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Abstract: Hydrologic science has largely built its understanding of the hydrologic cycle 

using contemporary data sources (i.e., last 100 years). However, as we try to meet water 

demand over the next 100 years at scales from local to global, we need to expand our scope 

and embrace other data that address human activities and the alteration of hydrologic 

systems. For example, the accumulation of human impacts on water systems requires 

exploration of incompletely documented eras. When examining these historical periods, 

basic questions relevant to modern systems arise: (1) How is better information 

incorporated into water management strategies? (2) Does any point in the past  

(e.g., colonial/pre-European conditions in North America) provide a suitable restoration 

target? and (3) How can understanding legacies improve our ability to plan for future 

conditions? Beginning to answer these questions indicates the vital need to incorporate 

disparate data and less accepted methods to meet looming water management challenges. 
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1. Introduction  

If we are to effectively manage water over the next 100 years and beyond, we need a better 

understanding of the accumulation of impacts caused by human activities over past centuries. This idea 

is simple and the underlying principle is generally accepted. However, once the challenge is engaged, 

the course is not necessarily evident. For example, how does a hydrologist study the period roughly 

bounded by European settlement in North America and the American Revolution? An almost universal 

reaction to the prospect of characterizing this era is “What can you do for that period?” There is no 

gauge data, any other data that exists are sparse if available, and it is assumed the impact of colonial 

activity could not possibly be more important than more recent changes such as urbanization. 

Most hydrologic studies in the U.S. go back less than 100 years, coincident with the availability of 

stream-gauging data [1]. While these studies reflect the accumulation of human impacts to the hydrologic 

system, this reflection is often not explicitly recognized. Though historical analysis of human and 

environmental records may require tools underutilized in contemporary hydrology and geoscience, there 

are a host of reasons for inspecting past centuries. This piece focuses on three fundamental questions in 

an attempt to demonstrate the value of incorporating historic hydrologic conditions and the human 

interactions with these conditions: (1) How is better information incorporated into water management 

strategies? (2) Does any point in the past (e.g., colonial/pre-European conditions in North America) 

provide a suitable restoration target? and (3) How can understanding legacies improve our ability to plan 

for future conditions? We view this effort as analogous to the incorporation of a historical perspective 

into ecology, which revealed unexpected and important findings including: Historic plowing for 

agriculture in New England continues to dictate contemporary nutrient cycling [2], the land use status  

50 years ago predicts contemporary fish community structure better than contemporary land use [3], and 

Roman era settlement patterns continue to influence soil fertility and therefore plant community 

composition in contemporary French forests [4]. A systematic examination of historic hydrologic 

conditions and the human interactions with these conditions is a powerful way to understand the 

fundamental coupling of human and hydrologic systems. 

2. Human Decisions and Water Use  

One of the most important lessons of retrospective assessment of human-water interactions is that 

data and decision-making are not necessarily well linked [5]. The "correct" course of action is taken 

sometimes for the right reasons and sometimes for the wrong reasons. The recognition of imperfect 

decision making structures is a vital outcome of a synthesis of history and hydrologic data. For 

example, the construction of London‟s sewer system, while ultimately judged to be a triumphant 

course of action, arose in a complicated political and scientific environment. The original impetus for 

the sewer network was likely driven by overblown rhetoric and unfair criticism of urban institutions by 

individuals such as Edwin Chadwick, and relied on an entirely incorrect understanding of disease 

vector biology [6,7]. While there are heroes that emerge from the story, scientists who analyzed the 
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data and made correct determinations (e.g., John Snow), the methodology and influence attributed to 

them has become apocryphal [6,8,9]. When first applied, the retrospectively “right” decision, isolating 

humans from their waste, was undermined by the fact that dramatically improving hydrologic 

connectivity between London privy pots and the Thames introduced much more sewage to drinking 

water sources. Subsequently, the Big Stink in 1858 and a series of deadly cholera outbreaks that killed 

thousands resulted from this increase in hydrologic connectivity. However, these continued public 

health problems led to construction of the intercepting sewers and the concepts of the modern sewer 

network in the early 1860s. The construction of the sewer network was a happy accident: conceived 

under incomplete information, but fortunately arriving at an appropriate solution given the underlying 

processes. The construction of the London sewer provides many lessons for those who believe there is 

a vital role for careful, empirical science in all decision making frameworks. The most important 

lesson is that integrating science into decision process is not straightforward. An understanding and 

evaluation of history can provide guidance on how to achieve such integrated decision frameworks. 

Disciplines concerned with decision making processes have long recognized the important role of 

unintended consequences in outcomes arising from application of the ultimate and undoubtedly 

imperfect decision [10]. However, while many advances in contemporary hydrology have begun as 

conceptual thought experiments, these thought experiments are not utilized enough to evaluate 

unintended consequences during the decision application phase, particularly in coupled human 

hydrologic systems. Some outcomes based on our science that are ultimately detrimental to both the 

human and hydrologic systems could be avoided with such thinking early on. While early U.S. leaders 

farmed the Piedmont, they failed to recognize and recall the siltation of harbors following agricultural 

clearance and developed settlement strategies that led to similar problems in the neighboring 

Mississippi River system several centuries later. Happ was establishing some of our first monumented 

stream channel cross-sections across the nation in response to legacy valley sediment [11] at roughly 

the same time that Gottschalk was recognizing that many early colonial Chesapeake ports had been 

silted in by the time of the Revolution [12]. The fundamental questions for hydrologists are; the 

dredging of eastern ports was conducted at a considerable expense, so why were river ports along the 

Mississippi River being silted in by the 1930s? Why did the Soil Conservation Service arise in 1935 

only after multiple major, regional erosive events in the United States? Settlers of these areas, 

particularly those in the Northwest Territories (i.e., Ohio to Minnesota), had experience with forest 

clearance and erosion, but could not make the connection to the next region. Does this lagged response 

result from a failure to think like a basin, a tragedy of the commons, or simple ignorance of the history? 

Anticipating siltation in the Mississippi Basin would have required understanding of how to transfer 

knowledge gained from one system to application in another. Do we, as contemporary hydrologists, 

know when knowledge is transferrable between different systems? Waiting for an accumulation of 

future changes in water policy is not soon enough to develop adequate data sets to understand 

transferrable knowledge. Retrospective assessment is a primary and available tool for building 

knowledge and recognizing past opportunities lost. Without such assessment, we are simply ignoring 

relevant and vital information.  

Too often, our assumption is that most historical decisions about water will remain a mystery. And 

too often, that assumption remains unchecked, ignoring the available data of all stripes. This is 

particularly true in humid regions, likely as the hydrologic situation is an embarrassment of riches.  



Water 2011, 3                            

 

 

569 

Pre-eminent water historians in the U.S. often work in the arid west, as documentation of water and 

water shortages is rich in individual accounts and in governmental data collections [13]. This water 

scarcity is less prominent in the Northeast and therefore less represented in human archives. At the same 

time, historical evidence points to broad European knowledge and monitoring of climates and landscape 

for practical and societal purposes (e.g., agricultural [14], navigation [15], etc.). Indeed, Europeans were 

well on their way to monitoring key hydrologic variables by the time of the American Revolution [16], 

and these efforts have grown into the global leadership in hydrologic characterization from the United 

States Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), and 

others we rely on today. What, then, was the historical importance of water along the Eastern Seaboard? 

Extensive national hydrologic monitoring arose for a reason, be it for understanding drought, flooding, 

erosion, or transportation. However, hydrology as a discipline has not participated enough in the 

discussion of water‟s fundamental interactions with historical human systems. 

Ultimately, probing the historical role of water in societies allows insight into fixing contemporary 

water problems that we might reasonably call “hydrologic messes”. The Colorado Basin is probably 

the most famous example of such a mess in North America [17]. The Law of the River and the societal 

context driving Colorado River water apportionment were forged by decision makers raised under 

water use frameworks and humid climates common in the East. On top of this, the allocation of 

Colorado River water was negotiated during one of the wettest periods in the basin's history [18], 

leading to an over-allocation of water. During the subsequent periods of more "normal" rainfall, this 

over-allocation threatens the integrity of the economies built upon the water availability, even more so 

if forecasts of future drought intensification bear out [19]. Since this agreement grew out of a water 

management culture forged on the Eastern Seaboard, examination of colonial human behavior, 

particularly human response to uncertainty, may improve our understanding of how we might 

amicably fix this over-allocation. At the very least, such an examination will catalog scenarios of 

uncertainty and identify those scenarios that lead to decisions with particularly deleterious unintended 

consequences. Retrospective assessment is the only way to gather enough data to allow sophisticated 

examination of improvements in information and their ultimate impact on water management. 

3. The Past as a Management Target  

One of the more palpable conceptual hydrological models to arise out of investigations into the 

interactions between land use change and hydrology is the “urban stream syndrome” [20]. The model 

suggests that changes in storm hydrographs resulting from increases in impervious surfaces are the 

primary cause of a host of changes in the channel, changes that degrade habitat for in-stream biota and 

threaten near-stream infrastructure. Therefore, it follows that by reestablishing pre-urban or even  

pre-agricultural valley configurations in urban stream systems, we might remove some impacts to  

in-stream biota, particularly excessive nutrient loadings [21]. Stream restoration consumes a large 

portion of resources in a relatively limited resource pool, requiring careful work to maximize  

benefits [22]. However, we must carefully examine the assumptions underlying stream restoration 

projects, particularly those relying on historic conditions as information for guiding restoration targets. 

We must not only understand how things were, we also must understand how to accommodate how 

things have become. 
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Examination of the historic record, particularly in the Eastern U.S. Piedmont (where much of the 

work fundamental to the urban stream syndrome model was completed [23,24]) indicates that large 

parts of the observed geomorphic change occurred before “urbanization” began, driven predominantly 

by forest clearance and agriculture. The urban stream syndrome assumes that the acceleration of the 

hydrograph leads to incision and entrenchment of the stream channel. While this assumption is sound 

in terms of process, it is also easily checked. Indeed, an examination of a wide variety of classic works 

that rely on return surveys to evaluate channel changes show little evidence of incision following 

urbanization [25-27], and instead show, in general, entrenched channels that sometimes widen 

following the hardening of upland surfaces. If channels were incised before urbanization began, did 

newly urbanized areas simply occupy areas with impaired fluvial systems? In this case, restoration to 

colonial conditions to address urban stream problems is probably a mistake, as the underlying 

assumption is not borne out by the data on timing of incision. And further, the conditions arising from 

urban land cover changes likely remain. 

This leads to the essential question, at what point did streams incise? Certainly, in cases where  

low-head dams played a role in sediment storage [28,29], this incision begins with the breaching of 

dams whether during the malaria scares in the mid 1800s [30] or in the recent push to re-establish free 

flowing hydrologic systems [31,32]. However, the accumulation of floodplain sediment occurred 

throughout the Piedmont, even in areas without extraordinary dam density [33]. In these cases, 

common to the Piedmont, incision almost certainly began before urbanization. And ultimately, if we 

fix incision, will the system be fixed? It may boil down to other questions of emphasis and outcome. If 

streams were largely incised by the turn of the twentieth century, a decade before the emergence of the 

Haber-Bosch nitrogen fixing process and the subsequent transformation of the nitrogen cycle [34], 

were these stream channels “broken”? Or are they simply “broken” in terms of nutrient retention once 

excessive fertilization became part and parcel of our agricultural economy? Re-engineering of fluvial 

systems under the cover of “restoration” is a deliberate decoupling of language and reality. Most  

pre-colonial valley forms did not encounter nutrient loadings ubiquitous in contemporary systems. 

Relying on these forms to address such loadings, will likely cause unintended results. 

The impulse to fix systems by simply returning to “the way things were” grows from solid human 

experience. The strategy can work particularly well in small, simple systems, the same systems that 

humans are best able to comprehend. If we get too warm or too cold, we can often simply re-adjust the 

thermostat to a previous position and be comfortable again. However, there is little evidence that this 

repair strategy scales well. Anyone who has dealt with HVAC (Heating, Ventilating, and Air 

Conditioning) concerns during building renovations or shared a thermostat with an adjacent office 

recognizes the poor scaling of this strategy. Despite the lack of evidence that putting things “back” 

scales well, important regional hydrological management efforts are organized around the goal of 

putting things back. For example, the Chesapeake Bay Foundation bases its Chesapeake State of the 

Bay Scorecard on conditions believed to be present when John Smith first explored the Bay in the 

1600s [35]. If we are trying to put the Bay back to or near to what it was in 1600, we had better be 

certain that we understand what we really need to put back. Moreover, we actually need to understand 

how to engineer systems so that they are not simply “put back”, but also compensate for changes 

driven by radically different contemporary human population densities. Correct understanding and 

interpretation of boundary conditions are fundamental to effective decisions about hydrologic systems. 
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Retrospective assessment is the only way to characterize these conditions and the trajectories of the 

systems they drive. 

4. Confronting Models with Historical Data  

Hydrologic dynamics are non-stationary [36], evolving with landscape change, climate change, and 

human engineering [37]. Therefore, making predictions about future hydrologic dynamics requires full 

consideration of the trends in different hydrologic drivers. These dynamics are best characterized by 

examining a site‟s history. For example, restoration requires thinking that was absent during the 

ascendancy of process-based hydrology. The foundation of evidence used to understand basin response 

was collected during periods of relatively beaver-free landscapes. This is apparent in our still 

rudimentary understanding of the cumulative impact of multiple dams on water dynamics in 

hydrologic networks [38] and the fact that recognition of rerouting of water by dams is still an 

emerging concept in catchment hydrology [39]. This single and widespread eradication of beaver 

populations seems like an ideal case to examine catchment response to dam infrastructure removal. 

While the coupled historical data is admittedly not regular and quantified, we do have some 

observations that allow evaluation of a model‟s predictive ability. 

In some cases there is a rich documentation and distillation of this history. For example, Perley [40] 

chronicles a wide range of extreme weather events between 1600 and 1890 in New England. While 

extreme events are not necessarily the most important hydrologic drivers, the collected anecdotal 

information can be compared with modeled results. What kind of storm would be necessary to create a 

20-foot storm surge in Boston as is reported in 1635 [40]? Such a storm may be hyperbole, and a quick 

bit of modeling can probably answer that. If a storm producing such a surge occurred, how would the 

remainder of the New England coast have been affected? Can we use changes in sedimentation rates in 

this period, coupled with models of the storm to improve our calibration of sedimentary proxies for 

extreme events? The possible insights allowed by using the historical record to improve and refine our 

contemporary models, particularly those of extreme events, are important for not only understanding 

the past, but for predicting the future [41]. 

The task at hand is a synthesis of our contemporary, process-based observations of hydrologic 

systems and a confrontation of this understanding with available historic data. We know that 

deforestation changes the hydrograph and the material fluxes carried by these flows in individual 

watersheds [42]. However, the impact of these changes on a regional, one-time event, such as that 

following European colonization of North America, is not well understood (with the possible 

exception of sedimentation [43]). For example, European alteration to the landscape caused both 

increased flooding and the drying of small order streams [44]. These changes were likely results that 

Europeans were unaccustomed to, in some cases due to limited understanding of hydrology and in 

others as a result of experience gained in the contrasting European climate. A synthesis of these data, 

both primary and reconstructed from proxies, with simple mechanistic models may point to serious 

gaps in our understanding of both historic and contemporary hydrology. Consider, if we truncated soil 

horizons across the landscape, how different were rainfall-runoff response and riparian systems before 

European settlement? With the demise of the American chestnut (Castenea dentata), how different 

were soil moisture dynamics in the chestnut-free forest? If our models cannot accurately hindcast 
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conditions occurring following these changes, how much trust should we place in the forecasts these 

models provide? 

Finally, building process-based models of these periods may require the incorporation of models not 

commonly utilized in hydrology. Agent based models have had some success in predicting the 

complex behavior of human society [45]. Indeed, agent based models do well in predicting things like 

the location of pueblos in the Mesa Verde region of Colorado based largely on hydrologic inputs [46]. 

Therefore, rather than construct ten new gauging stations on the Colorado, we might be able to better 

understand how to fix the Law of the River using an agent based approach. Similarly, a model of 

detente using agent based simulation might shed light on ways to fix and avoid situations like that 

caused by New York City and its water treatment plant [47]. Ultimately, by beginning to rigorously 

examine pre-instrumental period hydrology, we may develop new tools necessary to address  

such problems. 

5. Conclusions  

Answers to the three questions posed at the beginning of this article require an approach that 

synthesizes historical human and biogeophysical information. They highlight the importance of 

conducting integrated environmental analysis in both contemporary and past time periods. For analysis 

of the U.S., for example, one can start in 1970 or 1492, and rigorous adherence to this challenging 

synthesis may lead to similar answers. Perhaps the most important reason for beginning with the distant 

past is that by starting in contemporary times and working back, the temptation to remain in the 

hyetograph and hydrograph would be too great. And while these graphs remain important, they are just 

graphs without the essential context of the accumulation of historical human activities that reside in 

organized, accessible formats [48,49]. While these rich synthetic data are available and relevant, too 

often, “history” is used pejoratively, to dismiss work we view as not close enough to our normative 

science as “natural science.” However, if we allow this tendency to creep, and dismiss history in general, 

our synthetic answers will not reflect our comprehensive experience with the hydrologic cycle. 
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