based on reflectance data collected in the laboratory.  

Reflectance data were acquired for each fern just prior to harvest under controlled 

conditions.  See Section 4.3.2 for details. 

The PLS and SLR techniques were used to identify the best-fit linear and non-

linear equations for each fern for basic reflectance, and the first and second derivative 

data sets.  Cross correlation was used to test for the collinearity condition.  Figures 40, 41
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Figure 39.  Spectral Extremes Over Time.  A second data visualization technique plots the 

extremes of spectral variations of all three fern species; 0 ppm arsenic at 4 weeks, 50 ppm 

arsenic at 12 weeks and 200 ppm arsenic at 20 weeks.  Distinct changes are evident. 
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and 42 graphically shows the best arsenic prediction models, based on spectral 

reflectance for each fern.  Table 9 shows the models and the R2 values for each. 

As is evident from the R2 value for each model, as well as graphically from the 

plots on Figures 40, 41 and 42, none of the models does a very good job at predicting the 

known arsenic concentration value in the plants.  Reasonable linear and second order 

polynomial models were achieved for the Nephrolepis exaltata for the reflectance and 

first derivative data sets.  However, since Nephrolepis exaltata is the non-accumulating 

control fern, it is unlikely that the spectra, and the derived models, are actually measuring 

arsenic since the concentrations are very low.  Given the bands involved in the models, 

463, 558 and 654 nm roughly correspond to the blue trough, the green peak and red 

trough, and 736, 818 and 946 nm are all associated with the shoulder at the top of the 

red/infrared edge and the loss of definition that corresponds to arsenic exposure in the 

Nephrolepis exaltata fern.  This is graphically evident in all three species in Figure 39 

and is likely the result of photosynthetic stress because the change in all of these areas 

indicates a decrease in chlorophyll production. 

At this point, a review of the data and approaches in the literature revealed two 

possible methods for improving the spectral models of arsenic prediction from the 

reflectance data of the ferns.  First, the primary reflectance data showed that there was a 

significant noise signal in many of the individual spectra at both ends of the solar 

reflected spectrum.  At the mid-infrared edge (2,400 - 2,500 nm) the noise is likely due to 

atmospheric moisture in the form of high ambient humidity.  At the blue edge (350 - 450 

nm) the noise is probably due to ambient light in the laboratory.  Even though the 
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Figure 40.  Reflectance Models of Arsenic Concentration.  Linear and Polynomial Models between 

Arsenic Concentration and basic spectral reflectance.  Models were developed with PLS and SLR 

techniques.
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          Figure 41.  The 1
st
 Derivative Models of Arsenic Concentration.  The linear and non- 

          linear models of arsenic concentration from the 1
st
 Derivative of spectral reflectance 

          for all three fern species.

Pteris cretica mayii

Pteris multifida

Nephrolepis exaltata
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     Figure 42.  The 2
nd

 Derivative Models of Arsenic Concentration.  The linear and non- 

     linear models of arsenic concentration from the 2
nd

 Derivative of spectral reflectance 

     for all three fern species.

Nephrolepis exaltata

Pteris cretica mayii

Pteris multifida
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Table 9 

Model Results for Predicting Arsenic Concentration from Spectral Data 

Nephrolepis exaltata         Reflectance 

Model:  as_conc =   2693.1 + (92.47 * Band_736) + (168.32 * Band_2360)

linear equation  / R2  y = 0.0915x      /   .47

non-linear equation / R2 y = 0.0002x2 + 0.2111x +162.53    /   .52
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Pteris cretica mayii         Reflectance 

Model:  as_conc =                  2260.3 - (411.59 * Band_548) + (384.17 * Band_679) – 
    (99.2 * Band_1894) +  (115.92 * Band_1689)
linear equation  / R2  y = -0.273x + 3507.4    /                .021

non-linear equation / R2 y = 5E-05x2 – 0.5184x + 3661.4   /                .023
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Pteris multifida           Reflectance 

Model:  as_conc =                   1781.6 - (351.9 * Band_621) + (64.75 * Band_1190) – 
    (252.25 * Band_2283)
linear equation  / R2  y = 0.0851x + 2847.2    /   .05

non-linear equation / R2 y = 3E-05x2 - 0.0869x + 2969.3   /  .07
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Nephrolepis exaltata             1st Derivative of Reflectance

Model:  as_conc  =                                 547.06 - (65.629*Band_463) - (39.552*Band_558) + (24.748 * 
Band_654) - (13.436*Band_818) + (161.49*Band_946) –

                             (15.152*Band_2143)
linear equation  / R2 y = x - 0.006     /   .64

non-linear equation / R2 y = 0.0001x2 + 0.1262x + 407.96   /   .72
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Pteris cretica mayii                          1st Derivative of Reflectance

Model:  as_conc = 2359.7 - (39.97*Band_2194) - (76.30*Band_1274) -(112.2*Band_1039) 
+ (54.49*Band_1222) - (8.110*Band_2085) 

linear equation  / R2 y = 1.0047x - 12.851    /   .37

non-linear equation / R2 y = 7E-05x2 + 0.6205x + 468.58   /   .37
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Pteris multifida                  1st Derivative of Reflectance

Model:  as_conc =                  2101.7. –  (10.65 * Band_1067) + (43.88 * Band_1185) – (136.28 
                                                               Band_619) + (88.83 * Band_480) – (41.38 * Band_1015) +

                            (102.36 * Band_1568) 
linear equation  / R2               y = -0.0441x + 3925.5   /                             .004

non-linear equation / R2                y = -1E-08x3 + 0.0001x2 - 0.2611x + 3969.3  /               .009
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Nephrolepis exaltata            2nd Derivative of Reflectance

Model:  as_conc  =                               2562.4 + (12.137*Band_910) - (77.202*Band_1903) + (59.657 * 
                                                              Band_1686) + (65.629*Band_1037) + (6.8793*Band_2048)
linear equation  / R2              y = 0.0013x + 1019.8    /         0
non-linear equation / R2               y = -6E-15x4 + 9E-10x3 - 3E-05x2 + 0.1043x + 983.17 /                .006
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Pteris cretica mayii           2n Derivative of Reflectance

Model:  as_conc =                              2208.6 + (71.12*Band_1136) - (6.6254*Band_2171)                      
                          +  (27.051*Band_2184) 

linear equation  / R22                     y = x + 0.0087     /   .24

non-linear equation / R2              y = -2E-05x2 + 1.1365x - 195.19   /   .24
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Pteris multifida                    2n Derivative of Reflectance

Model:  as_conc =                2282.4 –  (0.8275 * Band_1580) - (10.53 * Band_851) +  
                                                             (0.3325 * Band_1111) - (20.28 * Band_764) 
linear equation  / R2             y = 0.5512x + 1083.1     /                  .073

non-linear equation / R2              y = -7E-05x2 + 1.0164x + 422.46   /                 .084
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protocol called for a high-intensity solar lamp, it is nearly impossible, without being in an 

isolated room, to completely eliminate other light sources and this resulted in significant 

noise in that part of the spectrum. 

 Second, it was clear from several of the plots of the data in the PLS routine and in 

the spreadsheet figures that there was a dual distribution or clustering in the data set.

Approximately 18 to 20 data points were consistently isolated from the rest of the 

spectral files for each fern.  Figure 43 shows graphic examples of both the noise in the 

data and the distribution of data points 

 These spectral noise conditions were rectified by trimming the basic spectrum for 

each plant by 100 nm on each end, from the original 350–2,500 nm to 450–2,400 nm.  

This removed a major portion of the noise in the data set and creating a very different 

statistical data set for analysis.  See Figure 43.

In addition, by working back though the graphs, the isolated data clusters turned 

out to be the ferns growing in the soils with the zero arsenic concentrations and 

subsequently with little or no arsenic in the fronds, this meant that there were no spectral 

characteristics relating to the arsenic concentration.  Reviewing the data further, it 

appears that the threshold for the spectral expression of arsenic stress is in the 400–500 

ppm range.  To correct for this problem, all ferns with a confirmed laboratory analysis of 

less than 500 ppm were eliminated from the two Pteris ferns data sets.
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Figure 43.  Noise and Clustering in Spectral Data.  Two spectral conditions discovered after 

reevaluation of all spectral data.  The top figure shows noise at both ends of the spectrum which was 

eliminated by trimming the spectral trace by 100 nm on each end.  Below an obvious cluster of data 

points did not add to the predictive models.  This cluster, show n in gold, was eventually determined 

to be the zero soil treatments and the lowest detectable arsenic concentrations in the ferns and were 

withheld from the fern observations for each species. 
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5.3.2 Second Analysis of Spectral Reflectance Data 

After the data edits for trimming away the noisy edges of the spectra and 

subsetting the observations to include only those with arsenic concentrations greater than 

500 ppm, the basic PLS methodology was reapplied to the reflectance, and the first and 

second derivative data for the two arsenic accumulating ferns.  The reanalysis of 

reflectance revealed no improvement in the predictive models for arsenic concentration.  

The raw reflectance data are so highly correlated that finding several components that 

will pass the collinearity condition for a predictive model is nearly impossible.  The first 

and second derivatives of the reflectance spectra, on the other hand, are very 

uncorrelated, and make the discovery and use of multiple components and factors much 

more feasible.

The reanalysis of the first and second derivatives for the Pteris cretica mayii and 

the Pteris multifida data yielded four very improved models for relating arsenic 

concentration to spectral reflectance.  All four models had R2 values of  .70 or greater.

Figures 44 and 45 show the improved models and graphs for the first and second 

derivatives for both Pteris ferns.  Table 10 summarizes the models and improved R2

values.

Model components appear to vary significantly between species especially with 

respect to the most important wavelengths selected in the PLS regression process.  

However, some similarities are present.  All four models had at least one component in, 

or very close to, the water absorption areas of 1,400 and 1,900 nm, possibly indicating 
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Figure 44.  Improved 1
st
 Derivative Models of Arsenic Concentration.  Models of arsenic 

concentration in the fronds of two Pteris ferns derived from the 1
st

derivative of reflectance 

after data were trimmed and subsetted to include only arsenic concentration greater than 

500 ppm. 
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Figure 45.  Improved 2
nd

 Derivative Models of Arsenic Concentration.  Improved models of

arsenic concentration in the fronds of two Pteris ferns derived from the second derivative 

of reflectance after data were trimmed and subsetted to include only arsenic concentration 

greater than 500 ppm.
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Table 10. 

Improved Linear and Non-linear Models for Predicting Arsenic Concentration from Spectral Data.

_____________________________________________________________________________________

Pteris cretica mayii                                                 1
st
 Derivative of Reflectance 

Model:  as_conc =                            5022.1  – (43.48*Band_450) – (84.392*Band_503)  
                                                                      + (204.31*Band_656)  + (116.68*Band_674) 
                                                                      – (49.854*Band_1047)+(83.411*Band_1358) 

linear equation           / R2 / prev R2 y = 0.7953x + 575.17              .79  / .37

non-linear equation  / R2 / prev R2 y = -0.00004x2 + 1.0144x + 355.67                     .79  / .37

_____________________________________________________________________________________

Pteris multifida                             1
st
 Derivative of Reflectance

Model:  as_conc =     3450.5  – (86.769*Band_488) – (128.52*Band_1063)  
                                                                       –  (169.53*Band_1225) + (178.44*Band_1270) 
                                                                     + (70.151*Band_1979) - (53.622*Band_2022) 
      + (21.621*Band_2088) 

linear equation           / R2 / prev R2  y = 0.7208x + 852.7                                                         .72 / .073

non-linear equation  / R2 / prev R2   y = 0.00003x2 + 0.4953x + 1142.3                     .73 / .084

_____________________________________________________________________________________

Pteris cretica mayii                             2
n
 Derivative of Reflectance

Model:  as_conc =                              4330.6 + (689*Band_1355) + (176.06*Band_1049)  
                                                                     + (499.19*Band_548) + (45.518*Band_2230) 
                                                                      – (241.87*Band_725) + (375.87*Band_1658)  
                                                                     + (198.09*Band_1251) 

linear equation           / R2 / prev R2                      y = 0.7047x + 857.07                                           .70 / .24

non-linear equation  / R2 / prev R2               y = -0.00004x2 + 0.978x + 546.67                    .70 / .24

_____________________________________________________________________________________

Pteris multifida                                         2
nd

 Derivative of Reflectance

Model:  as_conc =   2393.9 + (263.8*Band_515) + (746.81*Band_851) 
                                                                      – (511.57*Band_1327) + (627.39*Band_1420) 
                                                                      + (600.52*Band_1499) + (69.62*Band_2009)  
                                                                      + (18.434*Band_2323) – (27.958*Band_2325) 

linear equation           / R2 / prev R2 y = 0.7369x + 806.09                      .74  / .073

non-linear equation  / R2 / prev R2 y = 0.00001x2 + 0.649x + 917.8                             .74  / .084

---------------------------------------------------------------------------------------------------------------------------
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some interactions between sequestered arsenic and leaf moisture.  All of the derived 

models had a component which was a bandwidth in the blue-green transition zone, 

between 450 and 550 nm and except for the Pteris cretica mayii first derivative model, 

none of the other models utilized components or information from the traditional red or 

Red Edge regions that are known to relate to plant health and photosynthetic activity.

Several bands in the short wave infrared region (SWIR), from 1,400 nm to 2,400 nm, 

proved to be valuable for predicting plant arsenic concentration.  Three out of four new 

models used at least two component bands from the SWIR region. 

5.3.3 Testing Spectral-Arsenic Prediction Models 

In September 2004, field reflectance spectra were collected for 24 ferns (12 Pteris

cretica mayii and 12 Pteris multifida) that had been grown in Spring Valley as part of a 

phytoremediation pilot.  These ferns were then harvested and independently analyzed for 

arsenic by the USACE Laboratory in Vicksburg, Mississippi.  The spectra from these 

ferns were input into spreadsheets and processed into reflectance and the first and second 

derivatives.  The original intent of this data collection was to provide a field test of the 

arsenic prediction models developed from the laboratory spectra data analysis.     

Unfortunately, field conditions are generally very different and, although the ferns 

were successfully utilized for remediation of soil arsenic, the arsenic concentrations in 

these particular ferns were generally very low and below the 500 ppm threshold that was 

used in the model development.  However, six ferns contained arsenic concentrations 

levels at or near 500 ppm level and the spectral data from these ferns were used to 
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compute the first and second derivatives and specific band values were inserted into the 

corresponding models.  Table 11 shows the results. 

Although this is a very limited test because of the number of subjects, it still 

demonstrates the potential for predicting arsenic concentration from spectral data.  In 

general, it appears that the first derivative model works better than the second derivative 

model and the better predictions were the ferns with the higher actual arsenic 

concentrations, which is consistent with the model statistics.  Much more data are needed 

to fully evaluate the model effectiveness. 

Table  11 

Arsenic Concentrations (ppm) and Spectral Model Prediction 

Spring Valley Phytoremediation Ferns 

                         1st
 Derivative Model    2

nd
 Derivative Model 

Sample     Fern    Predicted Actual  Predicted  Actual 

ts1 P. cretica    1313        593       3278    593 

ts13 P. multifida    1024    1060     1042         1060 

ts14 P. multifida    1111         483          1857         483 

ts17 P. multifida      980        907     2144    907 

ts18 P. multifida      340         383     3669    383 

ts21 P. multifida       830         694     3111    694 
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5.3.4 Vegetation Indices

VIs are numerical formulas of spectral reflectance data that are designed to 

maximize specific properties or relationships among parts of the EMS.  VIs can 

be a general indicator of overall condition, such as the NDVI, or can be quite specific, 

such as the anthocyanin reflectance index (ARI).  Anthocyanins are the red pigments in 

most leaves and have one main absorption around 529 nm in the green region of the 

EMS.  Anthocyanins levels tend to have an inverse relationship with photosynthetic 

activity and therefore they can be an effective measure of stress.   

 Sixty six VIs were extracted from the literature and programmed into 

spreadsheets for each spectral measurement.  Appendix C lists the VIs, the formulas and 

the reference for each.  Broadband indices, such as those that might have been developed 

for Landsat or AVHRR were computed by taking an average of hyperspectral bands in 

the target region.  For example, a value for broadband blue was computed by the 

summation of bands 445 to 515, divided by 71. 

 The values for all 66 VIs were appended to the spectral reflectance values for 

each file prior to the PLS analysis, resulting in 2,217 total bands.  After all PLS 

processing, none of the VIs for any of the ferns were selected for inclusion in the final 

model. 

 The 66 VI values were then input into SLR models for each fern to determine if 

any significant statistical relationships were present.  For the Nephrolepis exaltata fern, a 

good linear relationship was found with the Moisture Stress Index (MSI), the 

Photochemical Reflectance Index (PRI), the Red Edge Vegetation Stress Index (RVSI), 
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the Red Near Infrared Green (RNG) Index and the Modified Triangular Vegetation Index 

2 (MTVI2).  The model R2 is .7026 and has a p value of .0001. 

 The SLR process was repeated for Pteris multifida and Pteris cretica mayii.  The 

SLR process for Pteris cretica mayii returned an acceptable model using the Green Index 

(GI), the Sum Green Index, (SGI) and Carotenoid Reflectance Index 1 (CRI1).  The 

model R2 is .6939 and has a p value of .0001.  No model could be developed for the 

Pteris multifida data.  Figure 46 displays the graphs and equations for both the 

Nephrolepis exaltata and Pteris cretica mayii models. 
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Figure 46.  Vegetation Index Models.  The two linear models that were developed from 

VIs for Nephrolepis exaltata and Pteris cretica mayii.  No model was significant for Pteris

multifida.



154

5.4 Mapping Arsenic Induced Vegetation Stress with Hyperspectral Imagery 

Hyperspectral imagery data were processed and analyzed to identify and map the 

spectral signature of known areas of arsenic-induced stress in vegetation.  HSI systems 

record, at a lower spatial and spectral resolution, the same energy interactions as a 

laboratory spectrometer and there has been much research over the past ten years in 

applying HSI analysis to the identification of unique substances or conditions on the 

landscape.

 As a result of the spectral data collected for the two grass species grown in the 

laboratory in the five soil-arsenic concentrations, a spectral profile of arsenic stress has 

been acquired and serves as a starting point in the attempt to identify high soil arsenic 

based on the spectral signature of the grass growing in it.  As is typical in a vegetation 

stress scenario, spectral expressions of stress are indicated by the changes in the Green 

and Red Edges (around 400 and 700 nm, respectively), the Red Trough around 680 nm 

and the infrared shoulder near 750 nm.  These areas, and possibly others, have the best 

potential to discriminate arsenic affected vegetation in HSI.  Figure 47 shows two spectra 

from unstressed and arsenic-stressed ferns with the graphic outline of the key areas of 

stress identification. 

 HyMAP HSI were collected in October 2000 over the Spring Valley area and 

prior to any remediation of high soil arsenic.  HyMap is an aircraft-mounted commercial 

hyperspectral sensor operated by the HyVista Corporation (Sydney, Australia).  The 

system is a whiskbroom scanner utilizing diffraction gratings and four 32 element 

detector arrays to provide 126 spectral channels covering the 450–2,500 nm spectral 
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range over a 512 pixel swath.  The bandwidths vary between 10 and 20 nm with a greater 

than 1000:1 signal-to-noise ratio.  The HyMap sensor acquires imagery at spatial 

resolutions of between 3 and 10 m, depending on the flight height.  The pixel size of the 

HyMap imagery of Spring Valley is 4 m (Cocks et al. 1998). 

The imagery cube, 133 mb in size, was preprocessed according to ENVI standard 

methods, including an ATREM atmospheric correction, (Gao et al. 1993; Clark et al. 

1984), dark current noise removal and internal and external calibration to apparent 

relative reflectance (Bachman et al. 2002; Kruse et al. 2003).  

Figure 47.  Lab Spectra of Arsenic Stress.  Spectra from two Pteris cretica mayii ferns with and 

without arsenic stress.  The primary regions of spectral separation for identifying and measuring 

stress are highlighted. 
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The first image processing trial utilized the automated spectral hourglass wizard 

in ENVI and produced transformed files for the Minimum Noise Fraction, Pixel Purity 

Index, Linear Unmixing, Endmembers and a Matched Filter.  Unfortunately, none of the 

endmembers uniquely identified the known arsenic-affected grass areas and all of the 

classification attempts resulted in poor accuracies.   

 A series of mapping methods were attempted covering the range of spectral 

processing capabilities utilizing different intermediate processing files and using the six 

classification decision rule algorithms.  Table 12 outlines the different base imagery files 

and classification approaches that were attempted along with the overall accuracy 

statistics.

The highest overall mapping accuracy was achieved with linear spectral unmixing 

as the base processing and Maximum Likelihood as the decision rule.  The overall 

accuracy of this classification was 83 % with a Kappa Coefficient of 0.77.  Further, the 

mapping accuracy of the arsenic grass category was 55.8 % for producers accuracy and 

82.7 % for users accuracy.

      Several other image processing/classification methods had accuracies around  

70 % or higher and invariably the classification method was either Maximum Likelihood 

or Mahalanobis Distance.  In terms of overall classification accuracy, the Mahalanobis 

Distance routine performed the best with an average accuracy of 64.2 % and the 

Maximum Likelihood was second at 61.5 %.  The confusion matrix for the best 

classification is shown in Table 13, and Figure 48 shows a classified image of the Spring  
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TABLE  12. 

Hyperspectral Processing and Map Accuracy Results 

Base Image   Classifier   Overall             Kappa 
        Accuracy  %       Coefficient 

Minimum Noise Fraction  Binary Encoding         17.1        .10 
Minimum Noise Fraction  Mahalanobis Distance       38.1        .26 
Minimum Noise Fraction  Maximum Likelihood     42.4        .29 
Minimum Noise Fraction  Minimum Distance     58.8        .47 
Minimum Noise Fraction  Parallelepiped      24.3        .15 
Minimum Noise Fraction  Spectral Angle Mapper     22.2        .12 

Matched Filter   Binary Encoding         11.1        .02 
Matched Filter   Mahalanobis Distance       71.0        .61 
Matched Filter   Maximum Likelihood     70.1          .61 
Matched Filter   Minimum Distance     66.1        .56 
Matched Filter   Parallelepiped      17.5        .08 
Matched Filter   Spectral Angle Mapper     18.9                         .12 

Mix-Tuned Matched Filter  Binary Encoding             5.5        .00 
Mix-Tuned Matched Filter      Mahalanobis Distance       77.2        .70 
Mix-Tuned Matched Filter  Maximum Likelihood                  70.4        .60 
Mix-Tuned Matched Filter  Minimum Distance                  51.6        .38 
Mix-Tuned Matched Filter  Parallelepiped                   15.5        .10 
Mix-Tuned Matched Filter  Spectral Angle Mapper                  56.2        .45 

Continuum Removal  Binary Encoding                   32.4        .20 
Continuum Removal       Mahalanobis Distance       73.1        .64 
Continuum Removal  Maximum Likelihood     49.0        .39 
Continuum Removal  Minimum Distance     54.9        .42 
Continuum Removal  Parallelepiped      53.9        .41 
Continuum Removal  Spectral Angle Mapper     58.5        .49 

Linear Spectral Unmixing  Binary Encoding                                 34.9        .21 
Linear Spectral Unmixing      Mahalanobis Distance       79.6        .73 
Linear Spectral Unmixing  Maximum Likelihood     83.0        .77 
Linear Spectral Unmixing  Minimum Distance     39.2        .21 
Linear Spectral Unmixing  Parallelepiped      16.5        .06 
Linear Spectral Unmixing  Spectral Angle Mapper     58.5        .49 

Spectral Feature Fitting  Binary Encoding                                   5.5        .00 
Spectral Feature Fitting       Mahalanobis Distance       46.2        .39 
Spectral Feature Fitting  Maximum Likelihood     54.1        .47 
Spectral Feature Fitting  Minimum Distance     46.7        .38 
Spectral Feature Fitting  Parallelepiped      35.2        .27 
Spectral Feature Fitting  Spectral Angle Mapper     45.0        .37 
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Table 13   

Accuracy Assessment Confusion Matrix 

Linear Spectral Unmixing / Maximum Likelihood Classification  

      

Overall Accuracy = (9636/11610)  82.9 %       Kappa Coefficient = 0.77   

  As 
  Grass  Grass  Trees  Bldg1  Bldg2  Soil  Asphalt  Concrete  Total 

(pixels)

As_Grass  263 55 0 0 0 0 0 0 318 
Grass   41 448 0 0 0 0 0 0 489 
Trees   68 0 5082 0 44 0 2 4 5200 
Bldg1   0 0 0 889 3 0 19 30 941 
Bldg2   94 323 293 295 1509 18 262 272 3066 
Soil   1 0 0 0 5 945 2 0 953 
Asphalt  0 0 0 0 1 0 239 0 240 
Concrete 4 73 0 35 4 25 1 261 403 
Total  471 899 5375 1219 1566 988 525 567 11610 

     (percent) 

As_Grass  55.84 6.12 0 0 0 0 0 0 2.74 
Grass   8.7 49.83 0 0 0 0 0 0 4.21 
Trees   14.44 0 94.55 0 2.81 0 0.38 0.71 44.79 
Bldg1   0 0 0 72.93 0.19 0 3.62 5.29 8.11 
Bldg2   19.96 35.93 5.45 24.2 96.36 1.82 49.9 47.97 26.41 
Soil   0.21 0 0 0 0.32 95.65 0.38 0 8.21 
Asphalt  0 0 0 0 0.06 0 45.52 0 2.07 
Concrete 0.85 8.12 0 2.87 0.26 2.53 0.19 46.03 3.47 
Total  100 100 100 100 100 100 100 100 100 

 Class     Commission%   Omission%  Commission%  Omission%  

As_Grass       17.30         44.16                55/318              208/471   
Grass           8.38         50.17                41/489              451/899   
Trees            2.27          5.45              118/5200             293/5375   
Bldg1           5.53         27.07                52/941             330/1219   
Bldg2           50.78          3.64             1557/3066           57/1566   
Soil           0.84          4.35                 8/953               43/988   
Asphalt         0.42         54.48                 1/240              286/525   
Concrete        35.24         53.97               142/403       306/567 

Class     Prod. Acc. %   User Acc.%        Prod. Acc.%      User Acc.%  

As_Grass          55.84         82.70               263/471             263/318   
Grass          49.83         91.62               448/899             448/489   
Trees           94.55         97.73             5082/5375         5082/5200   
Bldg1          72.93         94.47              889/1219           889/941   
Bldg2           96.36         49.22             1509/1566       1509/3066   
Soil          95.65         99.16               945/988              945/953   
Asphalt         45.52         99.58               239/525               239/240   

Concrete        46.03         64.76               261/567            261/403  
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Figure 48.  Land Cover Classification Results.  Linear Spectral Mixing / Maximum Likelihood 

classification results of the Spring Valley / American University Area.  Red is arsenic-affected grass.
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Valley area from the highest accuracy combination of intermediate processing and 

classification decision rule algorithm (Linear Spectral Unmixing / Maximum Likelihood). 

 The range of overall accuracy measures from the 36 image/classifier 

combinations yielded some interesting and potentially useful information for future 

applications.  The Binary Encoding classification decision rule performed poorly in all 

tests.  This classifier divides the endmember and image data into ones and zeros based on 

the spectral mean and uses an exclusive Boolean OR function to compare each encoded 

reference spectrum with the encoded data spectra and produces a classification image.  

Image pixels are classified to the endmember with the greatest number of matches (ENVI 

2004).  The classic Parallelepiped classifier also performed poorly with an average 

accuracy of 27.2 %. 

 The best overall classification decision rule algorithm was the Mahalanobis 

Distance classifier with an average of 64.2 % follow by the Maximum Likelihood 

classifier at 61.5 %.  Both of these classifiers calculate statistics for each class, assume 

that the covariances of all classes are equal and utilize probabilities to assign a pixel to a 

specific class (ENVI 2004).  The significance of these results lies in the fact that the 

classifiers developed specifically for hyperspectral applications, the Binary Encoding and 

the Spectral Angle Mapper, did not produce any meaningful results and the best 

classification decision rules were those developed for multispectral applications. 

In terms of the image processing format, the best overall accuracy was achieved 

by the Continuum Removal method with an average accuracy of 53.6 % followed closely 

by Linear Spectral Unmixing at 52.0 %.  The image format that performed at the poorest 
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level is the Minimum Noise Fraction at 33.8 %.  The Minimum Noise Fraction is really 

an initial basic format for HSI, and therefore, the low accuracy is not surprising.  The 

Continuum Removal is a method that has been gaining acceptance in the scientific 

literature.  The Continuum Removal fits a convex hull over the spectra and subtracts the 

spectral maxima, leaving only the normalized absorption features.  Linear Spectral 

Unmixing is a form of subpixel processing that has gained a wide acceptance and 

application in recent years.  It is appealing in that it can produce continuous surface 

results instead of a limited number of thematic classes.   

 Also worth noting are the results of the image processing using the Vegetation 

Index (VI) functions in the ENVI software.  The complete suite of VIs were calculated 

for each pixel and stored as layers in a multiband image.  The VI images were processed 

with the same algorithms listed in Table 12 but produced no significant classification 

results.  Just as in the laboratory spectral applications, where limited results were 

observed, the performance of these VI metrics is confusing given their relative popularity 

in the scientific literature. 

5.4.1 Discussion of Hyperspectral Image Processing Results 

 The hyperspectral image processing of arsenic stress in grass was severely 

constrained because of the extreme crown closure of the Oak trees that line the streets in 

the area.  Many of the arsenic-contaminated grass areas were not accessible to the sensor 

and thus severely limited the scope of this analysis.  Further, because Oak trees in the 
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Washington, D.C., area were starting to senesce in mid-October, they were displaying 

natural stress characteristics and therefore were unacceptable for spectral analysis.

 Even under these conditions the statistical and image processing results can be 

viewed as promising.  The level of users classification accuracy between arsenic-affected 

(82.7 %) and non-affecting grasses (91.6 %) was surprisingly high although there 

obviously appear to be some significant false positives.  These could be due to error or 

confusion in the training signature or the classification process or could be due to other 

forms of stress, such as moisture deficiency or pesticides, that create a similar reflectance 

pattern.  Also, it is unlikely but possible that there are additional arsenic-affected areas 

that have been overlooked. 

 It is clear that the HSI and analysis process is identifying and mapping a 

significant level of arsenic stress.  Although HSI is far less sensitive in spatial and 

spectral resolution than the laboratory spectrometer (1 cm vs. 4 m, 126 bands vs. 2,151 

bands), there are known and consistent spectral relationships that enable HSI to identify 

important conditions in vegetation status.  For example, the same key spectral regions of 

stress that are displayed in Figure 47 can be seen in the HSI spectra in Figure 49 which 

shows spectra of healthy and arsenic-stressed grass from both the laboratory spectrometer 

and the HSI.

The same classic areas and patterns of spectral changes due to stress can be seen 

in both sets of data and are well founded in the scientific literature.  Horler et al. (1980, 

1983) showed that stressed vegetation often shows a general increase in reflectance 

magnitude as a general non-specific response usually due to a loss of chlorophyll  
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synthesis.  Horler et al. (1983), Bammel and Birnie (1994) and Reusen et al. (2003) 

documented the general flattening of the green peak at 450 nm and the red trough at 680 

nm in stress scenarios as a result of decreasing chlorophyll and photosynthetic activity.  

The stressed-induced blue shift of the Red Edge inflection point, around 700 nm 

has been documented by numerous researchers including Collins et al. (1977), Rock et al. 

(1988),  Milton et al. (1989), Ray (1993) and Kooistra et al. (2003).  Changes in the

Figure 49.  Laboratory and Imagery Spectra. Healthy and stressed grass signatures from 

both the laboratory and hyperspectral imagery.  The same critical areas in the green, red, 

near-infrared and SWIR show the patterns of spectral separation between the healthy and 

stressed grass that enable the image processing algorithm to separate, identify and map 

these areas. 
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infrared shoulder around 800 nm due to water stress have been documented by Hunt and 

Rock (1989), Ceccato et al. (2001) and Zhang et al (2003) and changes in the band depths 

and band depth centers around the water absorption bands and in the SWIR region in 

general have been documented by Ceccato et al. (2001), Fensholt and Sandholt (2003) 

and Noomen et al. (2006). 

All of these spectral signatures of vegetation stress are visible in both the 

laboratory and imagery spectra and these spectral differences enabled the identification 

and mapping of healthy and arsenic-stressed grass cover in the Spring Valley test areas. 

 Identification of specific arsenic stress in these areas in Spring Valley required 

prior knowledge of their spatial location and extent and this information provided a 

critical content for this research.  It cannot be confirmed that this process was able to 

identify or classify arsenic-specific vegetation stress as opposed to nutrient, pesticide, 

moisture or any other types of typical vegetation stresses.   

The research literature in this area is promising.  Horler et al. (1980) found both 

general and metal-specific stresses in the reflectance data from peas dosed with cadmium, 

copper, lead and zinc.  Milton et al. (1989) identified arsenic- and selenium-specific 

stress changes in the spectra of soybeans.  Bammel and Birnie (1994) found specific 

patterns of hyperspectral changes in the green edge and red trough in relation to surface 

plant stress from underground hydrocarbon seepage. 

Sims and Gamon (2002) developed a hyperspectral photochemical reflectance 

index (PRI) to measure specific leaf pigments and the distributions within the leaf 

structure which is an indicator of plant health and specific types of stress.  Schuerger et 
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al. (2003) utilized hyperspectral reflectance and laser-induced fluorescence to identify 

specific signatures of zinc stress chlorophyll concentration in Bahia grass.  Rosso et al. 

(2005) used field spectroscopy to identify crude oil and heavy metal stresses in California 

wetlands vegetation and found very specific differences based on the specific pollutant 

and the level of contamination. 

The logical next step in the evolution of this research is building the knowledge 

base about pollutant-specific vegetation stress responses and how they affect a wide 

variety of potentially susceptible species.  Even if these pollutant-specific signatures can 

be developed through laboratory or imaging spectroscopy, these are likely to be very 

small shifts in spectral band centers or very sensitive VIs and will require a new level of 

attention to atmospheric correction, cross-sensor calibration, spectral processing 

standards and quality control procedures. 
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6. Synthesis and Discussion 

6.1 Hypothesis Testing:  Historical Aerial Photography

In the historical aerial photographic phase of this research, features derived from 

the photographic interpretation of 1918 aerial photography were georeferenced and 

digitized into a GIS format and overlaid on a GIS coverage of areas requiring remediation 

in the current Spring Valley clean up efforts.  Out of 42 polygons from the 1918 photos, 

33, or 78.5 %, intersected areas on the remediation coverage.  For this study component, 

the research hypotheses were stated as: 

H0  =  Spatially explicit patterns of landscape disturbance, as derived from 

  historical aerial photographs, are NOT spatially related to future  

hazardous waste remediation requirements.   

H1  =  Spatially explicit patterns of landscape disturbance, as derived from  

historical aerial photographs, ARE spatially related to future hazardous  

waste remediation requirements. 

To test the null hypothesis, a data set of 42 random point values was generated 

and buffered to a 23.5 m distance, giving each circular polygon the same area as the 

average of the 1918 polygons.  Ten random point/polygon coverages were overlaid on a 

GIS data layer of the combined areas of required remediation and an average of 13 
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intersections occurred between the random polygons and the remediation areas.  Thus a 

random sample of the study area resulted in 13 areas requiring remediation.  There are 

now two binary data sets, “photo”, and “random”, each with 42 points and each with the 

variable “remedial” set to 0 = no or 1 = yes.

The null hypothesis, involving non-normal binary data can be modeled with a log 

transformation and tested with a logistic regression model.  The test statistic is the 

Chi-Square Goodness of  Fit (SAS 2002).  The summarized results are in Table 14.  The 

Chi-Square statistic is 20.0868 and well above the random effects value of 2.1016 and the 

p value is < .0001.  Therefore, the Null Hypothesis is rejected. 

6.2 Hypothesis Testing: Modeling Arsenic Uptake with Laboratory Reflectance Data     

In the modeling of arsenic uptake with laboratory reflectance spectra, PLS and 

SLR techniques were utilized to develop and model the relationship between spectral 

reflectance and arsenic concentration in Pteris ferns.  The research hypotheses for this 

component were stated as: 

H0 =  Arsenic phytoextraction by Pteris ferns can NOT be predicted by spectral

reflectance data in the 450 – 2,500 nm region of the electromagnetic

spectrum.

H1 = Arsenic phytoextraction by Pteris ferns CAN be predicted by spectral

reflectance data in the 450 – 2,500 nm region of the electromagnetic

spectrum.

As the final step in the arsenic concentration - spectral reflectance model 

development process, a limited number of variables (spectral bands) that were identified 
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by an iterative PLS analysis, were input into a SLR process.  The summary results for 

both ferns are shown in Tables 15 and 16. 

Table 14 

Null Hypothesis Test 

Aerial Photographic Interpretation Features 

The SAS Logistic Procedure 

Model Information 

                 Data Set                         WORK.SVPOINTS 
                  Response Variable               remedial 
                  Number of Response Levels      2 
                  Number of Observations          84 
                  Model                            binary logit 
                  Optimization Technique          Fisher's scoring 

Testing Global Null Hypothesis: BETA=0 

Test                          Chi-Square    F   Pr > ChiSq

                 Likelihood Ratio         20.0686    1   <.0001 
                 Score                     19.2220    1   <.0001 
                 Wald                     17.4702    1   <.0001 

Analysis of Maximum Likelihood Estimates 

                                              Standard           Wald 

Parameter    DF    Estimate      Error      Chi-Square     Pr > ChiSq

Intercept    1     -1.2993       0.3760     11.9374        0.0006 
Random       1      2.1016       0.5028     17.4702        <.0001 

Table 14.  Results of the logistic regression for the null hypothesis of remedial = random.  The 

null hypothesis is rejected and the alternate hypothesis is accepted. 
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Table 15 

Null Hypothesis Test 

Modeling of Arsenic Concentration in Pteris cretica mayii

The SAS Stepwise Linear Regression Procedure 

Model: PCM_1D > 500 

Dependent Variable: Frond 

Stepwise Selection: Step 8 

Analysis of Variance 

                          Sum of        Mean 

Source            DF   Squares    Square   F Value  Pr > F 

Model                6    109180440   18196740   35.62      < .0001 

Error                55    28097091     510856 
Corrected Total    61   37277532 

                Parameter     Standard 

Variable       Estimate         Error     Type II SS   F Value   Pr > F 

Intercept    5022.12158     468.87371      58608602    114.73                < .0001 
_450          -43.48019      14.84948       4379845      8.57    0.0050 
_503          -84.39237      26.66967       5115285     10.01    0.0025 
_656          204.30538      48.87576       8926295     17.47    0.0001 
_674          116.67897      41.19318       4098578      8.02    0.0064 
_1047         -49.85354      15.36349       5379118     10.53    0.0020 
_1358          83.41086      36.53512       2662704      5.21    0.0263 

Summary of Stepwise Selection 

Variable   Variable Num Part  Model 

Step  Entered    Removed  Vars  R
2
   R

2
  C(p)     F Value  Pr > F

1      _656          1 0.545  0.545   59.723    71.76    < .0001 
2       _674        2     0.099  0.643   36.239    16.30     0.0002 
3      _1047    3    0.049 0.693  25.493    9.30     0.0035 
4       _503          4     0.049   0.742 14.758    10.87     0.0017 
5       _450          5    0.034 0.776  7.925      8.54     0.0050 
6       _1358        6    0.019  0.795  4.911      5.21     0.0263 
7      _956        7    0.012  0.807  3.907      3.25     0.0770 

Table 15.  The Analysis of Variance and summary of the stepwise model selection for the Pteris

cretica mayii first derivative model, showing the F Statistic and p value at levels to reject the 

Null Hypothesis at the 99 % confidence interval.
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Table 16 

Null Hypothesis Test 

Linear Modeling of Arsenic Concentration from Pteris multifida

The SAS Stepwise Linear Regression Procedure 

Model: PMF_1D > 500 

Dependent Variable: Frond 
Stepwise Selection: Step 9 

Analysis of Variance

                           Sum of        Mean 

Source            DF   Squares    Square   F Value  Pr > F

 Model                    10       125480622        12548062       16.25     < .0001 
 Error                     56        43240283          772148 
 Corrected Total    66       168720905 

                Root MSE             878.71948     R-Square     0.7437 
                Dependent Mean   3063.86119     Adj R-Sq     0.6980 
                Coeff Var             28.68013     
     

Parameter      Standard 

Variable     Estimate   Error   Type II  SS         F Value Pr > F

Intercept   2596.32676     154.45431 229438857    282.57   <.0001 
 _474         121.06626      30.31060      12954049     15.95   0.0002 
 _488         -120.88362      26.07079      17457214     21.50   <.0001 
 _1016       64.68674      20.54666       8048155      9.91   0.0026 
 _1063       -135.62926      26.67813      20986703     25.85   <.0001 
 _1118       -170.70110      39.01920      15540473     19.14   <.0001 
 _1979        51.10332      12.68716     13173996     16.22   0.0002 
 _2022       -43.29900      10.23812      14523252     17.89   <.0001 
 _2088        36.07435      11.11538       8552575     10.53   0.0020 
 _2360        12.96350       3.68947      10024530     12.35   0.0009 

Summary of Stepwise Selection 

Variable   Variable Num Part   Model 

Step  Entered    Removed Vars  R2   R2  C(p)       F Value   Pr > F

1   _1063              1     0.1208   0.1208   119.679     8.93  0.0039 
2   _1118              2    0.1211   0.2419  96.5234    10.22  0.0022 
3  _2022              3     0.1304    0.3723   71.4281    13.09  0.0006 
4   _1979                      4     0.0788    0.4511   57.0511     8.90  0.0041 
5  _2088                      5     0.0680    0.5191   44.9184     8.63  0.0047 
6   _2360                      6     0.0672    0.5864  32.9454     9.75  0.0028 
7   _488                       7    0.0325   0.6189   28.1850     5.04 0. 0286 
8   _474                       8    0.0591    0.6780   17.9117    10.64  0.0019 
9   _1016                      9     0.0477    0.7257   10.0000     9.91  0.0026 

Table 16.  The Analysis of Variance and summary of the stepwise model selection for the Pteris

multifida first derivative model, showing the F statistic and p value at levels to reject the Null 

Hypothesis at the 99 % confidence interval. 



171

6.3 Hypothesis Testing: Arsenic Stress and Hyperspectral Imagery 

In the third segment of this research, HSI data were analyzed with a variety of 

methods to identify and map grasses stressed by arsenic and especially to distinguish 

them from non-affected grass areas, as well as map overall land cover in the Spring 

Valley area.  For this study component, the research hypotheses were stated as: 

H0 =  Arsenic stress in common lawn grasses can NOT be identified and mapped  

by the analysis of hyperspectral imagery in the 450 – 2,500 nm region of the

electromagnetic spectrum. 

H1 =  Arsenic stress in common lawn grasses CAN be identified and mapped by  

the analysis of hyperspectral imagery in the 450 – 2,500 nm region of the

electromagnetic spectrum.

Three different versions of the Kappa statistic were computed with SAS, (SAS 

2002) statistical software to test for significance at the 95 % confidence interval.  The 

Cohen’s Kappa, Fisher’s Exact and Fleiss’ Kappa were all applied to the confusion 

matrix for Linear Spectral Unmixing / Maximum Likelihood classification that resulted 

in the best overall mapping accuracy (83 %) of all the methods tested.  Testing the 

number of pixels classified correctly for each class against the total number of pixels for 

each class, all p-values confirm the rejection of the Null Hypothesis.  See Table 17. 
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 As an alternative, significance was tested by the calculation of the confidence 

intervals and in each case, the weighted Kappa value fell within the 95 % confidence 

interval, supporting the alternative hypothesis that the land cover mapping accuracy was 

not due to chance. 

Table 17 

Null Hypothesis Test 

Land Cover Mapping Accuracy 

HYPOTHESIS TEST  for three KAPPA Coefficients   Sample Size = 8

     Cohen’s KAPPA      Fisher's Exact       Fleiss' Kappa

Weighted

Kappa Coefficient 

Weighted Kappa                0.937   0.9866   0.9866 
ASE                              0.0490   0.0110   0.0110

95% Lower Conf Limit           0.8410   0.9649   0.9649 
95% Upper Conf Limit            1.0000   1.0000   1.0000 

Test of H0:
Weighted Kappa = 0 

ASE under H0 0.2693   0.1336   0.2665

Z                            3.4795   5.3452   3.7025 
One-sided p >  Z           0.0003   <.0001   0.0001 
Two-sided p > |Z|         0.0005   <.0001   0.0002 

Table 17.  Three different calculations of the Kappa statistic as a measure of agreement 

between the correctly classified and total number of pixels in each of eight land cover classes.

p values and the upper and lower 95 % confidence interval levels all indicate that the null 

hypothesis is rejected at the alpha .05 level. 
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6.4 Significant Results and Discussion 

 6.4.1 Historical Aerial Photography 

The most important result of the historical aerial photographic phase of this 

research is the relatively high spatial correlation of 78.5 % between the 1918 photo-

interpreted features and contemporary hazardous waste remediation requirements.  If this 

percentage, or something similar to it, were to hold true over a significant sample of sites, 

it could be a potentially important information source for all types of hazardous waste 

remediation in the future.  

 The availability of historical imagery in the 1918 time frame is surprising to some 

extent but it also underscores the fact that the range of historical photo coverage often 

approaches 90 years or more, especially in urban areas.  Only diligent research through a 

variety of governmental, commercial and educational institutions will reveal the 

historical profile of imagery available for any given area.   

 A process-oriented but still important result is that the historical photos in this 

ongoing project have become a “living” resource that are consulted on a routine basis as 

new problems or issues arise.  Such was the case with the discovery of the second pit on 

Glenbrook road and the waste disposal areas in the rear portion of the AUES area.  This

emphasizes the fact that any particular remotely sensed image contains a nearly infinite 

level of information that may be relevant to a specific issue.

In this case study, the discovery and removal of potentially disastrous threats to 

the life and health of thousands of residents of the Spring Valley, in the form of CW and 
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munitions, is but an extreme example of the value of the flow of information from remote 

sensor to land manager, and the impact it can potentially have on the present day.   

While the significance of a 78.5 % correlation between 1918 landscape disturbance and 

contemporary remediation requirements in Spring Valley are notable, it still only 

represents one site.

It is also significant to this study that, in spite of a variety of available 

technological capabilities, such as geophysical instrumentation, magnetometers and 

ground piercing radar, the information derived from historical aerial photographs is, in 

several instances, the best and most reliable source of information.  In all likelihood it 

was probably also the easiest to obtain and the most cost efficient. 

Additional significant results in the historical aerial photographic research are 

related to the importance of landscape patterns and how they are recorded by imagery and 

extracted for informational purposes.  The relationship between identifiable features of 

disturbance and future landscape conditions, including risks to human and ecological 

health might seem straightforward, but it is an often overlooked source of basic, and 

sometimes critical, information.  The current model of remote sensing and information 

flow is often biased towards space-based systems and the cutting edge sensor technology.  

While emerging technology improves scientific understanding every day, in some cases, 

the most important source of information is to be found in the archives of historical data. 

An important result of this research is the potential value of the temporal record of 

landscape-level information recorded on analog historical imagery.  Beyond the 

immediate importance of hazards waste remediation, what is potentially intriguing is that 
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these historical images record patterns of disturbance that are representative of a larger 

set of landscape interactions.  The features identified by photographic interpretation and 

related to hazardous waste remediation were really nothing more than signatures of 

landscape disturbance in a hazardous waste setting.  Perturbations and patterns of 

landscape disturbance are key concepts in ecology that influence both the development 

and the loss of biodiversity at multiple spatial and temporal scales.  Applying this same 

type of spatial correlation analysis between historical aerial photographic features and 

landscape conditions could become a rich area of remote sensing research. 

Society is often aware of the role that major natural disasters, such as the eruption 

of Mount Saint Helens in 1980 or the great Mississippi floods in 1988, have had in 

reshaping the landscape and our ecosystems on a regional or continental scale.  In fact, 

much of ecological theory is based on disturbance as a driving factor in many natural 

processes.  Often though, the role of disturbance on the landscape or local level is not 

afforded the same level of importance.  This type of information is available and 

potentially critical, as it proved to be in Spring Valley. 

6.4.2 Modeling Arsenic Uptake with Laboratory Reflectance Spectra 

 In this segment, the significant outcomes relate to the results of both the 

greenhouse growth chamber phase and the results of the spectral modeling.  The results 

of the greenhouse data confirm the fact that ferns Pteris multifida and Pteris cretica mayii 

are, in fact, arsenic hyperaccumulators.  Average concentrations of frond arsenic were 

nearly all above 4,000 ppm for both ferns after 12 weeks in the 100 ppm and 200 ppm 
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levels of soil arsenic. Pteris multifida was slightly more efficient at arsenic extraction 

than Pteris cretica mayii with average frond arsenic concentrations of  2,976 and 2,773 

ppm respectively.  Pteris multifida was more tolerant of high arsenic concentrations than 

was Pteris cretica mayii with average biomass yields of 6.5 and 5.2 g respectively. 

 The control fern Nephrolepis exaltata displayed symptoms of stress and  

phytotoxicity early and throughout the 20-week study with the level of severity directly 

related to the level of soil arsenic.  See Figure 30.  There was a significant inverse 

relationship between frond arsenic and biomass yield in the highest two soil arsenic 

concentrations (R2 = .48, p = .004).  One important result for Nephrolepis exaltata was 

the frond arsenic concentrations at the 200 ppm soil arsenic level.  At 8 weeks and to the 

end of the study Nephrolepis exaltata had arsenic concentrations at this level, in excess of 

4,000 ppm.  It is important to note that the biomass yields of these ferns at this level were 

very low as they were near biological death.  It is likely that the high arsenic 

concentrations were not related to an uptake process as in the Pteris ferns but rather other 

processes such as the fronds coming in direct contact with the soil due to osmotic stress 

and loss of turgor pressure (Jones et al. 1989).  

One of the unique aspects of this experiment was that the soil arsenic was 

prepared so as to be highly bioavailable to the ferns and both of the Pteris ferns had 

significant uptake of arsenic at the first harvest at 4 weeks. Pteris cretica mayii 

continued to show increases in arsenic uptake through harvest week 16 and then a slight 

decrease at harvest week 20.  This is probably due, at least in part, to environmental 

conditions as this part of the study extended into October and both day and night ambient 
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temperatures were falling.  An interesting point is that Pteris cretica mayii displayed its 

highest level of frond arsenic concentration and its highest level of phytoextraction at 

harvest week 16 and from the 100 ppm arsenic soils, not the 200 ppm arsenic soils.  

Pteris multifida had its highest concentration of frond arsenic at harvest week 8 and its 

highest level of phytoextraction at harvest week 12.  This all suggests that there are 

species-specific differences in the uptake profile of Pteris ferns and that specific 

phytoremediation applications might be developed for different ferns of the Pteris genus. 

An obvious next step would be another greenhouse uptake experiment, perhaps 

with Pteris ferns that are native to a more temperate climate, in a variety of soil 

characteristics and with a completely randomized statistical design.  A full climate-

controlled greenhouse facility would also be desirable. 

There are several significant results from the analysis of reflectance spectra.  

Of the three forms of spectral data evaluated, reflectance, the first derivative and the 

second derivative, the first derivative was the best for developing a statistical model.  The 

reflectance data are so highly correlated that it becomes very difficult, if not impossible, 

to find enough components to build a robust and significant model that does not violate 

the collinearity condition of regression.  The second derivative was very noisy and in 

spite of several different professional spectral processing software applications, is harder 

to calculate in reality than originally assumed.  The key is in the smoothing algorithms 

that are used in spectral graph processing.  Most of the literature in reflectance 

spectroscopy and imaging spectroscopy suggests employing a Savitsky-Golay smoothing 

algorithm that performs a local polynomial regression to determine the smoothed value 
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for each point and offers the advantage of preserving spectral features of the distribution 

such as subtle absorption features, key edges, relative maxima and minima which are 

often destroyed by other smoothing techniques (Savitsky and Golay 1964). 

 The investigation of the relationship between the computed VIs and the actual 

arsenic concentrations had mixed results.  The fact that none of the VIs stayed in the PLS 

model is a disappointment, as is the failure to achieve any type of model relationship with 

the Pteris multifida data.  The models for Pteris cretica mayii and Nephrolepis exaltata

are good and show promise for areas of future research. 

 The Nephrolepis exaltata model selected the Moisture Stress Index (MSI), PRI, 

RVSI, RNG and MTVI2, which are all measures of some aspect of vegetation stress.  

Since Nephrolepis exaltata is not a hyperaccumulating fern variety, it makes sense that 

VIs based on stress would stand out as predictors.  Further, the RNG, MTVI2, and PRI all 

have strong components in the green bandwidth of the EMS.  The MTVI2 was developed 

specifically to be an indicator of green LAI (Haboudane et al. 2004).  Further, the Pteris

cretica mayii model utilized the GI, the SGI and the CRI1, which is calculated based on 

the spectral reflectance values at 510 and 550 nm (the green part of the EMS).  It appears 

that arsenic stress in ferns and the green bandwidths are a potentially important area for 

further research.

The development of the linear models of arsenic concentration was one of the 

primary goals of the study, and the results of the model development between the 

reflectance characteristics and the level of frond arsenic concentration are significant 

because of the potential to develop a non-contact monitoring tool for phytoremediation 
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and in the larger context of “bio-reporting”, the use of plants to report back important 

information about landscape conditions.  The ability to predict soil and geologic 

conditions based on vegetation spectra was first developed and explored as a form of 

biogeophysical mineral exploration by Milton et al. (1983) and with continuing 

development and deployment of hyperspectral systems, this concept could be advanced to 

new capabilities. 

 One of the interesting results in the development of the spectral models of arsenic 

concentration was the completely different set of wavelengths for each Pteris species that 

proved to be optimal for prediction.  The Pteris cretica models tended to use bands in the 

450–700 nm range, where photosynthetic absorption and reflectance are very pronounced 

and known to relate to plant physiology.  The Pteris multifida models mostly used bands 

in the infrared areas well beyond the range of photosynthetic absorption.  One possibility 

is that the bands in the near and SWIR regions are related to leaf chemistry and specific 

chemical absorptions.  For example, Kokaly and Clark (1999) demonstrated that there 

were narrow infrared band centers that were related to absorptions of specific chemical 

compounds.  Pteris models bands at 1,658, 2,088 and 2,324 nm have been shown to 

relate to cellulose, nitrogen and lignin respectively.
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6.4.3 Mapping Arsenic Induced Vegetation Stress with Hyperspectral Imagery 

The third component of this research attempted to map vegetation stress from soil 

arsenic with HSI acquired by the HyMAP sensor in October 2000.  As part of the 

laboratory spectral work, two species of grasses common to the Spring Valley area were 

grown in the same concentration of soil arsenic that were used for the ferns. 

Spectroradiometer readings for the grasses were acquired at the same time as the ferns 

and were used as a basis to create a basic land cover map of the Spring Valley area 

including two classes of grass, arsenic-stressed and unaffected. 

 Significant results from this imaging processing and classification include the 

overall classification accuracies of 82.9 % with a Kappa coefficient of 0.77.  Especially 

important were the producers and users accuracy of 55.8 % and 82.7 % respectively for 

the arsenic-affected grass category.  Further, a strong signature relationship was 

demonstrated for this critical land cover class by comparison of the spectra of arsenic-

affected grass collected in the laboratory and spectra of arsenic-affected grass derived 

from the HSI.  Both spectra showed very similar patterns of stress-related change in the 

green, red, NIR and SWIR regions.  This ability to extend spectral analysis from the 

laboratory to the overhead sensor to the identification of a critical landscape condition 

represents a potentially important capability for remote sensing science.   

 Other significant results of the HSI processing and analysis include the 

comparison of 36 combinations of HSI formats and classification decision rule 

algorithms.  With respect to classification decision rule algorithms, the best overall 

mapping accuracies were obtained with a Mahalanobis Distance classifier at 64.2 % 
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followed closely by the Maximum Likelihood classifier at 61.5 %.  A surprising aspect of 

these results is that the HSI-specific algorithms, Binary Encoding and the Spectral Angle 

Mapper, performed poorly in terms of overall accuracy and the older, probability-based 

statistical classifiers that have been used in multispectral processing for decades, such a 

Maximum Likelihood, performed very well.  In terms of the intermediate image 

processing formats of HSI, the Continuum Removal and Linear Spectral Unmixing 

showed the highest overall accuracies with 53.6 % and 52.0 % respectively.  Also worth 

noting is that the VIs calculated and used to map land cover performed poorly in this 

application.



182

7.  Lessons Learned and the Potential for Additional Research 

All major research endeavors involve missteps and errors and science requires 

researchers to constantly evaluate activities, protocols and paradigms and to correct flaws 

or improve in basic research activities.  In the course of this research effort, several 

valuable lessons were identified as a result of unforeseen circumstances.  Also, several 

unique and exciting opportunities for subsequent remote sensing research can be 

articulated.

7.1 Lessons Learned 

7.1.1 Greenhouse Procedures and Experimental Design 

A limitation in this entire effort was the failure to employ a “Latin Square” design 

in the greenhouse study.  Latin square designs randomize the treatment units and trial 

order, and allow for “nuisance” factors, such as variability in heat and light or other 

environmental gradients, to be controlled and accounted for between experimental 

treatments (NIST/SEMATECH 2003).  Although the major objective of this phase of the 

research was the collection and analysis of spectral reflectance data from ferns growing 

in a range of known soil-arsenic concentration values, and there was some concern over 

cross-contamination of soil treatments, a better experimental design would have provided 

more statistically defensible data about the specific ferns and the factors affecting arsenic 
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concentration, uptake, exposure, growth rates and a variety of other parameters relating to 

plant physiology and life strategies of these unique arsenic hyperaccumulating ferns. 

 An additional minor lesson from this process relates to the procedures for the 

growing conditions and exposure of the grass samples.  The sprouting of grass from seeds 

was hindered and sometimes completely failed at the high soil-arsenic levels.  The grass 

that sprouted from seeds at the 100 ppm level were severely reduced in biomass and 

health and the grass seeds in the 200 ppm level did not sprout or grow to any effective 

degree.  It would have likely been much more effective to have transplanted fully formed 

sod into the arsenic soils than to sprout them from seed.  This would have provided a 

uniform and consistent base condition for spectral and physiological changes due to 

arsenic exposure. 

7.1.2 Sampling and Analysis Procedures for Soil Arsenic 

Soil sampling procedures and laboratory analysis methods for inorganic arsenic 

have been an ongoing concern in both this specific project and in the overall Spring 

Valley phytoremediation work as well.  EPA methods 3050 and 6010B were used for the 

acid digestion and ICP/AES analysis of inorganic arsenic and total metals (USEPA 

1986a, 1986b).  Although these are widely accepted methods, the variability in the 

analytical results has been surprising.  Post harvest soil sampling performed for this 

research showed standard errors as high as 88 % of the sample value, even in a controlled 

laboratory environment (Blaylock 2005) and similar post harvest sampling results from 

the Spring Valley phytoremediation have shown that in certain lots, soil arsenic 
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concentrations have actually increased even after six months of verified phytoextraction 

(Blaylock et al. 2005; Blaylock et al. 2006).  Excluding cross- or re-contamination from 

an unknown source during the active phytoremediation period, results such as these can 

only be attributed to non representative sampling and/or analysis procedures.  In other 

words, the pre- and post-phytoremediation soil sample results are not reliable, or have far 

more variability than is acceptable. 

Whether the source of variability is in the soil sampling procedures or in the 

laboratory analysis methods is unknown.  Field soil sampling procedures generally 

consist of compositing five surface samples (one in the center and one at each corner) for 

each 20 x 20 m grid location (Blaylock et al. 2005; Blaylock et al. 2006).  Composite 

samples are then mixed, ground and prepared for acid digestion.  Sample procedures such 

as this might be very unreliable in this type of environment.  The contamination profile of 

a site such as Spring Valley is related to a variety of anthropogenic activities, and not 

natural conditions.  The distribution of arsenic is not due to the weathering of parent 

geologic materials or other natural processes that might result in a distribution profile of a 

continuous or near-continuous surface.  In Spring Valley, soil arsenic contamination 

might have been the result of a mortar or hand grenade explosion, direct application on 

the soil surface for persistency testing or leakage from a defective artillery shell resulting 

in a random distribution of arsenic “hot spots” that make composite sample procedures 

problematic.   

While the spatial sampling procedures are undoubtedly a contributing factor, the 

laboratory methods and results are also suspect.  In this study, soils were prepared from a 
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clean sand, wetted with a solution of sodium arsenate, mixed and dried in bulk for several 

cycles until a target concentration was achieved.  After the final wetting and drying cycle, 

the soils were mixed and bulk samples from each of the five soil arsenic classes were sent 

to the lab for analysis.  After the last fern harvest at 20 weeks, soils from each arsenic 

concentration class were composited and samples sent to the lab for a post harvest 

analysis.  Results showed that for at least one class, the arsenic concentration increased 

and several other classes displayed inconsistent and suspect  results for arsenic 

concentration.

When ICP/AES laboratory analysis of plant biomass shows that a particular 

fern extracted 25 mg of arsenic from the soil in a 10 cm pot, it is difficult to explain why 

the soil concentration in that pot increased.  Results such as these create inconsistent and 

sometimes suspect science and casts unfair doubt on a phytoremediation capability that 

could become a viable alternative clean up method.  Different laboratory methods, more 

rigorous spatial sampling, better quality control and alternative characterization methods, 

such as x-ray fluorescence, should be fully investigated as possible methods to reduce 

this level of uncertainty. 

7.1.3 Laboratory Collection of Spectral Data 

 The collection of spectral data under controlled conditions was a key element of 

this project.  Established protocols and methods, such as the use of a calibrated 

Spectralon standard as a white reference and the use of a Lowell lamp as a primary 

illumination source, were employed to insure precise and consistent spectral data 
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collection.  Problems were still encountered in the spectral data collections with the 

introduction of spectral noise at both ends of the solar-visible spectrum (400–2,500 nm).  

In the ultraviolet/blue region (350–450 nm), spectral noise is typically caused by “dark 

current”, electrical radiation from the instrument itself or nearby electronic devices, or by 

“stray light” from ambient internal, non-coherent light sources (Lam 2004; Robinson and 

Dewitt 1983).  On the infrared side of the spectrum, noise is usually caused by 

atmospheric humidity (Myers and Andreas 2004).  Even in laboratory conditions, the 

humid mid-Atlantic summers affected this spectral data collection.  Neither of these parts 

of the spectrum are associated in the literature with vegetation stress or vegetation 

analysis.  In any future spectral data collections of this type, ambient light and 

atmospheric moisture should be controlled to the highest degree possible. 

7.2 Research Opportunities 

7.2.1 Historical Aerial Photo/Landscape Pattern Analysis 

The results of the spatial correlation between the aerial photographic 

interpretation results and future remediation needs immediately raises the question of a 

larger landscape pattern analysis.  Is there a quantifiable and significant relationship 

between landscape disturbance patterns and future soil contamination at hazard waste 

sites, or in the general industrial land use zone?  Further, could this basic disturbance 

pattern be correlated to other landscape issues beyond soil pollution, such as vegetation 

communities, urban development patterns or human health issues? 
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With an archive of over 4,000 reports such as the one performed in Spring Valley, 

the USEPA holds a rich and unusual source of landscape level information that could 

reveal new relationships concerning landscape level attributes.  A more detailed scientific 

investigation of the patterns from historical imagery across a sample of hazardous waste 

sites, might reveal a quantifiable level of information related to aerial photographic 

signatures and eventual risks to human and ecological health.  Further, a study of this 

type that identified and correlated the landscape pattern of disturbance with future 

conditions, such as remediation, might also yield a new level of quantification of 

historical air photo-derived variables and the importance that they might play in 

landscape ecology. 

Many of the archives of historical aerial photographs, dating back to the 1920s, 

are reaching their effective shelf life and will soon be lost if not recovered digitally or 

reproduced.  Without some resource and policy attention from a national level, many of 

the priceless archives of these historical aerial photographs, and the landscape 

information that they contain, will be lost forever.  A study that quantifies the value of 

this information, beyond simple feature identification, could provide the scientific basis 

and enough justification to obtain the resource commitment necessary to advance 

archival sciences and preserve invaluable sources of historical photographic information. 

7.2.2 Pteris Ferns and Heavy Metal Stress in a Laboratory Environment 

There are a number of logical research extensions related to the Pteris ferns and 

the identification of stress in a controlled, laboratory environment.  Tests with different 
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species of Pteris ferns, especially temperate climate varieties, would result in additional 

quantification of arsenic uptake and phytoextraction potential, but might also help to 

determine if some varieties of Pteris ferns could over-winter and if there would be any 

advantage to that beyond eliminating the need to replant in Spring.  What would be the 

uptake rate over an annual period?  Would there be any significant uptake in the spring 

and fall periods and what is the relationship between ambient temperatures and uptake 

potential per Pteris species? 

An interesting result of this research was the fact that both Pteris ferns showed 

significant levels of uptake at 4 weeks and reached uptake maximums at 8 and 12 weeks.  

If the arsenic uptake rate could be better quantified over time, more optimum 

phytoextraction strategies might be developed.  For example, if the arsenic uptake profile 

is characterized by a large initial pulse and then a linear relationship related to biomass, 

as the data in this research suggest, would more arsenic be removed by two successive 

Pteris plantings of 8 weeks each rather than one plant over 16 weeks?  Could this be 

quantified and monitored by hyperspectral analysis? 

 The development of linear models between arsenic uptake spectral reflectance is 

also a promising area for research.  The initial model development here could be 

followed by model refinement and model development applications related to specific 

chemical stressors and/or individual phytoremediation or sentinel vegetation.  This might 

also include a more robust field test of the predictive ability of the current models for 

Pteris ferns. 
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The identification of arsenic stress in the lawn grasses also leads to a larger issue 

of sources of stress and the spectral profile development that might be possible.  

Collecting regular spectral readings, while growing common lawn grasses in a controlled 

environment and simultaneously subjecting different individual plants or pots to different 

levels of stress from arsenic, lead, zinc, volatile organic compounds and other stress-

inducing agents, could help identify subtle but unique spectral signatures that identify the 

stressor.

7.2.3 Hyperspectral Imagery Research 

The potential applications for HSI as a result of this research are numerous.  First, 

continued development of spectral signatures and mapping strategies for the 

identification of vegetation stress from fugitive contaminants is an area that should be a 

research priority.  The potential benefits from spectral overhead monitoring of vegetation 

condition has implications for environmental issues at the local to global scales.  An 

especially important component is the connection between controlled laboratory spectral 

analysis and the transfer of that information to overhead systems.  This was successfully 

demonstrated in this project and has potential in a wide variety of environmental 

applications.

 Second, additional development of specific HSI processing and classification 

decision rule strategies is clearly needed.  The comparative results of the different image 

processing and classification decision rules in this project was not what might have been 

expected from current HSI literature or theory.  Needed is basic research on HSI 
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processing strategies for specific imagery analysis tasks such as LULC mapping, material 

identification, ecological condition assessment and many other possible tasks. 

 Third, new methods development in HSI processing should be a part of an 

evolving paradigm.  One of the processing strategies that is receiving increased interest  

in the remote sensing community is Continuum Removal and band-depth analysis of HSI 

data.  Continuum Removal is a spectral data reduction technique that is used to normalize 

reflectance spectra and allow comparison of individual absorption features from a 

common baseline.  The continuum is a convex hull fit over the top of a spectrum using 

straight line segments that connect local spectra maxima.  The continuum is removed by 

dividing it into the actual spectrum for each pixel in the image.  The resulting image 

spectra are equal to 1.0 where the continuum and the spectra match and less than 1.0 

where absorption features occur (ENVI 2004).  Figure 50 shows a typical vegetation 

spectra of coast sage as derived from a standard spectroradiometer or hyperspectral 

imaging sensor and the same spectra after Continuum Removal. 

Continuum Removal is very effective at reducing the variability in spectral 

measurements that is inherent in remote sensing due to a variety of solar, environmental 

and atmospheric factors.  This standardization of the spectral signal allows for a more 

precise analysis of absorption features in a related analysis technique known as band 

depth analysis.  Subtle differences in the band depth at specific wavelengths relate to 

species differences, foliar biochemistry and leaf water content. 

 First proposed as a hyperspectral processing technique by Clark and Rousch 

(1984) the effectiveness of the Continuum Removal approach was fully demonstrated by  
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Figure 50.  An example of Continuum Removal.  Above is the original vegetation spectra of

Coast Sage and below is the same spectra after the Continuum Removal processing leaving

only the absorption features represented as “band depths”.  This process provides a high 

degree of standardization in hyperspectral remote sensing analysis.  From ENVI (2004). 
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Kokaly and Clark (1999) who used laboratory reflectance data of dried and ground leaves 

to determine leaf biochemistry, theorizing that leaf water content was the most important 

factor inhibiting and masking the spectral signal from nitrogen, lignin and cellulose.   

The Continuum Removal/band depth analytical approach appears to be gaining in 

popularity with hyperspectral imaging researchers.  Mutanga and Skidmore (2004) used 

band-depth analysis of continuum-removed hyperspectral data to map grass biomass 

under heavy canopy conditions and were able to correlate VIs with grass biomass at a 

coefficient of determination of greater than 0.8 and beyond the saturation point of the 

NDVI.  Noomen et al. (2006) showed the Continuum Removal and band depth analysis 

could detect stress in vegetation from fugitive releases of natural gas from underground 

pipes.  Subtle reflectance changes in the water absorption bands of 1,400 and 1,900 nm 

and blue shifts in the 560–590 nm region were indicative of ethane-induced stress.  

Mutanga and Skidmore (2003) were able to apply Continuum Removal to identify and 

map foliar nitrogen concentrations in African grasslands.  Two absorption features 

located in the visible and the SWIR were detected from an atmospherically corrected 

HyMAP image and, along with Neural Network Analysis, explained 60 % of the 

variation in nitrogen concentration in savanna grasses.

 As in this study, the ability of HSI data to identify the leaf pigments, metal uptake 

or cellulose/lignin parameters within an individual plant or at the canopy layer, is where 

HSI technology starts to represent the merger of geospatial technologies with the 

analytical methods of chemistry.  Continuum Removal techniques normalize spectral 

absorptions depths and band feature positions, eliminate noise and generally permit very 
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fine spectral resolutions and feature distinctions in spectral data that are not possible with 

current methods.   

7.2.4 Fluorescence Remote Sensing of Arsenic Phytoextraction 

 The detection and analysis of arsenic uptake through fluorescence remote sensing 

is one of the most promising future applications of this study.  The analysis of vegetation 

by fluorescence remote sensing is an area of growing interest in the research community.  

The fluorescence of chlorophyll is a natural emission in the red part of the spectrum that 

shows a strong inverse relationship with the level of photosynthetic activity and is one of 

the natural mechanisms by which plants release excess energy (Schrieber 1983; 

Lichtenthaller 1988; Lichtenthaller and Rinderle 1988).

A fluorescence emission also occurs in the blue region of the EMS and this has 

been the subject of intense plant physiological research over the past decade.  This is 

especially with the advent of “active” ultraviolet (UV) and laser induced fluorescence 

instruments, which create greater quantum yields than passive systems, with spectral 

resolution sufficient to detect trace metals (Dibennetto 2003) and protein/nitrogen 

interactions at the leaf level (Corp et al. 1997).

A developmental application of plant fluorescence can be found in the emerging 

field of monitoring genetically modified vegetation.  Transgenic plants can be implanted 

with a green fluorescence protein (GFP) that fluoresces under UV light enabling long 

term monitoring and identification of these plants for tracking and safety reasons (Stewart 

1996; Stewart et al. 2005).  See Figure 51. 



194

A very specialized but important application of this technology has been 

developed by the USACE for the bio-reporting of fugitive land mines (Anderson et al. 

2004).  Arabidopsis is genetically modified to fluoresce in the presence of trinitrotoluene 

(TNT) and can identify fugitive land mines, one of the major threats human health and 

safety in the world (Siegel 1995).

Research is currently being conducted to genetically modify Pteris ferns to 

fluoresce in the presence of high levels of arsenic in the same way as Arabidopsis

fluoresces in the presence of TNT.  The implications could be important for many areas 

affected by arsenic contamination. 

Figure 51.  Fluorescence Research with Bioreporters.  Transgenic Arabidopsis fluoresces in the 

presence of explosives from a fugitive land mine.  From Anderson et al. (2004). 
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The results of this study have shown not only the ability of remote sensing 

technology to deliver critical information to hazardous waste remediation investigations, 

but also the rich potential for research in emerging remote sensing capabilities.  The 

ability of historical imagery to document past landscape conditions is a unique source of 

potentially critical information that may never be equaled by any level of technological 

sophistication.  The spectroscopic analysis of plant physiology and condition has the 

potential to create new, stand-off methods of monitoring and HSI systems are currently 

delivering new analytical capabilities on a regular basis.

Especially important is the merger of laboratory and imaging spectroscopic 

methods.  The ability of overhead imaging systems to provide analytical capabilities that 

parallel bench procedures in chemistry represents the evolution of remote sensing from 

mapping to material identification, and from landscape to molecular analysis, while 

retaining the geospatial and analytical advantages of each.  The research and 

development and potential new applications for these emerging remote sensing systems 

are only just beginning. 



196

List of References 



197

 List of References 

Abdi, H. 2003. Partial Least Squares Regression (PLS-regression). In Encyclopedia for 
 Research Methods for the Social Science, edited by M. Lewis-Beck and B.T.
Futing: 792-795. Thousand Oaks, California, Sage. 

Adams, M.L., W.D. Philpot and W.A. Norvell. 1999. Yellowness index: an  
application of spectral second derivatives to estimate chlorosis of leaves in 
stressed vegetation. International Journal of Remote Sensing, 18: 3663-3675. 

Anderson, J.E., R.L. Fischer and J.D. Nelson. 2004. Trace chemical detection through 
  vegetation sentinels and fluorescence spectroscopy. In Proceedings: Monitoring

Science and Technology Symposium, September 20-24, 2004, Denver, Colorado. 

Antrop, M. and V.V. Eetvelde. 2000. Holistic aspects of suburban landscapes: visual 
  image interpretation and landscape metrics. Landscape and Urban Planning,

50: 43-58. 

ASD. 1997. FieldSpec Users Guide. Analytical Spectral Devices. Boulder, Colorado. 
    
AUES (American University Experiment Station). 1918. Records Collection of the 
  American University Experiment Station, United States Army, Chemical 
  Warfare School, Fort Leonard Wood, Missouri. 

Azcue, J.M. and J.O. Nriague. 1994. Arsenic: Historical Perspectives. In Arsenic in the
Environment, Part I: Cycling and Characterization, edited by J.O. Nriagu, 1-16. 
John Wiley and Sons, New York. 

Babington-Smith, C. 1957. Air Spy: The Story of Photo Intelligence in World War II.
 New York, Harpers.  

Bachman, C.M., T.F. Donato, G.M. Lamela, W.J. Rhea, M.H. Bettenhouse, R.A. 
Fusina, K.R. Du Bois, J.H. Porter and B.R. Truitt. 2002. Automatic classification 
of land cover on Smith Island, VA. Using HyMAP imagery. IEEE Transactions 
on Geoscience and Remote Sensing, 40 (10): 2313-2330. 



198

Bammel, B.H. and R.W. Birnie. 1994. Spectral reflectance response of big sagebrush 
  to hydrocarbon-induced stress in Bighorn Basin, Wyoming. Photogrammetric
  Engineering and Remote Sensing, 60 (1): 87-96. 

Bancroft, W.D. 1919. Bancroft’s History of the Chemical Warfare Service in the United 
States. Research  Division, Chemical Warfare Service, American University 
Experiment Station. Technical Library, Edgewood Arsenal, U.S. Army.  

Baret, F.I., G. Champion, G. Guyot and A. Podaire. 1987. Monitoring wheat canopies 
with a high spectral resolution radiometer. Remote Sensing of Environment, 22: 
367-378.

Barnaba, E.M., W.R. Phillipson, A.W. Ingram and J. Pim. 1989. Countywide inventory 
of waste disposal sites: a case study of historic airphoto analysis.  In Proceedings
55th Annual Meeting of the American Society for Photogrammetry and Remote 
Sensing (ASPRS), Baltimore, Maryland. ASPRS, Bethesda, Maryland. 1: 167-174. 

Barnaba, E.M., W.R. Phillipson, A.W. Ingram and J. Pim. 1991. The use of aerial 
photographs in county inventories of waste disposal sites. Photogrammetric
Engineering and Remote Sensing 57: 1289-1296.

Bawden, F.C. 1933. Infra-red photography and plant virus diseases. Nature 132: 168. 

Benger, M.J. 2004. Fact Sheet: The EPA Remote Sensing Archive. The U.S.E.P.A. 
  Environmental Photographic Interpretation Center (EPIC), Reston, Virginia. 

Berry, M. and F. Bove. 1997. Birth weight reduction associated with residence near a 
  hazardous waste landfill. Environmental Health Perspectives, 105: 856-861. 

Blackburn, G.A. 1998. Spectral indices for estimating photosynthetic pigment 
concentrations: a test using senescent tree leaves. International Journal of Remote 
Sensing, 19 (4): 657-675. 

Blaylock, M.J. 2005. Final Report: The controlled growth of arsenic hyperaccumulating 
ferns to support EPA spectral imaging studies. Dulles, Virginia, Edenspace 
Systems Corporation. 

Blaylock, M.J., M.P. Elless, C.A. Bray and C.L. Teeter. 2005. Phytoremediation of 
arsenic contaminated soil, Spring Valley FUDS, Washington, DC., Phase 1 Field 
Verification Study. Dulles, Virginia, Edenspace Systems Corporation. 

Blaylock, M.J., M.P. Elless, C.A. Bray and C.L. Teeter. 2006. Phytoremediation of 
arsenic contaminated soil, Spring Valley FUDS, Washington, DC., Phase 2 Field 
Verification Study. Dulles, Virginia, Edenspace Systems Corporation. 



199

Boardman, J.W. 1993. Automated spectral unmixing of AVIRIS data using convex  
geometry concepts. In Summaries, Fourth JPL Airborne Geoscience Workshop,
JPL Publication 93-26, 1: 11-14. 

Boardman, J.W. and F.A. Kruse. 1994. Automated spectral analysis: a geological  
example using AVIRIS data, North Grapevine Mountains, Nevada, In  
Proceedings of the Tenth Thematic Conference on Geological Remote Sensing,
407-18.  Ann Arbor, Michigan, Environmental Research Institute of Michigan. 

Boardman, J.W. 1995. Analysis, understanding and visualization of hyperspectral data 
as convex sets in n-space. Optical Engineering, 2480: 14-22. 

Boardman, J.W., F.A. Kruse and R.O. Green. 1995. Mapping target signatures via 
  partial unmixing of AVIRIS data. In Summaries of the 5nd Annual JPL

Airborne Geoscience Workshop, JPL Publication 95-1, 1: 23-26. 

Bogrekci, I. and W.S. Lee. 2005a. Spectral phosphorus mapping using diffuse reflectance
 of soils and grass. Biosystems Engineering, 91 (3): 305–312. 

Bogrekci, I. and W.S. Lee. 2005b. Spectral phosphorus mapping using diffuse  
reflectance of soils and grass. Biosystems Engineering, 92 (4): 527–533. 

Bogrekci, I. and W.S. Lee. 2006. Comparison of ultraviolet, visible, and near infrared  
sensing for soil phosphorus. Biosystems Engineering, In Press. 

Bondada, B.R. and L.Q. Ma. 2003. Chapter 28, Tolerance of Heavy Metals in Vascular 
Plants: Arsenic Hyperaccumulation by Chinese Brake Fern (Pteris vittata L). In 
Pteridology in the New Millennium, edited by S. Chandra and M. Srivastava, 397- 
420. The Netherlands, Kluwer Academic Publishers.

Boyajian, G.E. and D.L. Devedjian, 1997. Phytoremediation: it grows on you. Soil and 
  Groundwater Cleanup, February/March, 22-26. 

Bracher, G.A. 1991. Detection Of Nutrient Stress In Douglas-Fir Seedlings Using 
  Spectroradiometer Data. PhD Thesis. University of British Columbia, Vancouver.  

236 pages. 

Broge, N.H. and E. LeBlanc. 2001. Comparing prediction power and stability of 
broadband and hyperspectral vegetation indices for estimation of green leaf  
area  index and canopy chlorophyll density. Remote Sensing of Environment,
76: 156–172. 



200

Brown, L., M.C. Jin, S.G. Lablanc and J. Cihlar. 2000. A shortwave infrared 
  modification to the simple ratio for LAI retrieval in boreal forests: an image  

and model analysis. Remote Sensing of Environment, 71: 16-25. 

CAA. 1963. Clean Air Act. Public Law 88-206, [As Amended Through P.L. 101–549, 
  November 15, 1990]. 42 U.S.C. § 7401 et seq.

Campbell, J.B. 1987. Introduction to Remote Sensing. Guilford. Press, New York. 551 
  Pages. 

Carbonell-Barrachina A.A., F. Burlo, A. Burgos-Hernandez, E. Lopez and J.T. Mataix. 
1997. The influence of arsenic concentration on arsenic accumulation in 
tomato and bean plants. Scientia Horticulturae, 71: 167–176. 

Ceccato, P., S. Flasse, S. Tarantola, S. Jacquemoud, and J.M. Gregoire, 2001. Detecting  
vegetation leaf water content using reflectance in the optical domain. Remote
Sensing of Environment 77: 22-33. 

CERCLA 1980. Comprehensive Environmental Response, Compensation, and Liability 
  Act (commonly known as Superfund). Public Law 96-510, 42 U.S.C. §§ 9601 

et seq. 

Chang, S.H. and W. Collins. 1983. Confirmation of airborne biogeophysical mineral 
exploration technique using laboratory methods. Economic Geology, 78 (4): 723-
736.

Chappelle, E.W., M.S. Kim, and J.E. McMurtrey. 1992. Ratio Analysis of Reflectance 
Spectra (RARS): an algorithm for the remote estimation of the concentrations of  
chlorophyll a, chlorophyll b, and the carotenoids in soybean leaves. Remote
Sensing of Environment, 39: 239-247. 

Chen, Z., P.J. Curran and J.D. Hansom. 1992. Derivative reflectance spectroscopy to 
estimate suspended sediment concentration. Remote Sensing of Environment, 40: 
67-77.

Chen, Z., C.D. Elvidge, and W.T. Jansen. 1993. Description of a derivative-based high 
spectral-resolution (AVIRIS) green vegetation index. In Proceedings of Imaging 
Spectrometry of the Terrestrial Environment, Orlando, FL, SPIE 1937: 43–54. 

Chen, J. 1996. Evaluation of vegetation indices and modified simple ratio for boreal  
applications. Canadian Journal of Remote Sensing, 22: 229-242. 

Clark, W. 1946. Photography by Infrared.  New York: John Wiley and Sons, 472 p. 



201

Clark, R.N. and T.L. Roush. 1984. Reflectance spectroscopy: quantitative analysis 
 techniques for remote sensing applications: Journal of Geophysical Research,
 89 (7): 6329-6340. 

Clark, R.N., 1997. Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of
Spectroscopy. In Manual of Remote Sensing, Volume 3, Remote Sensing for the
Earth Sciences, edited by A.N. Rencz. 3-58. New York, John Wiley and Sons. 

Cocks, T., R. Jenssen, A. Stewart, I. Wilson and T. Shields. 1998. The HYMAP 
  airborne hyperspectral sensor: the system, calibration and performance. 

Presented at 1st EARSEL Workshop on Imaging Spectroscopy, Zurich,  
Switzerland, October 1998. 

Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and 
  Psychological Measurement, 20: 37-46. 

Collins, W., G.L. Raines and F.C. Canney. 1977. Geological Society of America. 1977 
Annual Meeting, Seattle, Washington, 7-9 November. Abstracts with 
programmes, 932-933. 

Collins, W., G.L. Raines and F.C. Canney, and R. Ashley. 1983. Airborne 
  biogeophysical mapping of hidden mineral deposits. Economic Geology,
  78 (4): 737-749. 

Colwell, R.N., 1956. Determining the prevalence of certain cereal crop diseases by 
  means of aerial photography. Hilgardia 26: 223-286. 

Colwell, R.N., Editor. 1960. Manual of Photographic Interpretation. Washington, D.C.  
American Society of Photogrammetry. 

Colwell, R.N. 1997. Chapter 1: History and Place of Photographic Interpretation.
In The  Manual of Photographic Interpretation, Second Edition.  Edited by 
Warren R Phillipson. American Society for Photogrammtery and Remote 
Sensing, Bethesda, Maryland, 3-47.

Congalton, R.G. and R A. Mead. 1983. A quantitative method to test for consistency  
and correctness in photointerpretation. Photogrammetric Engineering and 
Remote Sensing. 49 (1): 69-74. 

Congalton, R.G., R. Oderwald and R.A. Mead. 1983. Assessing Landsat
classification accuracy using discrete multivariate analysis statistical techniques.  
Photogrammetric Engineering and Remote Sensing, 49 (12): 1671-1678. 



202

Congalton, R.G. 1991. A review of assessing the accuracy of classification of remotely 
  sensed data. Remote Sensing of Environment, 37: 35-46. 

Corp, L.A., J.E. McMurtrey, E.W. Chappelle, C.S.T. Daughtry and M.S. Kim. 1997.  UV  
band fluorescence (in vivo) and its implications for the remote assessment of  
nitrogen supply in vegetation. Remote Sensing of Environment, 61 (1): 110-117. 

Curran, P.J. 1989. Remote sensing of foliar chemistry. Remote Sensing of 
  Environment, 29: 271-278. 

CWA. 1948. Federal Water Pollution Control Act. Public Law 80-845, [As Amended 
  Through Public Law 107–303, November 27, 2002]. 33 U.S.C. §§ 1251 et seq.

Dahmani-Muller, H., F. van Oort, B. Gelie, and M. Balabane. 2000. Strategies of heavy 
  metal uptake by three plant species growing near a metal smelter. Environmental

Pollution, 109: 231–238. 

Daughtry, C.S., C.L. Walthall, M.S. Kim, E. Brown de Colstoun and J.E. McMurtrey III. 
2000. Estimating corn leaf chlorophyll concentration from leaf and canopy 
reflectance. Remote Sensing of Environment, 74: 229-239. 

de Nava, C.C. 1996. World wide overview of hazardous wastes. Toxicology and 
  Industrial Health, 12 (2): 127-38. 

Demetriades-Shah, T.H., M.D. Steven and J.A. Clark. 1990. High resolution derivative 
  spectra in remote sensing. Remote Sensing of Environment, 33: 55-64. 

DERP  (Defense Environmental Restoration Program), Title 10, Subtitle A, Part IV, 
  Chapter 160, United States Code § 2701 et seq.

DiBenedetto J. 2003. Laser-induced fluorescence remote sensing. Abstracts of the  
Spectral Remote Sensing of Vegetation, March 12-14, 2003, U.S. Environmental 
Protection Agency, Las Vegas, Nevada. 

Dixit L. and S. Ram. 1985. Quantitative analysis by derivative electronic spectroscopy.  
Applied Spectroscopy Reviews, 21 (4): 311-418. 

Dockray, M. 1981. Verification of a new method for determining chlorophyll 
  concentration in plants by remote sensing. Masters of Science Thesis, Imperial  

College, University of London. 

Duble, R.L., J.C. Thomas and K.W. Brown. 1978. Arsenic pollution from underdrainage 
  and runoff from golf greens. Journal of Agronomy, 70: 71-74. 



203

Edenspace. 2004. Case Study: Arsenic. 
 http://www.edenspace.com/casestudy-arsenic.html 

Last accessed January 25, 2007. 

Eisler, R. 1994. A review of Arsenic Hazards to Plants and Animals with Emphasis on  
Fishery and Wildlife Resources. In Arsenic in The Environment. Part II: Human
Health and Ecosystem Effects, edited by J.O. Nriagu, 185-261. New York, John 
Wiley & Sons. 

ElMasry, G.N., A.E. Wang, L. Sayed and M. Ngadi. 2006. Hyperspectral imaging for  
nondestructive determination of some quality attributes for strawberry. Journal of
Food Engineering.  In Press. 

Elvidge, C.D. and Z. Chen. 1995. Comparison of broad-band and narrow band red and 
  near-infrared vegetation indices. Remote Sensing of Environment, 54: 38-48. 

ENVI (Environment for Visualizing Images). 2004. Image Processing Software.   
Research Systems Incorporated, Boulder Colorado. Version 4.0 
http://www.rsinc.com/envi/
Last accessed January 25, 2007 

Erb, D.K. 1968. The identification of fruit trees by aerial photograph analysis and
interpretation for census purposes. In Proceedings, Second Seminar of Air 
Photo Interpretation in the Development of Canada, (Ottawa), 97-99. 

Erb, T.L., W.R. Philipson, W.L. Teng and T. Liang. 1981. Analysis of landfills with 
  historical  airphotos. Photogrammetric Engineering and Remote Sensing,

47 (9): 1361-1369. 

Eriksson, L., E. Johansson, N. Kettaneh-Wold and S. Wold. 2001. Multi- and  
megavariate data analysis: principles and applications. Kinnelon, N.J., 
Umetrics Incorporated.   

Fatz, R.J. 2001. Testimony: Subcommittee On The District Of Columbia Committee On 
  Government Reform U.S. House Of Representatives July 27, 2001, Raymond J.  

Fatz, Deputy Assistant Secretary of the Army (Environment, Safety and 
Occupational Health). 
http://www.nab.usace.army.mil/projects/WashingtonDC/springvalley/Minutes/~
Testimony/FatzTestimony2001.pdf.  Last Accessed January 22, 2007.

Fensholt, R. and I. Sandholt. 2003. Derivation of a shortwave infrared water stress index
from MODIS near and shortwave infrared data in a semiarid environment.   
Remote Sensing of Environment, 87: 111–121. 



204

Fitzpatrick-Lins, K. 1981. Comparison of sampling procedures and data analysis for 
  a land use and land cover maps. Photogrammetric Engineering and Remote 
  Sensing, 47 (3): 343-351. 

Fleiss, J.L. 1981. Statistical methods for rates and proportions, 2ed. Chapter 13: The
Measurement of Interrater Agreement, 212-236. New York, John Wiley & Sons. 

Focazio, M.J., A.H. Welch, S.A. Watkins, D.R. Helsel and M.A. Horn. 1999.  A 
retrospective analysis on the occurrence of arsenic in ground-water resources
of the United States and limitations in drinking-water-supply characterizations:  
U.S. Geological Survey Water-Resources Investigations Report 99-4279. 

Fries, A.A. and C.J. West. 1921. Chemical Warfare. New York: McGraw-Hill. 

Gamon, J.A., J. Penuelas and C.B. Field. 1992. A narrow-waveband spectral index 
  that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of

Environment, 41: 35-44. 

Gamon, J.A. and H. Qiu. 1999. Ecological Applications of Remote Sensing at Multiple 
  Scales. In Handbook of Functional Plant Ecology, edited by F.I. Pugnaire and F.

Valladares, New York: Marcel Dekker. 

Gao, B.-C., K.B. Heidebrecht and A.F.H. Goetz. 1993. Derivation of scaled surface
reflectances from AVIRIS data. Remote Sensing of Environment, 44: 145-163.

GAO (U.S. General Accounting Office). 2001. Environmental Contamination: Cleanup  
Actions at Formerly Used Defense Sites. Report to Congressional Requesters.   
GAO-01-557, U.S. General Accounting Office, Washington, D.C. 

GAO (U.S. General Accounting Office). 2002. Environmental Contamination: Many 
  Uncertainties Affect the Progress of the Spring Valley Cleanup. Report to the  

Subcommittee on the District of Columbia, Committee on Government Reform,  
House of Representatives.GAO-02-556. U.S. General Accounting Office,
Washington, D.C. 

Garofalo, D. and F. Wobber. 1974. Solid waste and remote sensing. Photogrammetric
Engineering, 40 (1): 45-59. 

Gates, D.M., H.J. Keegan, J.C. Schleter, and V.R. Weidner. 1965. Spectral properties of 
  plants. Applied Optics, 4 (1): 11-20. 

Goetz, A.F.H. and W.M. Calvin. 1987. Imaging spectrometry: spectral resolution and 
analytical identification of spectral features. SPIE, Imaging Spectroscopy II,
834: 158-165. 



205

Goodman, M.S. 1959. A Technique for the identification of farm crops on aerial  
photographs. Photogrammetric Engineering, 25: 131-138. 

Goodman, M.S. 1964. Criteria for the identification of types of farming on aerial 
photographs. Photogrammetric Engineering, 30: 984-991 

Gorby, M.S. 1994. Arsenic in Human Medicine. In Arsenic in the Environment, Part II: 
   Human Health and Ecosystem, edited by J.O. Nriagu, 1-16. John Wiley and Sons, 

New York. 

Green, A.A., M. Berman, P. Switzer and M.D. Craig. 1988.  A transformation for 
  ordering multispectral data in terms of image quality with implications for noise 
  removal. IEEE Transactions on Geoscience and Remote Sensing, 26 (1): 65-74. 

Green, R.O., M.L. Eastwood and O. Williams. 1998. Imaging Spectroscopy and the 
  Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing 

of Environment, 65: 227-240. 

Guyot G., F. Baret and S. Jacquemoud. 1992. Imaging Spectroscopy for Vegetation 
Studies. In Imaging Spectroscopy: Fundamentals and Prospective Applications,
Edited by F. Toselli and J. Bodechtel, 145-165.  ECSC, EEC, EAEC, Brussels and  
Luxembourg. 

Habeck, C., J. W. Krakauer, C. Ghez,  H.A. Sackeim, D. Eidelberg, Y. Stern  
and J.R. Moeller. 2005. A New Approach to Spatial Covariance Modeling
of Functional Brain Imaging Data: Ordinal Trend Analysis. Neural
Computation, 17 (7): 1602-1645. 

Haboudane, D., J.R. Miller, E. Pattey, P.J. Zarco-Tejada and I.B. Strachan. 2004. 
   Hyperspectral vegetation indices and novel algorithms for predicting green LAI of 

crop canopies: Modeling and validation in the context of precision agriculture. 
Remote Sensing of Environment, 90 (3): 337-352. 

Hall, H.I., W.E. Kaye, L.S. Gensburg and E.G. Marshall. 1996. Residential proximity to  
hazardous waste sites and risk of end-stage renal disease. Journal of
Environmental Health, 59: 17-21.

Hansen, P.M., J.R. Jorgenson and A. Thomsen. 2002. Predicting grain yield and protein
content in winter wheat and spring barley using repeated canopy reflectance
measurements and partial least squares regression. The Journal of Agricultural 
Science, 139: 307-318.



206

Hegg, K.M. 1967. A Photo identification guide for the land and forest types of
Alaska. Juneau, Alaska: Northern Forest Experiment Station. USDA Forest 
Research Paper NOR-3, 55p. 

Heller, C.E. 1984. The Leavenworth Papers, Number 10. Chemical Warfare in World 
  War I: The American Experience, 1917-1918. Combat Studies Institute, U.S.  

Army Command and General Staff College, Fort Leavenworth, Kansas 66027- 
6900.

Honigberg, C. and M. Nolan. 2000. Who pays for the stigma of environmental 
  contamination? Commercial Investment Real Estate. 
 http://www.ciremagazine.com/article.php?article_id=406
 Last Accessed April 22, 2006 

Horler, D.N.H., J. Barber and A.R. Barringer. 1980. Effects of heavy metals on the  
absorbance and reflectance spectra of plants. International Journal of Remote 
 Sensing, 1 (2): 121-136. 

Horler, D.N.H., M. Dockray, J. Barber and A.R. Barringer. 1983. Red edge 
  measurements for remote sensing plant chlorophyll content. Advances in 
  Space Research, 3 (2): 273-277. 

Höskuldsson, A. 1988. PLS regression methods. Journal of Chemometrics, 2 (3) 211- 
228.

Huete, A.R. 1988. A Soil Adjusted Vegetation Index (SAVI). Remote Sensing of 
  Environment, 17: 5-53. 

Hunt, S.D.and H. Sierra. 2003. Spectral oversampling in hyperspectral imagery.  In  
Proceedings of the SPIE. Algorithms and Technologies for Multispectral,
Hyperspectral, and Ultraspectral Imagery IX. Edited by S.S. Shen,
and P.E. Lewis, 5093: 643-650. 

Hunt, E.R. Jr., and Rock, B. N. 1989. Detection of changes in leaf water content using
near- and middle-infrared reflectances. Remote Sensing of Environment,
30: 43–54. 

Imbernon, J. 1999. Pattern and development of land-use changes in the Kenyan 
highlands since the 1950. Agriculture, Ecosystems and Environment, 76: 67–73. 

Irwin, W. 1915. The German Army dispersed chlorine gas over Allied lines at Ypres  
on 22 April 1915. New York Tribune, April 25, 1915. 



207

IUPAC (International Union of Pure And Applied Chemistry). 1993. Glossary For 
  Chemists Of Terms Used In Toxicology: Pure and Applied Chemistry,  65(9): 
  2003-2122 (on-line version posted by the U.S. National Library of Medicine).  

http://sis.nlm.nih.gov/enviro/glossarymain.html
Last Accessed December 7, 2006 

Ives, R.L. 1939.  Infrared Photography As an Aid in Ecological Surveys. Ecology, 20:
433-439.

Jones, H.G., T.L. Flowers and M.B. Jones. 1989. Plants Under Stress. Cambridge 
  New York, University Press.  

Jordan, C.F. 1969. Derivation of leaf area index from quality of light on the forest floor, 
Ecology, 50: 663-666. 

Karim, M.M. 2000.  Arsenic exposure modeling and risk assessment in Bangladesh 
  using geographic information system, In The Second International Health 

 Geographics Conference, 35-42.  Washington D.C. March 17 - 19, 2000. 

Kartman A.S. and E.T. Slonecker. 2001. Historical Aerial Photographic Analysis, Spring
 Valley Site, Washington, D.C. Report TS-PIC-20103439S, Volumes 1 and 2,  
 U.S. Environmental Protection Agency, Environmental Sciences Division, Las  
 Vegas, Nevada. 

Keegan, H.J. and H.T. O’Neill. 1951. Spectrophotometric study of autumn leaves. 
Journal of the Optical Society of America, 41: 284. 

Keegan, H.J, J.C. Schleter and W.A. Hall. 1955. Spectrophotometric and Colorimetric 
  Change in the Leaf of a White Oak Tree Under Conditions of Natural Drying and 
  Excessive Moisture. National Bureau of Standards Report Number 4322. 
 Government Printing Office, Washington, D.C. 

Kleman, J. and E. Fagerlund. 1981. Spectral signature measurements of barley crops 
   the influence of irrigation and fertilization.  In Proceedings of International

Colloquium on Spectral Signatures of Objects in Remote Sensing. (Avignon,
France). International Society of Photogrammetry and Remote Sensing, 417-424. 

Knickerbocker, B. 2002. Former military sites littered with bombs. Christian Science 
Monitor November 22, 2002 

 http://www.csmonitor.com/2002/1127/p02s02-usgn.html 
 Last accessed January 25, 2007.  



208

Kokaly, R.F. and R.N. Clark. 1999. Spectroscopic determination of leaf biochemistry 
  using band-depth analysis of absorption features and stepwise multiple linear 
  regression. Remote Sensing of Environment, 67: 267-287. 

Kooistra, L., J. Wanders, G.F. Epema, R.S.E.W. Leuven, R. Wehrens and L.M.C.  
Buydens. 2003. The potential of field spectroscopy for the assessment of  
sediment properties in river floodplains. Analytica Chemica Acta, 484: 189–200. 

Kooistra, L , E.A.L. Salas, J. Clevers, R.R. Wehrens, R.S.E.W. Leuvena, P.H.  
Nienhuisa, and L.M.C. Buydens. 2004. Exploring field vegetation reflectance
as an indicator of soil contamination in river floodplains. Environmental
Pollution, 127: 281–290. 

Kosmas, C.S., N. Curi, R.B. Bryant and D.P. Franzmeier. 1984. Characterization of iron 
  oxide minerals by second derivative visible spectroscopy. Journal of the Soil

Science Society of America, 48: 401-405. 

Kresta J.V., J.F. Macgregor and T.E. Marlin. 1991. Multivariate statistical
monitoring of  process operating performance. Canadian Journal of Chemical
Engineering, 69 (1): 35-47. 

Kruse, F.A., J.W. Boardman and J.F. Huntington. 2003. Comparison of airborne 
  hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Transactions

on Geoscience and Remote Sensing, 41 (6): 1388-1400. 

Kruse, J.K., N.E. Christians and M.H. Chaplin. 2006. Remote sensing of nitrogen 
  stress in creeping bentgrass. Journal of Agronomy, 98: 1640-1645. 

Lam, H. 2004. Performance of UV-Vis spectrophotometers.  Calibration & Validation 
Group (CVG), Glaxo-Wellcome Inc. 
http://www.cvg.ca/images/Performance_UV_Vis.pdf
Last Accessed January 22, 2007. 

Lichtenthaler, H.K. 1988. Remote sensing of chlorophyll fluorescence in  
oceanography and in terrestrial vegetation: an introduction.  In Applications of
Chlorophyll Fluorescence, edited by H.K. Lichtenthaler, 287-297. Kluwer,
Dordrecht.

Lichtenthaler, H.K., and U. Rinderle. 1988. The Role of chlorophyll fluorescence
in the detection of stress conditions in plants. Critical Reviews in Analytical
Chemistry, 19 (Suppl. 1): s29-s85. 



209

Lybarger, J.A., R. Lee, D.P. Vogt, R.M. Perhac, Jr, R.F. Spengler and D.R. Brown. 1998. 
   Medical costs and lost productivity from health conditions at volatile 
  organic compound-contaminated superfund sites. Environmental Research
  79: 9–19. 

Lyon, J.G. 1982. The use of aerial photographs and remote sensing data in the 
management of hazardous waste sites.  In Hazardous Waste Management for the 
80’s, edited by T. Sweeny, H. Bhatt, R. Sykes, and O. Sproul,  163-171. 
Ann Arbor, Michigan, Ann Arbor Science Publications.

Lyon, J.G. 1987. The use of maps, aerial photographs and other remote sensing data for 
practical evaluation of hazardous waste Sites. Photogrammetric Engineering and 
Remote Sensing, 53: 515-519. 

Ma, L.Q., K.M. Komar, C. Tu, W. Zhang, and Y. Cai. 2001. A fern that 
  hyperaccumulates arsenic. Nature, 409: 579.

Maclure, M. and W.C. Willett. 1987. Misinterpretation and misuse of the kappa statistic. 
American Journal of Epidemiology,  126: 161-169.

MacGregor, J.F., C. Jaeckle, C. Kiparissides and M. Koutoudi. 2004. Process Systems. 
  Engineering:  Process monitoring and diagnosis by multiblock PLS methods. 

AIChE Journal, 40 (5): 826–838. 

Martens, H. and T. Naes. 1989. Multivariate Calibration. Chichester, Wiley.  

Martin, M.E. and J.D. Aber. 1993. Measurements of canopy chemistry with 1992  
AVIRIS data at Blackhawk Island and Harvard forest.  In Summaries of the
Fourth Annual JPL Airborne Geoscience Workshop: AVIRIS, Edited by R.O.
Green, 1:113-116. Jet Propulsion Laboratory, Pasadena, California. 

Martin, M.E. and J.D. Aber. 1997. Estimation of forest canopy lignin and nitrogen  
concentrations and ecosystems processes by high resolution remote sensing.   
Ecological Applications, 7: 431-443. 

Martin, M.E., S.D. Newman, J.D. Aber, and R.G. Congalton. 1998. Determining forest 
  species composition using high spectral resolution remote sensing data.   

Remote Sensing of Environment, 65: 249-254. 

Marzorati, S., L. Luzia, V. Petrini, F. Meronia and F. Pergalani. 2003.  Detection of 
  local site effects through the estimation of building damages. Soil Dynamics

and Earthquake Engineering, 23: 497–511. 



210

Mata, L. 2002. Historical Drainage Channel Analysis of Spring Valley Site, Washington,  
D.C. TS-PIC-20203486S, U.S. Environmental Protection Agency, Environmental 
Sciences Division, Las Vegas, Nevada. 

Maclure, M. and W.C. Willett. 1987. Misinterpretation and misuse of the kappa statistic. 
American Journal of Epidemiology, 126: 161-169.

McNicholas, H.J. 1931. The visible and ultraviolet absorption spectra of carotin and
xanthophyll and the changes accompanying oxidation.  Bureau of Standards
Journal of Research, 7 (1): 171-193. 

Meharg A.A. and J. Hartley-Whitaker. 2002. Arsenic uptake and metabolism in arsenic 
  resistant and nonresistant plant species. New Phytologist, 154 (1): 29-43. 

Milton, N.M., W. Collins and S.H. Chang. 1983. Confirmation of airborne 
  biogeophysical mineral exploration technique using laboratory methods.   

Economic Geology, 78 (4): 723-736. 

Milton, N.M., C.M. Ager, B.A. Eisworth and M.S. Powers. 1989. Arsenic and selenium  
induced changes in spectral reflectance and morphology of soybean plants.  
Remote Sensing of Environment, 30: 263-269. 

Milton, N.M., B.A. Eisworth and C.M. Ager. 1991. Effect of phosphorous deficiency 
  on spectral reflectance and morphology of soybean plants. Remote Sensing of

Environment, 36: 121-127. 

Multispectral Users Guide. 1995. Spectral Imagery Technology Applications Center 
  (SITAC), Logicon/Geodynamics Incorporated, Fairfax, Virginia, 1-7. 

Murtha, P.A. 1997. Chapter 5: Vegetation. In The Manual of Photographic
Interpretation, Second Edition, edited by Warren R. Phillipson.  
American Society for Photogrammetry and Remote Sensing, Bethesda,  
Maryland.

Mutanga O. and A.K. Skidmore. 2003. Integrating imaging spectroscopy and neural 
  networks to map grass quality in the Kruger National Park, South Africa. 

Remote Sensing of Environment, 90 (1): 104-115.

Mutanga O. and A.K. Skidmore. 2004. Hyperspectral band depth analysis for a better 
  estimation of grass biomass (Cenchrus ciliaris) measured under controlled  

laboratory conditions. International Journal of Applied Earth Observation and
Geoinformation, 5 (2): 87-89. 



211

Myers, D.R. and A.A. Andreas. 2004. Sensitivity of spectroradiometric calibrations in  
the near infrared to variations in atmospheric water vapor.  National 

 Renewable Energy Laboratory, NREL/CP-560-36037, NREL, Golden, Colorado. 
http://www.nrel.gov/docs/fy04osti/36037.pdf
Last accessed January 22, 2007. 

Nash, M.S., D.J. Chaloud and R.D. Lopez. 2005.  Applications of Canonical Correlation 
And Partial Least Squares in Landscape Ecology.  Environmental Sciences  
Division, U.S. Environmental protection Agency, Las Vegas, Nevada.
EPA/600/X-05/004. 82 p. 

NATO (North Atlantic Treaty Organization). 1954. Protocol No. III: On the Control of
Armaments 

Nelson, A.B., L.A. Hartshorn and R.A. Young. 1983. A methodology to inventory,  
classify and prioritize uncontrolled waste disposal sites. Report EPA-600/4-83- 
050.  U.S. Environmental Protection Agency, Las Vegas, Nevada. 

NIST/SEMATECH. 2003. e-Handbook of Statistical Methods, 5.3.3.2.1. Latin square 
  and related designs.  

http://www.itl.nist.gov/div898/handbook/
 Last accessed  January 22, 2007. 

Noomen, M.F., A.K. Skidmore, F.D. van der Meer and H.H.T. Prins. 2006. Continuum 
  removed band depth analysis for detecting the effects of natural gas, methane  

and ethane on maize reflectance. Remote Sensing of Environment, 105 (3): 262- 
270.

Nriagu, J.O., Editor. 1994. Arsenic in the Environment, Part I: Cycling and 
  Characterization. New York, John Wiley and Sons. 

NRC (National Research Council). 1999. Arsenic in Drinking Water. National Academy 
Press, National Academy of Sciences, Washington, D.C. 

Nyberg, L., C. Forkstam, K.M. Petersson, R. Cabeza, M. Cabeza and M. Ingvar. 2002. 
Brain imaging of human memory systems: between-systems similarities and  
within-system differences. Cognitive Brain Research, 13: 281–292. 

 Parry, J.D. 1973. The development of air photo interpretation in Canada.  The
  Canadian Observer, 27 (4): 320-351. 

Parsons Engineering Science, Incorporated. 1995. Final Remedial Investigation Report 
  For The Operation Safe Removal Formerly Used Defense Site, Washington, D.C. 
   U.S. Army Corps of Engineers, Huntsville Division, Baltimore District. 



212

Parsons Engineering Science, Incorporated. 2003. Engineering Evaluation / Cost 
  Analysis For Arsenic In Soil Spring Valley Operable Units 4 And 5 Washington,  

D.C.   Contract Daha90-94-D-0010, Task Order DA01 DERP-FUDS HTRW 
Project No. C03DC091802. 3 Volumes. 

Pearson, R.I. and L.D. Miller. 1972. Remote Mapping of Standing Crop Biomass for 
Estimation of the Productivity of the Shortgrass Prairie, Pawnee National 
Grasslands, Colorado. In Proceedings of Eight International Symposium of 
Remote Sensing for the Environment, 1355-1379. Ann Arbor, Michigan, 
Environmental Research Institute of Michigan (ERIM).  

Peart, V. 1993. Indoor Air Quality in Florida: Houseplants to Fight Pollution.
Publication FCS 3208, Department of Family, Youth and Community Services, 
Florida Cooperative Extension Service, Institute of Food and Agricultural 
Sciences, University of Florida; 

 http://edis.ifas.ufl.edu/HE356
Last Accessed January 25, 2007. 

Penuelas, J., F. Baret, and I. Filella. 1994. Semi-empirical indices to assess 
carotenoids/chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica,
31: 221-230. 

Peterson, D.L., J.D. Aber, P.A. Matson, D.H. Card, N.A. Swanberg, C.A. Wessman and 
M.A. Spanner. 1988. Remote sensing of forest canopy leaf biochemical contents. 
Remote Sensing of Environment, 24: 85-108. 

Philpot, W.D. 1991. The derivative ratio algorithm: avoiding atmospheric effects in 
remote sensing.  IEEE Transactions on Geoscience and Remote Sensing, 29: 350-
357.

Philipson, W.R., E.M. Barnaba, A. Ingram, and V.L. Williams. 1988. Land cover 
monitoring with spot for landfill investigations. Photogrammetric Engineering 
and Remote Sensing, 54 (2): 223-228. 

Philipson, W.R., Editor. 1997. Manual of Photographic Interpretation. Bethesda, 
Maryland: American Society for Photogrammetry and Remote Sensing.

Ray, T.W., B.C. Muray, A. Chehbouni and E. Njoku. 1993. The Red Edge in Arid 
  Region Vegetation: 340-1060 nm Spectra. In Summaries of the Fourth Annual 
  JPL Airborne Geoscience Workshop, 149-152. JPL Publication 93-26, Jet

Propulsion Laboratory, Pasadena, California.

RCRA. 1976. Resource Conservation and Recovery Act. Public Law 94-580.
 42 U.S.C. §§6901-6992. 



213

Richardson, A.J., J.H. Everitt and H.W. Gausman. 1983. Radiometric estimation of 
  biomass and nitrogen contents of Alicia grass. Remote Sensing of 
  Environment, 13: 179-184.

Reusen, I., L. Bertels, W. Debruyn, B. Deronde, D. Fransaer, S. Sterckx. 2003. Species 
 identification and stress detection of heavy-metal contaminated trees. In: 

Proceedings of the Spectral Remote Sensing of Vegetation Conference, Las 
Vegas, Nevada, March 12-14, 2003.
http://www.epa.gov/nerlesd1/land-sci/srsv/images/bertels.pdf
Last Accessed January 22, 2007. 

Roberts, D.A., M. Gardner, R. Church, S. Ustin, G. Scheer and R.O. Green. 1998.
Mapping chaparral in the Santa Monica mountains using multiple endmember  
spectral mixture models. Remote Sensing of Environment, 65: 267-279. 

Robinson, B. F., and D.P. Dewitt. 1983. Electro-optical non-imaging sensors. In:  
Manual of Remote Sensing, edited by R. N .Colwell, American Society of  
Photogrammetry, Falls Church, VA, pp. 293-333. 

Rock, B.N., T. Hoshizake, and J.R. Miller. 1988. Comparison of in situ and airborne 
  spectral measurements of the blue shift with forest decline. Remote Sensing of

Environment, 24 (1): 109-127. 

Rood, J.W, Jr. 1879.  Modern Chromatics With Applications to Art and Industry. New
York, D. Appleton & Company. 

Rosipal, R. and N. Krämer. 2006. Overview and recent advances in partial least  
squares. In Subspace, Latent Structure and Feature Selection Techniques,
edited by C. Saunders, M. Grobelnik, S. Gunn, and J. Shawe-Taylor, 34-51. 
New York, Springer. 

Rossel, R.A., D.J.J. Walvoort, A.B. McBratney, L.J. Janik and J.O. Skjemstad 
2006. Visible, near infrared, mid infrared or combined diffuse reflectance 
spectroscopy for simultaneous assessment of various soil properties.   
Geoderma, 131: 59–75. 

Rosso, P.H., J.C. Pushnik, M. Lay and S.L. Ustin. 2005. Reflectance properties and
physiological responses of Salicornia virginica to heavy metal and petroleum  
contamination. Environmental Pollution, 137 (2): 241-252. 

Rougean, G. and F.M. Breon. 1995. Estimating PAR absorbed by vegetation from  
bi-directional reflectance measurements, Remote Sensing of Environment,
51: 375-384.



214

Rouse, J.W., R.H. Haas, J.A. Schell and D.W. Deering. 1973.  Monitoring vegetation  
systems in the great plains with ERTS. In Proceeding of the ERTS-1 

  Symposium, National Aeronautical and Space Administration, SP351,  
309-317.

Running, S.W., C.O. Justice, V. Salomonson, D. Hall, J. Barker, Y.J. Kaufman, A.H.  
Strahler, A.H. Huete, J.P. Muller, V. Vanderbilt, Z.M. Wan, P. Teillet and D.  
Carneggie. 1994. Terrestrial remote sensing science and algorithms  
planned for EOS/MODIS. International Journal of Remote Sensing,
17: 3587-3620. 

Ryeson, R.A. and P.J. Curran. 1997. Chapter 10: Agriculture (Authors/Editors).  In 
The Manual of Photographic Interpretation, Second Edition, edited by W. R.  
Phillipson, American Society for Photogrammtery and Remote Sensing,  
Bethesda, Maryland.

SARA. 1986. Superfund Amendments and Reauthorization Act, Public Law 99-499.  
42 U.S.C. §§ 9601 et seq.

SAS. 2002. SAS Users Guide. SAS Institute Inc., Cary, N.C. 

Savitzky, A. and M.J.E. Golay. 1964. Smoothing and differentiation of data by 
  simplified least squares procedures. Analytical Chemistry, 36: 1627-1639. 

Sayn-Wittgenstein, L. 1978. Recognition of tree species on aerial photographs.   
Environment Canada. Canadian Forest Service Forest Management Institute  
Information Report, FMR-X-118, 97p. 

Schilling. G.T. 2004. Spring Valley Operations Manager, U.S. Army Corps of  
Engineers. Personal communication. 

Schmidtlein, S. 2005. Imaging spectroscopy as a tool for mapping Ellenberg indicator 
  values. Journal of Applied Ecology, 42: 966–974. 

Schreiber, U. 1983. Chlorophyll fluorescence as a tool in plant physiology I: The 
  measuring system. Photosynthesis Research, 4: 361-373. 

Schwaller M.R. and S.J. Tkach. 1985. Premature leaf senescence: remote sensing 
  detection and utility for geobotanical prospecting. Economic Geology,

80: 250-255. 



215

Schuerger, A.C., G.A. Capelle, J.A. DiBenedetto, C. Mao, C.N. Thai, M.D. Evans, J.T 
Richards, T.A. Blank and E.C. Stryjewski. 2003.  Comparison of two  
hyperspectral imaging and two laser-induced fluorescence instruments for the  
detection of zinc stress and chlorophyll concentration in bahia grass (Paspalum
notatum Flugge.) Remote Sensing of Environment, 84 (4): 572-588. 

Schull, C.A. 1929. A spectrophotometric study of reflection of light from leaf 
  surfaces. The Botanical Gazette, 87: 583-607. 

Sigman, H. 1999. Reforming Hazardous Waste Policy. Essays in Public Policy:  
The Hoover Institution.
http://www.hoover.org/publications/epp/93/93a.html
Last accessed May 8, 2006. 

Siegel, L. 1995. Land Mines - Global UXO. 1995. CPEO Military List Archive
 http://www.cpeo.org/lists/military/1995/msg00312.html 
 Last Accessed January 25, 2007. 

Simonett, D.S., R.G. Reeves, J.E. Estes, S.E. Bertke, and C.T. Sailer. 1983. The 
  Development and Principals of Remote Sensing. In The Manual of Remote

Sensing, Second Edition, edited by R.N. Colwell. Bethesda, Maryland, American  
Society for Photogrammetry and Remote Sensing. 

Sims, D.A. and J.A. Gamon, 2002. Relationships between leaf pigment content and 
  spectral reflectance across a wide range of species, leaf structures and  

developmental stages. Remote Sensing of Environment, 81: 337-354. 

Singh, N., and L.Q. Ma. 2006. Arsenic speciation, and arsenic and phosphate 
distribution in arsenic hyperaccumulator Pteris Vittata L. and non- 
hyperaccumulator Pteris Ensiformis L. Environmental Pollution, 141: 238-246. 

Slonecker, E.T., M.J. Lacerte and D. Garofalo. 2002. The value of historic imagery. 
Earth Observation Magazine, 8 (6): 39-41. 

Smith, E., R. Naidu and A.M. Alston. 1998. Arsenic in the soil environment: a review. 
Advanced Agronomy, 64: 149-195. 

Spurr, S.H. 1948. Aerial Photographs in Forestry. New York: Ronald Press Company,  
340p.

Spurr, S.H. 1949. Films and filters in forest aerial photography. Photogrammetric
Engineering and Remote Sensing, 15: 473-481. 



216

Srivastava, M., L.Q. Ma and J.A. Gonzaga-Santos. 2006. Three new arsenic 
  hyperaccumulating ferns. Science of the Total Environment, 364: 24–31. 

Strachan, I.B., E. Pattey and J.B. Boisvert. 2002. Impact of nitrogen and environmental  
conditions on corn as detected by hyperspectral reflectance. Remote Sensing 
 of Environment, 80 (20): 213-224. 

Stehman, S.V. 1997. Selecting and interpreting measures of thematic classification  
accuracy. Remote Sensing of Environment, 62 (1): 77-89. 

Stehman, S.V. (2000). Practical implications of design-based sampling inference for  
thematic map accuracy assessment. Remote Sensing of Environment, 72: 35-45. 

Stewart, C. N., Jr. 1996. Monitoring transgenic plants using in vivo markers. Nature
  Biotechnology, 14: 682. 

Stewart, C.N. Jr., R.J. Millwood, M.D. Halfhill, M. Ayalew, V.Cardoza, M. Kooshki, 
G.A. Capelle, K.R. Kyle, D. Piaseki, G. McCrum, and J. Di Benedetto. 2005.  
Laser-induced fluorescence imaging and spectroscopy of GFP transgenic  
plants. Journal of Fluorescence, 15 (5): 697-705. 

Story, M., and R.G. Congalton. 1986. Accuracy assessment: a user’s perspective. 
Photogrammetric Engineering and Remote Sensing, 52: 397–399. 

Stout, K.K. 1986. Historical Aerial Photographic Analysis, American University, 
 Washington, D.C. Report TS-PIC-86001M, Volumes 1 and 2.  U.S.  

Environmental Protection Agency, Environmental Sciences Division, Las  
 Vegas, Nevada. 

Taubenhaus, J.J., W.N. Ezekiel and C.B. Neblette. 1929. Airplane photography in the 
  study of cotton root rot. Phytopathology, 19: 1025-1029. 

Thaman, R.R. 1974. Remote sensing of agricultural resources. In Remote Sensing:
Techniques for Environmental Analysis, edited by J.W. Estes and L.W. Senger, 
Santa Barbara, California: Hamilton Publishing. 

Thenkabail, P.S., R.B. Smith and E.D. Pauw. 2000. Hyperspectral vegetation indices 
  and their relationship with agricultural crop characteristics. Remote Sensing of 
  Environment, 71: 158-182. 

Titus, S. 1982. Survey and analysis of present or potential environmental impact sites 
  in Woburn, Massachusetts.  In Proceedings of the 48th Annual Meeting of the 
  American Society for Photogrammetry, Denver, Colorado, 538-549.
  American Society for Photogrammetry and Remote Sensing, Bethesda, Maryland. 



217

Tobias, R.D. 1997. An introduction to partial least squares regression. SAS Institute, 
 Appendices detail SAS PROC PLS Cary, N.C.: commands and parameters.  

http://ftp.sas.com/techsup/download/technote/ts509.pdf
Last Accessed March 14, 2007. 

TSCA. 1976. Toxic Substances Control Act. Public Law 94-469, 15 USC (C. 53)
§§ 2601-2692. 

Tu, C. and L.Q. Ma. 2002. Effects of arsenic concentrations and forms on arsenic  
uptake by the hyperaccumulator ladder brake. Journal of Environmental 
Quality, 31: 641-647. 

Tsai F. and W. Philpot. 1998. Derivative analysis of hyperspectral data. Remote
  Sensing of Environment, 66: 41-51. 

United Nations. 1969. Chemical and Bacteriological (Biological) Weapons, and the  
Effect of Their Possible Use. New York, Walden. 

United Nation. 2004. Glossary of Landmine Terms. 
http://www.trellick.net/landmines/pages/info/glossary.html 
Last accessed January 25, 2007. 

UNEP (United Nations Environmental Programme). 2006. Introduction to the Basel 
Convention.

 http://www.basel.int/pub/basics.html
 Last accessed April 22, 2006. 

USA (United States Army). 1996. Handbook On The Medical Aspects Of 
NBC Defensive Operations Fm 8-9. HQDA (DASG-HCO, Falls Church,
Virginia.

USEPA (U.S. Environmental Protection Agency). 1986a U.S. EPA Test Methods for the 
  Evaluation of Solid Waste: Laboratory Manual Physical Chemical Methods,  

Method 3050: Acid Digestion of Sediment, Sludges and Soils, Volume IA, Office 
of Solid Waste, Washington, D.C. 20460. 

USEPA (U.S. Environmental Protection Agency). 1986b U.S. EPA Test Methods for the 
  Evaluation of Solid Waste: Laboratory  Manual Physical Chemical Methods,  

Method 3051: Microwave Assisted Acid Digestion of Sediments, Sludges, Soil  
and Oils, Volume IA, Office of Solid Waste, Washington, D.C. 20460. 



218

USEPA (U.S. Environmental Protection Agency). 2001. A Citizen’s Guide to  
Bioremediation. EPA-F42-01-001. Office of Solid Waste and Emergency 
Response, Washington, D.C.  
http://clu-in.org/download/citizens/citphyto.pdf
Last accessed January 25, 2007. 

USEPA (U.S. Environmental Protection Agency). 2004. Test Methods for Evaluating 
Solid Waste, Physical/Chemical Methods. EPA Publication SW-846. Revision 6. 

 U.S. Environmental Protection Agency, Washington, D.C. 
 http://www.epa.gov/epaoswer/hazwaste/test/sw846.htm
 Last accessed January 25, 2007 

USEPA (U.S. Environmental Protection Agency). 2005. Environmental Photographic  
Interpretation Center (EPIC). Photo Interpretation: Hazardous Waste Sites. 
Standard Operating Procedure. U.S. Environmental Protection Agency, Las  
Vegas, Nevada. 

USEPA (U.S. Environmental Protection Agency) 2006a.  What Does the Evidence Say  
About NPL Listing and Home Prices? 
http://www.epa.gov/superfund/programs/recycle/property.htm
Last Accessed April 22, 2006. 

USEPA (U.S. Environmental Protection Agency). 2006b. CERCLA Hazardous  
Substances, 40 CFR § 261.
http://www.epa.gov/superfund/programs/er/hazsubs/cercsubs.htm
Last accessed 22 January 2007. 

Ustin, S.L., M.O. Smith and J.B. Adams. 1993. Remote sensing of ecological 
  processes: a strategy for developing and testing ecological models using  

spectral mixture analysis. In Scaling Physiological Processes: Leaf to 
Globe, edited by J. R. Ehelringer and C. B. Field, 339-357. San Diego,
Academic Press. 

Van Atta, G.R. 1936. Filters for the separation of living and dead leaves in 
monochromatic photographs with a method for determination of photographic 
filter factors. Journal of the Biological Photographic Association, 4: 177-191. 

Vélez-Reyes, M., S.D. Hunt, S. Morillo and H. Sierra-Gil. 2004. Effects of resolution 
enhancement pre-processing in atmospheric correction of hyperspectral imagery.  
In Proceedings of SPIE: Algorithms and Technologies for Multispectral, 
Hyperspectral, and Ultraspectral Imagery X, Vol. 5425. 

Vianna N.J. and A.K. Polan. 1984. Incidence of low birth weight among Love Canal 
residents. Science, 226: 1217-1219. 



219

Vine, M.F., L. Stein, K. Weigle, J. Schroeder, D. Degnan, C.H.J. Tse, C. Hanchette and 
L. Backer. 2000. Effects on the immune system associated with living near a 
pesticide dump site. Environmental Health Perspectives, 108 (12): 1113-1124. 

Vrijheid, M. 2000. Health effects of residence near hazardous waste landfill sites: a 
review of epidemiological literature. Environmental Health Perspectives,
Supplements 108(suppl 1): 101-112. 

Vygodskaya, N.N., I.I. Gorshkova and Y.V. Fadeyeva. 1989. Theoretical estimates of 
sensitivity in some vegetation indices to variations in the canopy conditions. 
International Journal of Remote Sensing, 10: 1857-1872. 

Wang, J,. F.J. Zhao, A.A. Meharg, A. Raab, J. Feldmann and S.P. McGrath. 2002. 
 Mechanisms of arsenic hyperaccumulation in Pteris vittata; Uptake kinetics, 

interactions with phosphate, and arsenic speciation. Plant Physiology, 130: 1552-
1561.

Wang, H.B., M.H. Wong, C.Y. Lan, A.J.M. Baker, Y.R. Qin, W.S. Shu, G.Z. Chen and 
  Z.H. Ye. 2006. Uptake and accumulation of arsenic by 11 Pteris Taxa from 
 Southern China. Environmental Pollution, 20: 1-9. 

Wei, C.Y. and T.B. Chen. 2006. Arsenic accumulation by two brake ferns growing on 
an arsenic mine and their potential in phytoremediation. Chemosphere, 63:
1048–1053.

Wessman, C.A., J.D. Aber, D.L. Peterson and J.M. Melillo. 1988. Foliar analysis using 
near infrared spectroscopy. Canadian Journal of Forest Research, 18: 6-11. 

Wessman, C.A. 1994. Remote Sensing and the Estimation of Ecosystem Parameters and 
Functions. In Imaging Spectrometry - A Tool for Environmental Observations,
edited by J. Hill and J. Megier, 39-56. Dordrecht, Kluwer. 

Williams, D.R. 2002. Site Discovery Inventory, Conduit Road Field Test Site Study 
  Area. TS-PIC-20203491S, U.S. Environmental Protection Agency,  

Environmental Sciences Division, Las Vegas, Nevada. 

Willstatter, R. and A. Stoll. 1913. Untersuchungen Uber Chlorophyll: Method Und 
Ergbnisse. Berlin: Springer, 435p. 

Willstatter, R. and A. Stoll. 1918. Untersuchungen Uber Die Assimilation Der 
Kohlensaure. Berlin: J. Springer, 448p. 



220

Wold, H. 1966. Estimation of principal components and related models by iterative 
  Least squares, In Multivariate Analysis, edited by P.R. Krishnaiah, 391-420. 
  New York, Academic Press. 

Wold. H. 1975. Path with Latent Variables: The NIPALS Approach. In Quantitative
  Sociology: International Perspectives on Mathematical and Statistical  

Model Building, edited by H.M. Balock, 307-357. New York, Academic Press. 

Wold, H. 1985. Partial Least Squares. In Encyclopedia of statistical sciences,
Volume 6,  edited by S. Kotz and N.L. Johnson, 581-591. New York, Wiley.  

Wold, S. 1995. PLS for multivariate linear modeling. In QSAR: Chemometric methods in
molecular design, methods and principles in medicinal chemistry, Volume 2,
edited by H. van de Waterbeemd. 195-218. Weinheim, German, Verlag Chemie.  

Wold, S., M. Sjolstrom and L. Erikson. 2001. PLS-regression: A Basic Tool of 
  Chemometrics. Chemometrics and Intelligent Laboratory Systems, 58: 109-130. 

Wood, R.W. 1910. Photography by invisible rays. Photographic Journal, 50: 329-338. 

Wood, H.A. 1968. Accumulated data used in the air photo interpretation of agricultural  
land use. In Proceedings, Second Seminar of Air Photo Interpretation in the 
Development of Canada, (Ottawa), 100-114. 

Xu, L., J.H. Jiang, H.L. Wu, G.L. Shen and R.Q. Yu. 2007.  Variable-weighted 
  PLS.  Chemometrics and Intelligent Laboratory Systems, 85: 140–143. 

Yoder B.J., and R.E. Pettigrew-Crosby. 1995. Predicting nitrogen and chlorophyll
Content and concentrations from reflectance spectra (400 - 2500 nm) at leaf and  
canopy scales. Remote Sensing of Environment, 53: 199-211. 

Zhang, W., C. Yong, C. Tu and L.Q. Ma. 2002. Arsenic speciation and distribution  
in an arsenic hyperaccumulating plant. The Science of the Total Environment,
300: 167–177. 

Zhang, M., Z. Qin, X. Liu and S.L. Ustin. 2003. Detection of stress in tomatoes induced 
  by late blight disease in California, USA using hyperspectral remote sensing.   

International Journal of Applied Earth Observation and Geoinformation
4 (4): 295-310. 

Zsilinsky, V.G. 1963. Photographic interpretation of tree species in Ontario, Toronto: 
   Ontario Department of Lands and Forests, Timber Branch. 



APPENDIX A 

Example of SAS commands for processing Fern Spectral Data with Partial Least 
Squares and Stepwise Linear Regression.   Explanatory notes and comments in 
blue.

Libname ter "c:\0pcm1d";     * Establish Operational SAS Data Directory

Proc transpose data=ter.band out=tt;ID band;run;  * Enter Excel data in SAS
data ttt; set tt; i+1; run;     * format and transpose.
data f; set ter.frond; i+1; run; 

data ter.all;      * Create master SAS data set
     merge f ttt;       * of spectral values and frond 

by i;       * arsenic concentration for the first
 frond = frond+0;     * derivative of reflectance for the      
              Lfrond = Log(frond);    * Pteris cretica mayii data set.
  drop var0 _NAME_ _LABEL_ i;  
 run; 

*************************************************************************************; 

symbol1 v=dot c=blue I=none;    * Plot the input data
Proc gplot data=ter.all;      * for visual inspection
     plot frond *(_400--_2399); 
  run; 

*************************************************************************************; 

Proc PLS data=ter.all cv=one cvtest(seed=12345 pval=0.10 );  * first PLS run, set cross-validation
     model frond =_400--_2399;    * parameters and significance level
     output out=outWLT  predicted = yhat1 
                        yresidual = yres1 
                        xresidual = xres1-xres2000 
                        xscore    = xscr 
                        yscore    = yscr; 

run; 

 Output out=outWLT  predicted = yhat1 
                        yresidual = yres1 
                        xresidual = xres1-xres2000 
                        xscore    = xscr 
                        yscore    = yscr; 

run; 

*************************************************************************************; 

221
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axis1 label=(angle=270 rotate=90 "x score 2")  * Plot the PLS data
      major=(number=5) minor=none;   * for visual inspection
axis2 label=("X-score 1") minor=none; 
Title " "; 
symbol1 v=dot c=blue i=none; 
proc gplot data=outWLT; 
      plot xscr2*xscr1=1 
         / vaxis=axis1 haxis=axis2 frame cframe=white href=0 vref=0; 

run; 
%let ifac = 1; 
data pltanno; set outWLT; 
      length text $ 25; 
      retain function 'label' position '5' hsys '3' xsys '2' ysys '2' 
             color 'blue' style 'swissb'; 
       text=%str(i); x=xscr&ifac; y=yscr&ifac; 
      axis1 label=(angle=270 rotate=90 "Y score &ifac") 
         major=(number=5) minor=none; 
      axis2 label=("X-score &ifac") minor=none; 
      symbol1 v=dot c=blue i=none; 
proc gplot data=outWLT; 
      plot yscr&ifac*xscr&ifac=1 
         / anno=pltanno vaxis=axis1 haxis=axis2 frame cframe=white href=0 vref=0; 

run; 

*************************************************************************************; 
ods output XWeights=xweights;    * plot the Y and X variable weights
Proc PLS data=ter.all nfac=3 details;    * with the number of factors (nfac) from the 
model frond =_400--_2399;    * PLS run 
run; 

proc transpose data=xweights(drop=NumberOfFactors InnerRegCoef) 
               out =xweights; 
run; 
data xweights; set xweights; 
      rename col1=w1 col2=w2 col3=w3 col4=w4; 
run; 

   data wt_anno; set xweights; 
      length text $ 7; 
      retain function 'label' 
             position '5' 
             hsys     '3' 
             xsys     '2' 
             ysys     '2' 
             color    'blue' 
             style    'swissb'; 
      text=%str(_name_); x=w1; y=w2; 
run; 

   axis1 label=(angle=270 rotate=90 "X weight 2") 
         major=(number=5) minor=none; 
   axis2 label=("X-weight 1") minor=none; 
   symbol1 v=dot c=blue i=none; 
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proc gplot data=xweights; 
     plot w2*w1=1 / anno=wt_anno vaxis=axis1 
                     haxis=axis2 frame cframe=white href=0 vref=0; 
run; quit; 

*************************************************************************************; 

/*   Weights and Percent variance for the ind vars, #wts and pctvar=# Sig. factors */ 
/* The following statements produce coefficients and the VIP */ 
/*  Put coefficients, weights, and R**2's into data sets     */ 

   ods listing close; 
   ods output PercentVariation  = pctvar 
              XWeights          = xweights 
              censcaleParms     = solution; 
proc pls data=ter.all nfac=3 details;  
     model frond =_400--_2399/solution; 
run; 
   ods listing; 

*************************************************************************************; 
/ * Reformat the coefficients/ 
   data solution; set solution; 
      format frond 7.2; 
      if (RowName = 'Intercept') then delete; 
      rename RowName = Predictor frond   = frond; 
   run; 
/* 

*************************************************************************************; 

/  Transpose weights and R**2's. 
   data xweights; set xweights; _name_='W'||trim(left(_n_)); 
   data pctvar  ; set pctvar  ; _name_='R'||trim(left(_n_)); 
   proc transpose data=xweights(drop=NumberOfFactors InnerRegCoef) 
                  out =xweights; 
   proc transpose data=pctvar(keep=_name_ CurrentYVariation) 
                  out =pctvar; 
   run; 
   Proc Print data=pctvar;run; 

*************************************************************************************; 
/  Sum the squared weights times the normalized R**2's. 
/  The VIP is defined as the square root of this 
/  weighted average times the number of predictors. 

proc sql; 
      create table vip as 
         select * 
            from xweights left join pctvar(drop=_name_) on 1; 
data vip; set vip; keep _name_ vip; 
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      array w{3}; 
      array r{3}; 
      VIP = 0; 
      do i = 1 to 2; /* to 6, i is the number of significant factors */ 
         VIP = VIP + r{i}*(w{i}**2)/sum(of r1-r3);/* r3 is the number of sig factors */ 
         end; 
      VIP = sqrt(VIP * 2000);/* 2169 is the number of x vars */ 
data vipbpls; merge solution vip(drop=_name_); 
options ps=255 ls=80; 
Proc sort data=vipbpls; by vip predictor; run; 
proc print data=vipbpls;run;quit; 

*************************************************************************************; 

data grp;       * group factors by VIP table results
     set vipbpls;      * drop all factors where VIP < 1
     if vip >= 2.7 then group=1; 
     if 2.7 > vip >= 2 then group=2; 
     if 2 > vip >= 1.5 then group=3; 
     if 1.5 > vip >= 1 then group=4; 
  run; 
Proc sort data=grp; by group predictor ;  run; 
data grp1; set grp; where group=1;  vip1 = predictor; run; 
data grp2; set grp; where group=2;  vip1 = predictor; run; 
data grp3; set grp; where group=3;  vip1 = predictor; run; 
data grp4; set grp; where group=4;  vip1 = predictor; run; 

Proc Transpose data=grp1 out=grpt1;  id predictor;  var vip1; run; * VIP group1
modify grpt1 (label='');   
 proc modify data=grpt1(label=''); out=grpt1m; run; 
proc print data=grpt1 n label=''; run; 

Proc Transpose data=grp2 out=grpt2;  id predictor;  var vip1; run; * VIP group2
modify grpt1 (label='');   
 proc modify data=grpt1(label=''); out=grpt1m; run; 
proc print data=grpt1 n label=''; run; 

Proc Transpose data=grp3 out=grpt3;  id predictor;  var vip1; run; * VIP group3
modify grpt1 (label='');   
 proc modify data=grpt1(label=''); out=grpt1m; run; 
proc print data=grpt1 n label=''; run; 

Proc Transpose data=grp4 out=grpt4;  id predictor;  var vip1; run;  * VIP group4
modify grpt1 (label='');   
 proc modify data=grpt1(label=''); out=grpt1m; run; 
proc print data=grpt1 n label=''; run; 

Options ps=255 ls=100 nolabel nodate; 
proc print data=grpt1; run; 



225

proc print data=grpt2 noobs;  run; 
proc print data=grpt3 noobs;  run; 
proc print data=grpt4 noobs;  run; 

/* 
/*   END of VIP */ 

** group1 - vip >= 2.7 *** 
 _663 _385 _379 _688 _384 _357 _368 _664 _665 _358 _383
 _666 _687 _2497 _350 _667 _686 _2518 _668 _669 _685 _670
 _671 _672 _673 _674 _684 _675 _683 _676 _682 _677 _681
 _678 _679 _680 _381 _382 

** group2 - 2 7 > vip >= 2.0*** 
_2316   _2317   _2327   _2328   _2339   _2342   _2343   _2344   _2345   _2346   _2347   _2348   _2349
_2350   _2351   _2352   _2363   _2366   _2367   _2368   _2369   _2389   _2395   _2396   _2405   _2406
_2417   _2418   _2419   _2422   _2431   _2434   _2437   _2438   _2446    _422    _426    _438    _439
_454    _489

** group3 - 2.0 > vip >= 1.5*** 
_2144   _2166   _2167   _2168   _2190   _2283   _2297   _2298   _2315   _2319   _2325   _2326   _2331
_2332   _2337   _2338   _2353   _2362   _2364   _2365   _2370   _2371   _2372   _2373   _2388   _2390
_2394   _2407   _2408   _2409   _2410   _2411   _2414   _2415   _2416   _2420   _2421   _2435   _2443
_2444   _2445   _423     _427     _428     _429     _430     _432     _435     _436     _437     _440     _441
_443     _445     _446     _447     _449     _450    _451      _452     _456     _459     _466     _467     _468
_473     _474     _476     _478     _484     _485     _487     _488     _490     _491     _515     _516     _517
_518     _521     _522     _528     _529     _534     _664     _665     _666     _667     _668     _669     _670 
_671     _672     _673     _674     _675     _676     _677     _678     _679     _680     _681     _682     _683

** group4 - 1.5 > vip >= 1 *** 
_1000   _1001   _1002   _1003   _1004   _1005   _1006   _1007   _1008   _1009   _1010   _1011   _1012
_1013   _1014   _1015   _1016   _1017   _1018   _1019   _1020   _1021   _1022   _1023   _1024   _1025
_1026   _1027   _1028   _1029   _1030   _1031   _1032   _1033   _1034   _1035   _1036   _1037   _1038
_1039   _1040   _1041   _1042   _1043   _1044   _1045   _1046   _1047   _1048   _1049   _1050   _1051
_1052   _1053   _1054   _1055   _1056   _1057   _1058   _1059   _1060   _1061   _1062   _1063   _1064
_1065   _1066   _1067   _1068   _1069   _1070   _1071   _1072   _1073   _1074   _1075   _1076   _1077
_1078   _1079   _1080   _1081   _1082   _1083   _1084   _1085   _1086   _1087   _1088   _1089   _1090
_1091   _1092   _1093   _1094   _1095   _1096   _1097   _1098   _1099   _1100   _1101   _1102   _1103
_1104   _1105   _1106   _1107   _1108   _1109   _1110   _1111   _1112   _1113   _1114   _1115   _1116
_1117   _1118   _1119   _1120   _1121   _1122   _1123   _1124   _1125   _1126   _1127   _1128   _1129
_1130   _1131   _1132   _1133   _1134   _1135   _1136   _1137   _1138   _1139   _1140   _1141   _1142
_1143   _1144   _1145   _1146   _1147   _1148   _1149   _1150   _1151   _1152   _1153   _1154   _1155
_1156   _1157   _1158   _1159   _1160   _1161   _1162   _1163   _1164   _1165   _1166   _1172   _1404
_1405   _1406   _1407   _1408   _1409   _1410   _1411   _1412   _1413   _1414   _1415   _1416   _1417
_1418   _1419   _1420   _1811   _1884   _1885   _1886   _1887   _1888   _1889   _1890   _1891   _1892
_1893   _1894   _1895   _1896   _1897   _1898   _1899   _1900   _1901   _1902   _1903   _1904   _1905
_1906   _1907   _1908   _1909   _1910   _1911   _1912   _1913   _1914   _1915   _1916   _1917   _1918
_1919   _1920   _1921   _1922   _1923   _1924   _1925   _1926   _1927   _1928   _1929   _1930   _1931
_1932   _1933   _1934   _1935   _1936   _1937   _1938   _1939   _1940   _1941   _1942   _1943   _1944 
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_1945   _1946   _1947   _1948   _1949   _1952   _1953   _1954   _1955   _1956   _1957   _1958   _1959
_1960   _1961   _1962   _1963   _1964   _1965   _1966   _1967   _1968   _1969   _1970   _1971   _1972
_1973   _1974   _1975   _1976   _1977   _1983   _1984   _1985   _1986   _1987   _1988   _1989   _1996
_1997   _1998   _1999   _2000   _2001   _2003   _2004   _2005   _2006   _2007   _2008   _2009   _2010
_2025   _2026   _2031   _2032   _2033   _2034   _2035   _2039   _2040   _2041   _2042   _2090   _2091
_2092   _2103   _2104   _2105   _2106   _2107   _2108   _2109   _2118   _2119   _2120   _2121   _2133
_2140   _2141   _2142   _2143   _2145   _2146   _2147   _2148   _2149   _2150   _2169   _2152   _2153
_2154   _2158   _2159   _2164   _2165   _2169   _2170   _2174   _2175   _2176   _2177   _2178   _2179
_2180   _2181   _2182   _2185   _2186   _2187   _2188   _2189   _2191   _2192   _2193   _2203   _2204
_2205   _2208   _2209   _2210   _2217   _2218   _2219   _2220   _2227   _2228   _2235   _2236   _2237
_2238   _2239   _2244   _2248   _2249   _2250   _2251   _2252   _2253   _2254   _2255   _2256   _2257
_2258   _2259   _2260   _2261   _2262   _2263   _2264   _2265   _2266   _2267   _2268   _2269   _2270
_2271   _2272   _2273   _2274   _2275   _2276   _2277   _2278   _2279   _2280   _2281   _2282   _2284
_2285   _2286   _2287   _2288   _2289   _2290   _2291   _2292   _2293   _2294   _2295   _2296   _2299
_2300   _2301   _2302   _2303   _2304   _2305   _2306   _2307   _2308   _2309   _2310   _2311   _2312
_2314   _2320   _2321   _2322   _2323   _2324   _2329   _2330   _2333   _2334   _2335   _2336   _2354
_2355   _2356   _2357   _2358   _2359   _2360   _2361   _2374   _2375   _2376   _2377   _2378   _2379
_2380   _2381   _2382   _2383   _2384   _2385   _2386   _2387   _2391   _2392   _2393   _2412   _2413
_2430   _2436  _431   _434    _442    _444    _448    _453    _457    _458   _460    _461    _462    _463
_464    _465    _469    _470    _471    _472    _475    _477    _479    _480   _481    _482    _483    _486
_492    _493    _494    _495    _496    _497    _498    _499    _500    _501   _502   _503    _504    _505
_506    _507    _508   _509    _510     _511    _512    _513    _514   _519    _520   _523    _524    _525
_526    _527    _530    _531    _532     _533    _535    _536    _537    _538    _539    _540    _541    _542
_543    _544    _545    _546    _547    _548     _549    _550    _551    _552    _553    _554    _555    _556
_557    _558    _559    _560    _561    _562    _563    _564    _565    _566    _567    _568    _569    _570
_571    _572    _573    _574    _575    _576    _577    _578    _579    _580    _581    _582    _583    _584
_585    _586    _587    _588    _589    _590    _591    _592    _593    _594    _595    _596    _597    _598
_600    _601    _602    _603    _604    _605    _606    _608    _609    _610    _611    _612    _613    _614
_615    _616    _617    _618    _619    _620    _621    _622    _623    _624    _625    _626    _627    _628
_629    _630    _631    _632    _633    _634    _635    _636    _637    _638    _639    _640    _641    _642
_643    _644    _645    _646    _647    _648    _649    _650    _651    _652    _653    _654    _655    _656
_657    _658    _659    _660    _661    _662    _663    _684    _685    _686    _687    _688    _689    _690
_691    _692    _693    _694    _695    _696    _697    _698    _699    _700    _701    _702    _703    _704
_705    _706    _707    _708    _709    _710    _711    _712    _713    _714    _715    _716    _717    _718
_719    _720    _721    _722    _723    _724    _725    _726    _727    _728    _729    _730    _731    _732
_733    _734    _735    _736    _737    _738    _739    _740    _741    _742    _743    _744    _745    _746
_747    _748    _749    _750    _751    _752    _753    _754    _755    _756    _757    _758    _759    _760
_761    _762    _763    _764    _765    _766    _767    _768    _769    _770    _771    _772    _773    _774
_775    _776    _777    _778    _779    _780    _781    _782    _783    _784    _785    _786    _787    _788
_789    _790    _791    _792    _793    _794    _795    _796    _797    _798    _799    _800    _801    _802
_803    _804    _805    _806    _807    _808    _809    _810    _811    _812    _813    _814    _815    _816
_817    _818    _819    _820    _821    _822    _823    _824    _825    _826    _827    _828    _829    _830
_831    _832    _833    _834    _835    _836    _837    _838    _839    _840    _841    _842    _843    _844
_845    _846    _847    _848    _849    _852    _853    _854    _855    _856    _857    _858    _859    _861
_862    _864    _865    _866    _867    _868    _869    _870    _871    _872    _873    _880    _881    _882
_891    _892    _895    _896    _903    _904    _906    _907    _914    _915    _918    _922    _965    _976
_977    _978    _979    _980    _981    _982    _983    _984    _985    _986    _987    _988    _989    _990
_991    _992    _993    _994    _995    _996    _997    _998    _999
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*****   Group 1 PLS  ****************************************; 
Proc PLS data=ter.all cv=one cvtest(seed=12345 pval=0.10 );  
    model frond = _663 _385 _379 _688 _384 _357 _368 _664 _665 _358
 _383 _666 _687 _2497 _350 _667 _686 _2518 _668 _669 _685
 _670 _671 _672 _673 _674 _684 _675 _683 _676 _682 _677
 _681 _678 _679 _680 _381 _382; 

  Output out=outWLT  predicted = yhat1 
                        yresidual = yres1 
                        xresidual = xres1-xres38 
                        xscore    = xscr 
                        yscore    = yscr; 
run; 

***********    Diagnostic Check Figures and VIP table *******************************:; 
axis1 label=(angle=270 rotate=90 "x score 2") 
      major=(number=5) minor=none; 
axis2 label=("X-score 1") minor=none; 
Title " "; 
symbol1 v=dot c=blue i=none; 
proc gplot data=outWLT; 
      plot xscr2*xscr1=1 
         / vaxis=axis1 haxis=axis2 frame cframe=white href=0 vref=0; 
run; 
%let ifac = 1; 
data pltanno; set outWLT; 
      length text $ 25; 
      retain function 'label' position '5' hsys '3' xsys '2' ysys '2' 
             color 'blue' style 'swissb'; 
       text=%str(i); x=xscr&ifac; y=yscr&ifac; 
      axis1 label=(angle=270 rotate=90 "Y score &ifac") 
         major=(number=5) minor=none; 
      axis2 label=("X-score &ifac") minor=none; 
      symbol1 v=none i=none; 
proc gplot data=outWLT; 
      plot yscr&ifac*xscr&ifac=1 
         / anno=pltanno vaxis=axis1 haxis=axis2 frame cframe=white href=0 vref=0; 
run; 

/* for plotting the y variables and x valiables weights*/ 
ods output XWeights=xweights; 
Proc PLS data=ter.all nfac=4 details;  
    model frond =_663 _385 _379 _688 _384 _357 _368 _664 _665 _358
 _383 _666 _687 _2497 _350 _667 _686 _2518 _668 _669 _685
 _670 _671 _672 _673 _674 _684 _675 _683 _676 _682 _677
 _681 _678 _679 _680 _381 _382;
 run; 

/* -------------------------------------------------------   */ 

   ods listing close; 



228

   ods output PercentVariation  = pctvar 
              XWeights          = xweights 
              censcaleParms     = solution; 
proc pls data=ter.all nfac=1 details; 
     model frond =_663 _385 _379 _688 _384 _357 _368 _664 _665 _358
 _383 _666 _687 _2497 _350 _667 _686 _2518 _668 _669 _685
 _670 _671 _672 _673 _674 _684 _675 _683 _676 _682 _677
 _681 _678 _679 _680 _381 _382/solution; 
run; 
   ods listing; 

proc transpose data=xweights(drop=NumberOfFactors InnerRegCoef) 
               out =xweights; 
run; 
   data xweights; set xweights; 
      rename col1=w1 col2=w2 col3=w3 col4=w4 col5=w5 col6=w6; 
   run; 
   data wt_anno; set xweights; 
      length text $ 7; 
      retain function 'label' 
             position '5' 
             hsys     '3' 
             xsys     '2' 
             ysys     '2' 
             color    'blue' 
             style    'swissb'; 
      text=%str(_name_); x=w1; y=w2; 
run; 

   axis1 label=(angle=270 rotate=90 "X weight 2") 
         major=(number=5) minor=none; 
   axis2 label=("X-weight 1") minor=none; 
   symbol1 v=none i=none; 
proc gplot data=xweights; 
     plot w2*w1=1 / anno=wt_anno vaxis=axis1 
                     haxis=axis2 frame cframe=white href=0 vref=0; 
run; quit; 

/*   Weights and Percent variance for the ind vars, #wts and pctvar=# Sig. facotrs */ 
/* The following statements produce coefficients and the VIP */ 
/*  Put coefficients, weights, and R**2's into data sets     */ 
/* -------------------------------------------------------   */ 

   ods listing close; 
   ods output PercentVariation  = pctvar 
              XWeights          = xweights 
              censcaleParms     = solution; 
proc pls data=ter.all nfac=1 details; 
     model frond =_663 _385 _379 _688 _384 _357 _368 _664 _665 _358
 _383 _666 _687 _2497 _350 _667 _686 _2518 _668 _669 _685
 _670 _671 _672 _673 _674 _684 _675 _683 _676 _682 _677
 _681 _678 _679 _680 _381 _382/solution; 
run; 
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   ods listing; 

/* 
/  Just reformat the coefficients. 
/-------------------------------------------------------*/
   data solution; set solution; 
      format frond 7.2; 
      if (RowName = 'Intercept') then delete; 
      rename RowName = Predictor frond   = frond; 
   run; 

/* 
/  Transpose weights and R**2's. 
/-------------------------------------------------------*/
   data xweights; set xweights; _name_='W'||trim(left(_n_)); 
   data pctvar  ; set pctvar  ; _name_='R'||trim(left(_n_)); 
   proc transpose data=xweights(drop=NumberOfFactors InnerRegCoef) 
                  out =xweights; 
   proc transpose data=pctvar(keep=_name_ CurrentYVariation) 
                  out =pctvar; 
   run; 
   Proc Print data=pctvar;run; 

/* 
/  Sum the squared weights times the normalized R**2's. 
/  The VIP is defined as the square root of this 
/  weighted average times the number of predictors. 
/-------------------------------------------------------*/

proc sql; 
      create table vip as 
         select * 
            from xweights left join pctvar(drop=_name_) on 1; 
data vip; set vip; keep _name_ vip; 
      array w{1}; 
      array r{1}; 
      VIP = 0; 
      do i = 1 to 1; /* to 6, i is the number of significant factors */ 
         VIP = VIP + r{i}*(w{i}**2)/sum(of r1-r1);/* r3 is the number of sig factors */ 
         end; 
      VIP = sqrt(VIP * 745);/* 33 is the number of x vars */ 
data vipbpls; merge solution vip(drop=_name_); 
options ps=255 ls=80; 
Proc sort data=vipbpls; by vip predictor; run; 
proc print data=vipbpls;run;quit; 

*****    outliers   ********************************;   Check for Outliers 
proc pls data=grp1 nfac=4 ; 
    model frond =_663 _385 _379 _688 _384 _357 _368 _664 _665 _358
 _383 _666 _687 _2497 _350 _667 _686 _2518 _668 _669 _685
 _670 _671 _672 _673 _674 _684 _675 _683 _676 _682 _677
 _681 _678 _679 _680 _381 _382;
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     output out=stdres stdxsse=stdxsse stdysse=stdysse; 
     data stdres; set stdres;i+1; 

          xdist = sqrt(stdxsse); 
          ydist = sqrt(stdysse); 
   run; 
Proc Print data=stdres; run; 
Symbol1 i=needles v=dot c=blue; 
Symbol2 i=needles v=dot c=red; 
Symbol3 i=needles v=dot c=green; 
Proc gplot data=stdres; 
        plot xdist*i / cframe = white ; 
Proc gplot data=stdres; 
        plot ydist*i / cframe=white; 
run; 

*****   Group 2 PLS  ****************************************;  Repeat for groups 2, 3 and 4 

Take top factors from each data group run and place in stepwise regression model; 

proc reg data=ter.all;  
 model frond= _498 _499 _500 _565 _566 _567 _568 _588 _596
 _597 _603 _604 _605 _606 _607 _608 _609 _610 _611 _612
 _621 _622 _625 _626 _627 _628 _631 _632 _633 _634 _635
 _636 _639 _640 _641 _642 _643 _650 _651 _652 _654 _655
 _977 _992 _994 _995 _1114 _1115 _1472 _1663 _1664 _1683 _1777
 _1818 _1819 _2050 _2053 _2058 _2059 _2079 _2092 _2093 _2094  
 _2118 _2119 _2150 _2159 _2177 _2276 _2277 _2289 _2293 _2294 
 _2295 2296 _2303 _2335 _2338 _2339/selection=stepwise sle=0.25 sls=0.05; 

run; 

Test final model for collinearity; 

proc corr data=ter.all;  
var _499 _626 _655 _977 _992 _1114 _1683 _2058; 
run; 
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APPENDIX B

      Summary statistics for the three fren species grown in arsenic-amended soils as   
      shown in Tables 6, 7 and 8 on pages 121, 122 and 123. 

      Summary Statistics for the three fern species grown in arsenic-amended soils  
      as shown in Tables 6, 7 and 8 on pages 121, 122 and 123. 

SUMMARY STATISTICS Nephrolepis exaltata
   FROND_AS  BIOMASS  BIOCONC 

N of cases  25   25   25 
Minimum  0.0   0.360   0.0 
Maximum  5695.0   .220   31.120 
Range   5695.0   8.860   31.120 
Sum   24520.0   82.120   196.060 
Median   143.0   2.590   3.720 
Mean   980.800   3.285   7.842 
95% CI Upper  1730.040  4.271   11.925 
95% CI Lower  231.560   2.298   3.759 
Std. Error  363.022   0.478   1.978 
Standard Dev  1815.108  2.390   9.891 
Variance  3294618.833  5.711   97.839 
C.V.   1.851   0.728   1.261 
Skewness(G1)  1.937   1.249   1.392 
SE Skewness  0.464   0.464   0.464 
Kurtosis(G2)  2.227   1.242   0.575 
SE Kurtosis  0.902   0.902   0.902 

PEARSON CORRELATION MATRIX 
  SOIL_AS         HWEEK        FROND_AS       BIOMASS              BIOCONC 

SOIL_AS 1.000     
HWEEK 0.000  1.000    
FROND_AS 0.817  0.145  1.000   
BIOMASS -0.670  0.403  -0.498  1.000  
BIOCONC 0.822  0.222  0.944  -0.596       1.000 
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GENERAL LINEAR MODEL 

Dep Var: FROND_AS   N: 25   Multiple R: 0.967   Squared multiple R: 0.935 

Adjusted squared multiple R: 0.922   Standard error of estimate: 506.287 

Effect  Coefficient        Std Error      Std Coef        Tolerance             t                P(2 Tail) 

CONSTANT     -866.125  329.40       0.000       .            -2.629        0.016 
SOIL_AS    4.706   2.720       0.189  0.272             1.730    0.099 
HWEEK              -69.680              25.249      -0.222  0.503            -2.760    0.012 
BIOMASS          255.764              76.120       0.337  0.323             3.360    0.003 
BIOCONC         190.589              21.866       1.039  0.228             8.716           0.000 

ANALYSIS OF VARIANCE 

Source  Sum-of-Squares  df Mean-Square  F-ratio  P 
Regression 7.39443E+07  4 1.84861E+07  72.119  0.000 
Residual  5126523.302  20 256326.165   

*** WARNING *** 

Case           20 is an outlier    (Studentized Residual =       -4.406) 
Case           21 has large leverage   (Leverage =        0.720) 

Durbin-Watson D Statistic          1.069 
First Order Autocorrelation        0.405 

Plot of Residuals against Predicted Values
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SUMMARY STATISTICS Pteris cretica mayii

    FROND_AS  BIOM  BIOC 

N of cases 25   25  25 
Minimum 0.0   3.5  0.0 
Maximum 5584.0   7.4  87.3 
Range  5584.0   3.8  87.3 
Sum  54662.0   129.7  966.9 
Median  1868.0   5.1  41.3 
Mean  2186.5   5.2  38.7 
95% CI Upper 2908.5   5.6  49.8 
95% CI Lower 1464.5   4.8  27.5 
Std. Error 349.8   0.2  5.4 
Standard Dev 1749.2   1.0  27.0 
Variance 3059622.8  1.0  727.9 
C.V.  0.8   0.2  0.7 
Skewness(G1) 0.3   0.1  0.0 
SE Skewness 0.5   0.5  0.5 
Kurtosis(G2) -1.2   -0.4  -1.0 
SE Kurtosis 0.9   0.9  0.9 

PEARSON CORRELATION MATRIX 

  SOIL_AS HWEEK FROND_AS BIOM  BIOC 
SOIL_AS 1.000     
HWEEK 0.000  1.000    
FROND_AS 0.852  0.132  1.000   
BIOM  -0.592  0.383  -0.499  1.000  
BIOC  0.026  0.120  0.446  -0.175  1.000 
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GENERAL LINEAR MOEL 

Dep Var: FROND_AS   N: 25   Multiple R: 0.970   Squared multiple R: 0.941 

Adjusted squared multiple R: 0.929   Standard error of estimate: 462.066 

Effect  Coefficient Std Error         Std Coef Tolerance t  P(2 Tail) 

CONSTANT 313.788  404.017  0.0     .             0.777  0.446 
SOIL_AS 20.993  1.318  0.880 0.964           15.932  0.0 
HWEEK 14.378  19.633  0.048 0.692             0.732  0.472 
BIOMASS        -108.112  65.168              -0.110 0.674            -1.659  0.113 
BIOCONC 23.800  3.247  0.406 0.960             7.329  0.0 

ANALYSIS OF VARIANCE 

Source  Sum-of-Squares  df Mean-Square  F-ratio  P 
Regression 6.83432E+07  4 1.70858E+07  80.025  0.0 
Residual  4270104.582  20 213505.229   

*** WARNING *** 
Case           10 has large leverage   (Leverage =        0.576) 

Plot of Residuals against Predicted Values
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SUMMARY STATISTICS Pteris multifida

    FROND_AS BIOMASS BIOCONC 

N of cases      25       25       25 
Minimum       0.0   4.190      0.0 
Maximum              5510.0  12.670    93.790 
Range               5510.0   8.480    93.790 
Sum             59558.0             161.410              1093.040 
Median               2702.0   6.240     53.820 
Mean               2382.3   6.456     43.722 
95% CI Upper           3100.314   7.184     55.957 
95% CI Lower           1664.326   5.728     31.486 
Std. Error             347.882   0.353       5.929 
Standard Dev           1739.412   1.764     29.643 
Variance     3025552.560   3.110   878.682 
C.V.                  0.730   0.273       0.678 
Skewness(G1)   -0.059   1.778      -0.180 
SE Skewness   0.464   0.464       0.464 
Kurtosis(G2)  -1.352   5.506      -1.062 
SE Kurtosis   0.902   0.902       0.902 

PEARSON CORRELATION MATRIX 

  SOIL_AS HWEEK FROND_AS BIOMASS BIOCONC 
SOIL_AS  1.0     
HWEEK  0.0  1.0    
FROND_AS 0.883              -0.047  1.0   
BIOMASS 0.162               0.528              -0.185  1.0  
BIOCONC          -0.035              -0.092  0.359  0.102  1.0 

GENERAL LINEAR MOEL 

Dep Var: FROND_AS   N: 25   Multiple R: 0.970   Squared multiple R: 0.941 

Adjusted squared multiple R: 0.929   Standard error of estimate: 462.066 

Effect  Coefficient Std Error         Std Coef Tolerance t  P(2 Tail) 

CONSTANT 313.788  404.017  0.0     .             0.777  0.446 
SOIL_AS 20.993  1.318  0.880 0.964           15.932  0.0 
HWEEK 14.378  19.633  0.048 0.692             0.732  0.472 
BIOMASS        -108.112  65.168              -0.110 0.674            -1.659  0.113 
BIOCONC 23.800  3.247  0.406 0.960             7.329  0.0 
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ANALYSIS OF VARIANCE 

Source  Sum-of-Squares  df Mean-Square  F-ratio  P 
Regression 6.83432E+07  4 1.70858E+07  80.025  0.0 
Residual  4270104.582  20 213505.229   

*** WARNING *** 
Case           10 has large leverage   (Leverage =        0.576) 

Durbin-Watson D Statistic          1.476 
First Order Autocorrelation        0.235 

Plot of Residuals against Predicted Values
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