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We demonstrate a direct method for the calculation of the annual frequency
of exceedance for earthquake losses (or the probability distribution for annual
losses) to a portfolio. This method parallels the classic method of probabilistic
seismic hazard analysis for the calculation of the annual frequency of
exceedance for earthquake ground motions. The method assumes conditional
independence of the random component of ground motions and losses at
different sites for each earthquake, given magnitude, distance to the sites, and
so-called interevent epsilon. Examples show that the method is realizable, and
can take into account different loss functions and site conditions in the
portfolio. The main advantage of this method is that it does not require a
separate set of scenario earthquakes, as do Monte Carlo-based approaches,
but can be calculated directly from the inputs used for hazard maps.
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INTRODUCTION

Calculation of the annual frequency of exceedance of earthquake loss for a single
property is relatively straightforward. From the hazard curve, that is the annual fre-
quency of exceedance for earthquake ground motion, it is easy to obtain an annual prob-
ability density function (pdf) for ground motion (Algermissen and Perkins 1976). Haz-
ard curves for simplified site conditions are available for sites throughout the United
States from the National Seismic Hazard Mapping website (http://earthquake.usgs.gov/
research/hazmaps/), and also result from more detailed site-specific probabilistic seismic
hazard analyses (PSHA). This probability density can be integrated with a probabilistic
loss function for the property to obtain the annual probability density for loss, and thus
the annual frequency of exceedance for loss (e.g., Cao et al. 1999). Alternatively, this
calculation can be based on annual frequencies alone, converted to annual probability
density.

If we are interested in the loss to a portfolio of properties, we can sum the mean
annual loss for each of the properties to calculate the mean annual loss, that is, the ex-
pected loss, for the entire portfolio (e.g., FEMA 366, FEMA 2001). We cannot, however,
calculate the full distribution of annual losses to the portfolio directly from this infor-
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mation alone because in most realistic situations the losses are correlated.1 In this paper
we make progress toward solving this problem by considering the most well-understood,
and perhaps most significant, sources of this correlation. An essential element of under-
standing this correlation is to understand the nature of the variability of ground motion
given magnitude and distance, and to separate this variability into two parts, one part
related to variability within one earthquake (intra-event variability) and variability be-
tween earthquakes (interevent variability). This separation of the variability is not re-
quired in the calculation of the hazard curve, as it only depends on the total variability,
nor is it required, as discussed above, for the calculation of the mean loss. In the fol-
lowing, we show how a separation of the variability into these two components can be
used to calculate the full distribution of losses using a direct method that parallels the
classic method of PSHA and does not require a Monte Carlo simulation.

Generally, simulation-based portfolio loss modeling has consisted of simulating
earthquakes one by one, obtaining random components for the site ground-motion vari-
ability, interacting with a loss function, also using random components for the loss un-
certainty, and accumulating losses until some degree of stability is observed in the loss
distribution. Examples include Bazzurro and Luco (2007), Crowley and Bommer
(2006), and Park et al. (2007). (Sometimes sufficient stability is assumed, when a finite
“representative” set of scenario earthquakes has been used.) Instead, in the development
to follow, we accommodate the calculation to a process analogous to the seismic hazard
calculation, interacting with loss functions in order to obtain annual loss exceedance
curves.

ACCOUNTING FOR THE CORRELATION OF LOSSES

We can model earthquake losses as a random process made up of two constituent
random processes: the ground motion given an earthquake and the loss given a ground
motion. Obviously, the loss to a portfolio involves the losses to many different structures
located at different sites, commonly with different structural types and site conditions.
The loss to the portfolio can be viewed as the sum of the individual random variables
describing the loss to each property or structure in the portfolio. Inherently, earthquake
losses to nearby properties are correlated because of the similarity in ground motion ex-
perienced for a given earthquake. The essence of the direct method we propose is to
condition on the “interevent” portion of the ground-motion variability, such that the con-
ditional loss for an individual earthquake can be treated as the sum of independent ran-
dom variables.

1 The reader familiar with FEMA 366 (FEMA 2001) should note that the plot therein (Figure C-1) of the annual
frequency of exceedance versus the mean (or expected) annual loss for a set of uniform-hazard ground motion
maps (from the USGS) is not a plot of the exceedance probability for a specified portfolio loss. The FEMA 366
plot is simply a convenient depiction of the expected portfolio loss as a sum of the expected individual property
losses, whereas the exceedance probability for the portfolio loss must account for the correlations focused on

in this paper.
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LOSS GIVEN GROUND MOTION

Consider first the loss given a ground motion. Let us use the term “fractional loss” to
mean the cost to repair a structure, e.g., a single-family house or a bridge, divided by its
total value or replacement cost. Empirical studies of loss suggest that the fractional loss,
given a particular earthquake ground motion (“load”), can be characterized as a random
function of that load. Recent studies suggesting relations between fractional loss and
load include ATC-13 (ATC 1985), the HAZUS methodology (Kircher et al. 1997a and
b), Smyth et al. (2004), Rossetto and Elnashai (2003), CUREE (Porter et al. 2002), and
Wesson et al. (2004).

An important question for thought is “Given a ground motion, to what extent are the
losses to similar structures independent?” In other words, suppose we consider two ad-
jacent houses that can be reasonably assumed to experience the same ground motion;
will the loss in one be related to the loss in the other? One can imagine that the houses
might have any number of features in common: site condition, construction type, mate-
rials, builder, etc. We can consider each of these factors and any other that we can think
of and/or have data to estimate, as explanatory variables and include them in the mean of
the predictive function. The essential point is that once we have included all the ex-
planatory variables for which we have any data, then the remaining variability in loss
given a ground motion can be reasonably assumed to be independent. While in reality
there may be important explanatory variables that are not included in the predictive
function, it is difficult to estimate the resulting correlation, and here we assume that it is
negligible.

GROUND MOTION

Consider next the ground motion. Ground motions from earthquakes generally de-
crease with distance away from the earthquake and show some dependence on magni-
tude. The literature describes statistical relationships, commonly called attenuation re-
lationships, or ground motion prediction equations, that characterize the observations.
Generally for a given distance, magnitude and other explanatory variables, the observa-
tions of ground motion are observed to follow a lognormal distribution. That is, for a
given magnitude and distance, say, the attenuation relationships predict the mean of the
natural logarithm of the ground motion plus a random component that is distributed as a
normal distribution with zero mean and a standard deviation, �total, of the logarithms of
the ground motion.

It is commonly recognized that the ground motions from two earthquakes with the
same magnitude may vary systematically. From the point of view of estimating the dis-
tribution of earthquake losses to a portfolio, it is important to remember that the stan-
dard deviation, �total, is composed of two components. The first component, �intra, char-
acterizes the randomness within any individual earthquake, that is to say, the observed
variation in ground motion when the predicted value, given magnitude and distance, is
taken into account. The second component, �inter, describes the between-earthquake
variation in overall level of ground motion. Assuming independence between these two
components, the total standard deviation is the square root of the sum of the squares of
these two components.
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If the total standard deviation were composed only of �intra (i.e., �inter=0), then hold-
ing the source location, site locations and magnitude fixed, the mean ground motion for
the sites in a portfolio would be the same for all earthquakes. The importance of the
interevent variability, �inter, is that the mean ground motion across sites for one earth-
quake can be significantly higher or lower than the mean for all earthquakes leading to
correlated ground motions and losses for these earthquakes that will be significantly
higher or lower than the mean loss. This characteristic has a strong effect on the shape
(i.e., the tails) of the distribution of losses to a portfolio. It is convenient to capture this
interevent variability by defining a random variable for each earthquake, �inter, that has
the standard normal distribution. Then the interevent-variability can be described as
�inter�inter. Thus for an earthquake with �inter=0, the mean of the ground motions for this
earthquake would be the same as the mean for all earthquakes. For an earthquake with
�inter=1, the mean of the ground motions this earthquake would be one standard devia-
tion, or �inter, above the mean for all earthquakes; for �inter=−1, the mean for the earth-
quake would be one standard deviation, or �inter, below the mean for all earthquakes, and
so on.

So for an individual earthquake, the ground motion at one site is given by a function
of M, D, �inter, and a variation, �intra. Random effects affecting all sites and systematic
differences among earthquakes are captured in the interevent variability. As with struc-
tures, an important question for thought is “Given an earthquake of magnitude M with
interevent epsilon �inter and a ground motion for a site X at distance D from the earth-
quake, to what extent is the ground motion at site Y at the same distance similar?” In the
model, the ground motions differ by the random intra-event component at each site, de-
noted �intra, which can reasonably be assumed to be independent. One caveat applies,
however; for sites within a few kilometers of one another, local effects, such as focusing
or defocusing owing to basin topography, basin reverberation, etc., may reduce the dif-
ference in the random effect or, alternatively, create a common bias. This issue will be
discussed below.

The major development in the text to follow will deal with loss to a portfolio on an
earthquake-by-earthquake basis, starting with one earthquake, using �intra as the random
component. Because probabilistic loss to a portfolio involves taking into account all the
possible earthquakes and �inter as well, the development will then be generalized to the
issue of all the earthquakes.

METHOD

SEPARATING THE VARIABILITY IN GROUND MOTION

Consider the case of one earthquake of magnitude M at a fixed location, and a set of
assets at sites i, with values ai at distances Di from the source. Let the ground motions,
ui, at each of the sites be given by

log�ui� = f�Di,M� + �total�total �1�

where f�Di ,M�, the attenuation relationship, is the mean natural logarithm of the ground
motion as a function of distance and magnitude from the source, � is a random term
total
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that has the standard normal distribution with zero mean and standard deviation of one,
and �total is the standard deviation of the total variability in (the natural logarithm of)
ground motion (Boore et al. 1997, Abrahamson and Silva 1997). Other explanatory vari-
ables in addition to distance and magnitude, for example site condition and directivity,
can be included in the mean if appropriate attenuation relationships for describing the
influence of these variables on the mean are available. Below, we show an example that
includes site condition and style of faulting.

We can rewrite Equation 1 as

log�ui� = f�Di,M� + �intra�intra + �inter�inter �2�

where the random term, �total, can be thought of as composed of two components, �intra

and �inter, which are independent random variables with standard normal distributions,
and �intra and �inter are the intra- and interevent standard deviations of ground motion, as
described above. In hazard calculations the difference between the intra-event and inter-
event variability is commonly not an issue, and Equation 1 is appropriate with �total

= ��intra
2 +�inter

2 �1/2. For our purposes, the difference between the intra-event and inter-
event variability cannot be ignored. For any one earthquake, however, we will have a
particular value of �inter, and only the full range of the intra-event variability need be
considered. In essence, for one earthquake we can condition on �inter, in addition to M
and Di. Thus we can write the probability density function for ground motion for one
earthquake as

fu�u�Di,M,�inter� =
1

u�intra
�2�

e−1/2�log�u� − log�u0�/�intra�2
�3�

where log�u0�= f�Di ,M ,�inter� (Evans et al. 2000).

LOSS GIVEN GROUND MOTION

Next we consider the loss associated with this ground motion, using a loss (or vul-
nerability) function. The details of the vulnerability relation are not crucial to the argu-
ment developed below; in fact, any probabilistic form for loss given a ground motion
could be used. For convenience, here we assume a scalar continuous relation, but below
we address vector and discrete relations. We write the conditional probability density
function for fractional loss given a ground motion as fl�l �u�, where l is the loss fraction.
The probability density functions for the fractional losses to the individual assets (e.g.,
homes) within the portfolio are given as

f�li�Di,M,�inter� = �
0

�

fl�l�u�fu�u�Di,M,�inter�du �4�

Under the conditions described above, namely that we are conditioning the probabil-
ity of ground motion on a given magnitude, a set of distances and �inter, the resulting
ground motions and losses to the individual assets can be considered to be conditionally
independent random variables, for the reasons described in the preceding section (see
Pratt et al. 1995 or Schervish 1995 for a discussion of conditional independence).
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PROBABILITY OF LOSS TO THE PORTFOLIO

Let the dollar losses to the elements of the portfolio be li
$= liai, with corresponding

probability density functions, fli

$�li
$ �Di ,M ,�inter� obtained from Equation 4 by rescaling

the fractional loss according to the dollar value of each element, ai. Then the loss to the
portfolio, L, from this one earthquake is the sum of the dollar losses to the elements of
the portfolio:

L = �
i

li
$. �5�

The probability density function for the sum of independent random variables is equal to
the multiple convolution of the individual probability density functions (Freund 1962).
Since for a given set of distances Di, a particular magnitude M, and �inter, the li

$ are as-
sumed to be conditionally independent random variables, the conditional probability
density function for the loss to the portfolio for the one earthquake can be calculated as
the multiple convolution of the conditional probability density functions for the indi-
vidual losses

fL�L�M,�inter� = fl1

$ � . . . � fln

$ �6�

where the � symbol represents convolution. As will be discussed in more detail below,
for the purpose of computation, we can take advantage of the fact that the Fourier trans-
form of a multiple convolution is the product of the Fourier transforms of the functions
being convolved. We can use fast Fourier transforms (FFT) to calculate the Fourier trans-
forms of the probability densities of the loss for the individual assets and the inverse
transform of their product to obtain the conditional probability density function for the
loss to the portfolio.

We can then obtain the conditional probability for a loss to the portfolio greater than
a particular value, L0, for one earthquake by integrating Equation 6:

P�L � L0�M,�inter� = �
L0

�

fL�L�M,�inter�dL = 1 − �
0

L0

fL�L�M,�inter�dL �7�

MULTIPLE SOURCES, MAGNITUDES, AND �inter

With Equation 7 in hand, following the classical approach of PSHA, it is easy to
write an expression for the frequency of losses greater than L0, ��L�L0�, which inte-
grates or sums over multiple sources, events, magnitudes and �inter, weighting by the re-
spective frequency of occurrence as

��L � L0� = �
sources

�
Mmin

Mmax

gs�M��
�inter=−�

�

f�inter
��inter�P�L � L0�M,�inter�dMd�inter �8�

where gs�M� is the magnitude-frequency relation for the sth source, and f�inter
��inter� is

the probability density function for �inter. Several important comments need to be made
about Equation 8. First, even though we have written Equation 8 with a combination of
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summation and integral signs, in practice the expression is calculated as a sequence of
summations over bins. Second, whether we write Equation 8 with integrals or sums, be-
cause the expression is linear, we are free to change the order of integration or summa-
tion, and as will be shown in the examples it is commonly convenient to do so. Finally,
f�inter

��inter�, the probability density function for �inter, is just the standard normal
distribution.

This development follows the corresponding expressions for the frequency of ground
motions used in the calculation of hazard curves (Cornell 1968). Continuing this anal-
ogy with the estimation of ground motion hazard (Algermissen and Perkins 1976), we
can obtain an expression for the probability density function of annual loss to the port-
folio as

f�L� = F��L� = −
d��L � L0�

dL
e−��L�L0� �9�

METHOD OF CALCULATION

Although the explanation above has been given in terms of continuous variables, the
calculations are considerably easier if we replace the continuous probability density
functions by what are sometimes called “probability vectors,” (c.f., Wang 1998, Wesson
and Perkins 2001). These vectors simply contain as elements the discrete probabilities
that the random variable will assume a value within a finite number of discrete incre-
ments. From a computational point of view this approach is particularly desirable for
many reasons. First, the cumulative sum of the probability vector representing the prob-
ability density function is a vector representing the cumulative distribution function.
(Vectors representing probability density functions must sum to one.) Second, by repre-
senting the conditional probability density function for a particular value of the condi-
tioning variable as a vector, we can represent the conditional probability density function
for a set of discrete values of the conditioning value as a matrix. This leads to the third
reason, that by using this approach, the integral in Equation 4 can be reduced to a matrix
multiplication. Fourth, with a judicious selection of intervals, numerical difficulties in-
duced by the “spikey” nature of some probability density functions can be avoided. Fi-
nally, the convolution of the probability density functions can be very easily represented
by the calculation of the discrete Fourier transforms though the use of an FFT algorithm
and the multiplication of the transforms.

MATRIX FORMULATION

Briefly, for a series of ground motion levels, ui=u1 ,u2 , . . . ,un, the probability vector
corresponding to the probability density for ground motion can be written

fu = �F�u1�,F�u2� − F�u1�, . . . ,F�un� − F�un−1�� �10�

where F�u� is the cumulative distribution function for ground motion u corresponding to
Equation 2. Similarly, for a set of levels of fractional loss, li= l1 , l2 , . . . , lm, using Equa-
tion 3, we can write the matrix corresponding to the conditional probability density
function for loss as
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fl�u =	
P�l � l1�u1� P�l1 � l � l2�u1� ¯ P�lm−1 � l � lm�u1�
P�l � l1�u2� P�l1 � l � l2�u2� ¯ P�lm−1 � l � lm�u2�

] ] � ]

P�l � l1�un� P�l1 � l � l2�un� ¯ P�lm−1 � l � lm�u1�

 �11�

and the integral in Equation 4 can be written

fl = fufl�u �12�

Rescaling the arguments of the fl by the value of each asset as describe above, and writ-
ing the FFT of the resulting fl

$ as 	�fl
$�, then the conditional probability density function

for the loss to the portfolio of q properties for one earthquake (i.e., for a given magni-
tude, set of distances, and value of �inter) can be represented as

flP
$ = 	−1�	�fl1

$ �	�fl2
$ � . . . 	�flq

$ �� �13�

where the numerical subscripts denote the properties in the portfolio. The quantity cor-
responding to Equation 7, the exceedence probability for loss to the portfolio, is simply
given by the cumulative sum of the vector in Equation 13. From this point the calcula-
tion proceeds in parallel with the standard approach for probabilistic seismic hazard
analysis to calculate exceedance curves as in Equation 8. Note that the matrix represent-
ing the vulnerability relations in Equation 11 need only be calculated once (for each type
of structure).

For a given desired level of accuracy, the calculations can be accomplished effi-
ciently by calculating fl and fl�u at logarithmic increments. Unfortunately the FFT algo-
rithm requires a constant increment. Prior to calculating the FFT, at the same time that
the fractional losses are converted to dollar loss, they can be resampled using interpo-
lation at a constant increment.

In the case of problems involving a large number of sites, the vector for the loss to
the portfolio, L, has to involve a large number of (constant) loss increments since the
conditional probability distributions of losses for the whole portfolio as well as the in-
dividual structures have to be captured by the same vector. One way to achieve a desired
level of accuracy with reduced computational/memory requirements is to use Equation
13 to obtain the conditional probability density functions of losses for subsets of the
portfolio of structures rather than the whole portfolio. The conditional loss distributions
are then resampled and convolved with each other again using Equation 13 to obtain the
same function for the combined subsets of structures or ultimately for the total portfolio.
This procedure involves multiple inverse FFT operations while the length of loss vectors
used is smaller. The optimum choice for the length of the loss vectors or number of sub-
sets of portfolio structures depends on the size of the problem, the desired level of ac-
curacy, and computational requirements, i.e., memory limitations.
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INTEGRATION OVER �inter

The integration in Equation 8 over �inter simply uses the pdf for �inter, which is that of
the standard normal distribution. From a computational point of view we can replace the
integration in Equation 8 with a summation. The sum includes values of P�L
�L0 �M ,�inter� corresponding to intervals in a desired range in �inter, say from −n to +n,
where n is the desired maximum number of standard deviations from the mean. Each of
these conditional probabilities is weighted by the probability that �inter will fall within
that interval.

EXAMPLES

We illustrate the application of the methods described above by consideration of two
examples. In the first, we consider an extremely simple portfolio composed of two
houses, using different site conditions and two different continuous loss functions sub-
jected to one repeated “characteristic” earthquake with ground motions represented by
one attenuation relation. In the second example we consider a large portfolio with mul-
tiple discrete loss functions subjected to multiple sources and considering multiple at-
tenuation relations.

EXAMPLE 1—TWO HOUSES, ONE EARTHQUAKE

As a first example consider a portfolio composed of two houses, one small on a stiff
site and one large on a soft site. With the parameters shown in Table 1 we subject the
portfolio to a magnitude 6.9 earthquake. The loss function for the small house is condi-
tioned on peak ground acceleration (PGA), while that for the large house is conditioned
on 0.2 sec spectral acceleration (SA). We use the ground motion relations of Boore et al.
(1997) for these ground motion measures for the site condition at each site, but we use
the estimates of �intra and �inter given by Lee et al. (2000). (We apply their estimates for
0.3 sec SA to 0.2 sec SA.)

Table 1. Parameters of single-family homes in example

Value ($)
Small house

250,000
Large house
1,000,000

Epicentral distance, D (km) 10 0
Site condition, NEHRP
Site class and Vs

B �1070 m/sec� D �250 m/sec�

Loss function CUREE small house
(Porter et al., 2002)

CUREE large house
(Porter et al., 2002;

K.W. Porter, personal communication, 2007)
Ground motion parameter
required for loss function

PGA 0.2 sec spectral acceleration

�intra 0.476 0.535
�inter 0.301 0.323
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Figure 1 shows the probability density functions for the ground motions at each site.
Curves are shown assuming the appropriate values of �intra, but fixing �inter=−1,0 ,+1 to
also show the impact of the interevent variability.2 Obviously, the large house, located
closer to the epicenter and on a much softer site experiences considerably higher ground
motions. These probability densities correspond to Equations 3 and 10.

2 In this example we have chosen to use loss functions for each of the two houses that depend on different mea-
sures of the ground motion. While some information about how the interevent variability of these different
ground motion parameters is correlated exists (Baker and Cornell 2006), it is approximate, so here we will
assume that the interevent variability is perfectly correlated between the two variables. Partial correlation can
be dealt with in a manner similar to the treatment of vector descriptions of hazard, discussed in the Appendix.
Obviously if the same measure of ground motion is used for the loss function for each element of the portfolio,
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Figure 2. Conditional probability density functions (pdf’s) for loss given a ground motion for
a) the “small house” and b) the “large house” using loss functions derived from the CUREE
Wood Frame Project (Porter et al. 2002, Porter 2007).
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Figure 1. Probability density functions for ground motions given an earthquake a) at the site
occupied by a “small house” with a VS30 of 1070 m/sec located 10 km from the epicenter, and
b) at the site occupied by a “large house” with a VS30 of 250 m/sec and located at the epicenter.
as is the case in Example 2 to follow, this assumption is not required.
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Figure 4. a) Probability density functions for loss and b) cumulative probability for loss, given
an earthquake (with �inter=0) for each of the two houses and for the portfolio composed of
both. Results are shown both for the direct method of calculation described in this paper as well
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The method described above can be used with any loss function that can be cast in
the form of conditional probability density function for loss given a ground motion (or
vector of ground motions). In this example we use the relations given by Porter et al.
(2002) for wood frame housing. These relations express the fractional loss as a lognor-
mal distribution in which both the mean and the standard deviation are functions of the
ground motion parameter and can be expressed as

fl�l�u� = LN�µ�u�,��u�� �14�

where l is the loss fraction, LN is the lognormal distribution, and µ and � are the mean
and standard deviation, respectively, both functions of the ground motion measure, u.
Figure 2 shows the probability densities for loss given a ground motion, for the means of
the ground motions shown in Figure 1, as well as for ground motions one interevent
standard deviation above and below those means. Curves are plotted for both analytical
estimates of the pdf’s as well as from the numerical approximations using the matrix
technique described in the text. The results are indistinguishable. The levels of loss ex-
pected and their variability (in linear space) are very much larger for the “large house,”
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Figure 5. a) The annual frequency of exceedance for a loss greater than L for the portfolio of
two houses and �inter=0. Results for both the direct method and a Monte Carlo simulation are
shown. b) The same results as for (a), but transformed into a cumulative probability distribution
assuming that the events causing the losses are Poisson distributed in time.
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owing to the larger ground motion (with larger variability) at its site. These probability
densities correspond to fl�l �u� and Equation 11.

Figure 3 shows the probability densities for loss given three values of �inter, that is,
the probability densities including all the intra-event variability, but holding �inter fixed.
These probability densities correspond to Equations 4 and 12. As one would expect
given the results in Figures 1 and 2, the probabilities of larger losses are higher for the
“large house.”

Finally, Figure 4 shows the probability density and perhaps more familiar cumulative
probability for losses to each of the houses and for the portfolio of both. The probability
density for the portfolio corresponds to Equations 6 and 13 and cumulative probability
distribution for the portfolio correspond to Equation 7. To compare with the results of
our direct calculation, we also show the results of a Monte Carlo simulation which, as
can be seen, gives the same result.

To determine the annual distributions for loss we must multiply the probabilities of
loss given an earthquake, by the annual frequencies of earthquakes, and also to integrate
over the interevent variability. To address the first issue, consider that the magnitude 6.9
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Figure 6. Exceedance curves for loss to the portfolio of Example 1 for values of �inter (blue
curves) ranging from −6 to +6, that is, for six interevent standard deviations on both sides of
the mean ground motion. The sum with each component weighted by its corresponding prob-
ability is shown in red. This curve is directly analogous to the “hazard curve” for ground mo-
tion that results from a classical probabilistic seismic hazard analysis.
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earthquakes occur on average every 200 years. The resulting curves for the annual fre-
quency of exceedance for loss, and the cumulative probability (for �inter=0) are shown in
Figure 5.

Finally, we perform the integration over �inter. Figure 6 shows loss exceedance curves
for values of �inter ranging from −6 to +6, together with the sum weighted by the prob-
ability of each. This sum represents the completion of the calculation shown in Equation
8.

EXAMPLE 2—MANY STRUCTURES, SEVERAL EARTHQUAKES, DISCRETE
DAMAGE STATES

To show that the calculation of the annual loss distribution using the approach de-
scribed above is feasible for a large number of properties, we calculate the results for a
similar example involving 1,131 properties. We concentrate on bridges located within
the Memphis, TN metropolitan area, which consists of the nine counties around Mem-
phis, as shown in Figure 7. This region is under the threat of large magnitude damaging
events from the New Madrid seismic zone (NMSZ).

Figure 7. Map of the bridges (dots) within the Memphis Metropolitan Area. The locations of
the three pseudo-faults (dashed lines) used to model New Madrid seismic zone earthquakes are
also shown for reference.
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The locations, values, and relevant structural properties of the bridges used are ex-
tracted from the bridge inventory of HAZUS (FEMA 2003), while the site conditions are
obtained from Bauer et al. (2001). The bridge inventory has a total replacement value of
$1.553B. We use the seismic fragility functions developed by Nielson (2005) for eight
different bridge types commonly found in moderate seismic zones. The fragility func-
tions use PGA as the ground motion intensity parameter and provide the probability of
exceedance of four discrete damage states: slight, moderate, extensive, and complete.
We used fractional losses of 0.03, 0.08, 0.25, and 1.00, respectively, for the damage
states, based on HAZUS. As a result, the corresponding loss functions are conditional
probability mass rather than density functions for the loss given a ground motion, where
the loss can be equal to one of the five discrete values, the four fractional losses above,
plus zero for no damage. This difference does not change our conceptual methodology,
and since the method of calculation utilizes discretized probability vectors, nor does it
change the implementation.

To represent the potential earthquakes in the NMSZ, we used a total number of 12
events on the three faults used by Frankel et al. (2002) in developing the 2002 USGS’s
National Seismic Hazard Maps (see Figure 7). The potential earthquakes on these faults
were assigned a combined return period of 500 years. The central fault was given twice
the weight (or rate, when one interprets this uncertainty as aleatory) of each of the side
faults and the characteristic magnitudes used were M7.3, M7.5, M7.7, and M8.0 with
weights (or probabilities) of 0.15, 0.20, 0.50, and 0.15, respectively. Also, we use the five
alternative ground motion attenuation relations used by Frankel et al., with the weights
that they assign to them.

We compute the probabilistic annual losses for the bridge inventory using a log stan-
dard deviation of 0.75 for ground-motion variability. We assume that interevent variabil-
ity is half the intra-event variability, based on the findings of Lee et al. (2000), yielding
values of �inter=0.335 and �intra=0.671.

Figure 8a shows the loss exceedance curves calculated using the direct method for
each of the 12 considered events (dotted lines) and for one of the five ground motion
attenuation relations considered, specifically for Campbell (2003). Note that each of
these curves has already been integrated over �inter. The final loss exceedance curve for
this specific attenuation relation (solid line) is simply obtained by summing the rates of
exceedance of different losses (i.e., the loss exceedance curves) for each event. Note that
the rate of exceedance of zero loss is equal to the total rate of occurrence for the New
Madrid events, i.e., 1 /500 years.

The loss exceedance curves for each of the five attenuation relations considered (thin
solid lines) are plotted in Figure 8b together with their weighted mean (thick solid lines).
This demonstrates that epistemic uncertainties can be quantified in our direct method in
the same way that they are in probabilistic seismic hazard analysis. Also shown in the
figure are the results obtained from Monte Carlo simulations (dashed lines). The agree-
ment between the two sets of curves is excellent.
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DISCUSSION

The direct method described above has several desirable characteristics. First, the di-
rect method is, in effect, an efficient approach to sampling the high-loss tail of the dis-
tribution for aggregate loss. Second, the direct method follows directly from commonly
available descriptions of hazard and therefore does not require a separate event set. Cur-
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Figure 8. a) The loss exceedance curves for the portfolio of bridges calculated using the direct
method with ground motions obtained from the Campbell (2003) ground motion attenuation
relation. The dotted lines show the curves for individual earthquakes, while the solid line shows
the summed total. b) The loss exceedance curves obtained for the five ground motion attenua-
tion relations considered (thin lines) and their weighted mean (bold lines).
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rently if it is desired to estimate the loss distribution of a portfolio using a Monte Carlo
method that is consistent with a hazard estimate made using the classic approach for
probabilistic seismic hazard estimation, it is necessary to produce a set of events that
encapsulate the hazard model. The direct approach eliminates the need for such event
sets.

Using this direct approach it is possible to calculate the loss distribution for a port-
folio using a wide variety of hazard models. We show in the Appendix how it can be
extended to multi-parameter, vector-based models. The approach can take into account
variations in site conditions and other propagation and source effects for which attenu-
ation relations and site data (Wills et al. 2000, for California) are available. Finally the
approach can take advantage of a wide variety of loss functions—indeed, any that can be
cast in terms of a conditional probability density function for loss given ground motion.

The only shortcomings apparent at present are the difficulties of incorporating the
short wavelength spatial correlation in ground motion that has been documented in some
cases (e.g., Evans and Baker 2006) and any correlation in the losses for a given ground
motion. Conceivably these correlations could be incorporated in a manner that is analo-
gous to the way in which our direct method already accounts for the correlation in
ground motion for sites experiencing the same earthquakes, but this is a topic of future
work. In the meantime one can employ Monte Carlo approaches to incorporate the ad-
ditional correlations (e.g., Bazzurro and Luco 2007).

We remind the reader also that the development depending on M and D only is just
a convenience. Many factors affect strong ground motion; these include site condition
and style of faulting, which in fact were accounted for in the examples of this paper, as
well as directivity, basin effects, and other factors. Work is currently underway to im-
prove strong motion attenuation relationships to take into account these factors, for ex-
ample, by the Next Generation Attenuation (NGA) project. For simplicity, in this paper
we use the form of the attenuation relationship given in Equations 1 and 2, but this sim-
plicity is not central to the approach described here. What is central is that for the fore-
seeable future strong ground motion will be characterized by a combination of physi-
cally based deterministic components, and inter- and intra-event stochastic components,
where the interevent component results in the correlation considered in this paper. Physi-
cal understanding of ground motion will improve, allowing the inclusion of factors in
attenuation relationships that would otherwise induce variability and correlation, but
some random variability and correlation will likely remain. As these more sophisticated
attenuation relationships become available, they can be substituted for the simple rela-
tionship in Equations 1 and 2.

CONCLUSIONS

A direct approach to the estimation of the complete probability distribution for
earthquake losses to a portfolio is feasible and offers significant advantages. The prin-
cipal advantages are that it closely parallels the classic approach for the probabilistic
seismic hazard and does not require a separate set of events constructed to be an equiva-
lent description of the hazard.
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APPENDIX: VECTOR DESCRIPTION OF HAZARD

The method described above has assumed a loss dependent on a scalar ground mo-
tion. Hazard is beginning to be described by a vector of ground motion parameters (or
intensity measures) such as 0.2 second and 1.0 second spectral acceleration, rather than
one single parameter (Bazzurro and Cornell 2002, Baker and Cornell 2005). For a two-
parameter case, the probability density function for the logarithms of the ground motion
parameters can be described as a bivariate normal distribution with a correlation coef-
ficient 
, representing the correlation among the random components of the logs of the
two ground motion parameters (Baker and Cornell 2006). An expression of this type
would replace Equation 2 above. Similarly, the integral for the probability density func-
tion for loss in Equation 4 would be rewritten as

f�li�Di,M,�intera
,�interb

� = �
0

� �
0

�

fl�l�ua,ub�fua,ub
�ua,ub�Di,M,�intera

,�interb
�duadub

�A1�

where ua and ub are the two ground motion parameters. The condition and probability
density function for loss and the probability density function for ground motion are now
multivariate functions.

Starting with a vector description of hazard it is still possible to obtain a relation of
the form of Equation 12. Although the description of the hazard is now a two-
dimensional surface rather than a one-dimensional curve, a matrix analogous to the
probability density function can be obtained using the approach described by Wesson
and Perkins (2000). This involves calculating the cumulative distribution function for the
bivariate normal distribution (Hull 1997), and then using an operator for mixed partial
differentiation (Abramowitz and Stegun 1964). Then the rows of the matrix can be
strung end to end to obtain a single vector of the form of Equation 10. Similarly the
matrix analogous to the conditional probability density function of loss given the ground
motion must be reformatted.
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