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S U M M A R Y
We utilize two-and-three-quarter years of vertical-component recordings made by the Trans-
portable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic
shear wave velocity structure in the upper 200 km of the western United States. Single-taper
spectral estimation is used to compile measurements of complex spectral amplitudes from
44 317 seismograms generated by 123 teleseismic events. In the first step employed to deter-
mine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method,
which is simpler and more robust than scattering-based methods (e.g. multi-plane surface
wave tomography). The TA is effectively implemented as a large number of local arrays by
defining a horizontal Gaussian smoothing distance that weights observations near a given
target point. The complex spectral-amplitude measurements are interpreted with the spherical
Helmholtz equation using local observations about a succession of target points, resulting in
Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps
depend on the form of local fits to the Helmholtz equation, which generally involve the non-
plane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to
derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior
body-wave and surface-wave studies and reveal new structures, including a deep (>100 km
deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley
to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of
the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly
correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This
suggests that shallow mantle structure provides the heat source for associated magmatism, as
well as thinning of the thermal lithosphere, leading to relatively high stress concentration. Our
images also confirm the presence of high-velocity mantle at �100 km depth beneath areas of
suspected mantle delamination (southern Sierra Nevada; Grande Ronde uplift), low velocity
mantle underlying active rift zones, and high velocity mantle associated with the subducting
Juan de Fuca plate. Structure established during the Proterozoic appears to exert a lasting
influence on subsequent volcanism and tectonism up to the Present.

Key words: Tomography; Surface waves and free oscillations; Seismic tomography;
North America.

1 I N T RO D U C T I O N

The Transportable Array (TA) component of Earthscope’s USAr-
ray (Fig. 1) by the end of this study period (mid 2008) covered
all of western United States with an interstation spacing of about
70km. Only 3 years since its inception, the TA has already yielded
significantly higher quality images than previously published of
seismic structure of the western United States using body waves

(e.g. Burdick et al. 2008; Roth et al. 2008; Sigloch et al. 2008)
and surface waves (e.g. Yang & Ritzwoller 2008; Yang et al. 2008;
Pollitz 2008).

These surface wave studies have used very similar approaches,
all of which are closely related to the ‘non-plane-wave’ tomographic
method developed by Friederich & Wielandt (1995). Assuming that
a single mode branch (e.g. the fundamental mode) has been iso-
lated, this method posits that observed surface wavefields may be
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Figure 1. Distribution of broad-band stations of the TA used in this study.

represented as the sum of an ‘incident’ wavefield propagating on
a laterally homogeneous reference structure plus a scattered wave-
field produced by interaction of the full wavefield with laterally het-
eogeneous structure. Combinations of plane waves (more strictly,
spherical waves on a spherical membrane) are used for the inci-
dent wavefields, and surface wave scattering theory (Snieder 1986;
Romanowicz 1987; Pollitz 1999; Friederich 1999; Zhou et al. 2004)
is used for the scattered wavefields. The implementations of this ap-
proach (Friederich 1998; Pollitz 1999, 2008; Yang et al. 2008) and
the related ‘two-plane wave’ approach (Forsyth et al. 1998; Forsyth
& Li 2005; Yang & Forsyth 2006; Yang & Ritzwoller 2008) indicate
that there are considerable trade-offs between the roughness of the
incident wavefields and the phase-velocity structure embodied in
the scattered wavefields. Theoretically, all observed surface waves
could be modelled as a superposition of a large number of plane
waves propagating on a laterally homogeneous structure (Wielandt
1993; Friederich & Wielandt 1995), and the level of admissible
laterally heterogeneous structure thus depends considerably on the
parameterization of the incident wavefields.

The purpose of this study is to update the data set of Pollitz (2008)
to include data collected since October, 2007—more than doubling
the number of observations and increasing the frequency range, to
revise the method of data analysis and to implement a more direct
and simpler method for determining seismic surface-wave phase-
velocity distributions. These methods are applied to a large data set
of fundamental-mode Rayleigh wave spectra observed by the TA.

2 DATA S E T

We use 44,317 vertical-component seismograms from 123 teleseis-
mic events of magnitude ≥6.3 which occurred from April 2006 to
January 2009. The portions of the seismograms corresponding to
a group velocity window from 2.9 to 4.3 km s−1 are isolated, and
complex spectral amplitudes measured using a single taper method
described later. Spectrograms are used to identify the Rayleigh wave
dispersion and determine the frequency-dependent group velocity
at which complex spectral amplitudes are estimated.

Let U ( f ) be frequency-dependent group velocity averaged over
the teleseismic propagation path. A single taper spectral estima-
tion (Warren et al. 2008) is used to obtain Rayleigh wave disper-
sion. Examples of the spectrograms are shown in Fig. 2. These
were determined by application of a suitable taper w(t) to each
record, determination of frequency-dependent group arrival time
tgroup(ω) = �/U ( f ), where � is epicentral distance, and estima-
tion of the complex spectral amplitudes for vertical displacement. If
the taper is highly bandlimited, then at angular frequency ω = 2π f
this is given by (e.g. Pollitz 1999)

u(ω) = 1

R(ω)

F[u(t)w(t)](ω)

w(tgroup)
(1)

where u(t) is the observed seismogram,

F[x(t)](ω) =
∫ ∞

0
x(t) exp(−iωt) dt (2)
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Surface wave tomography in the western US 1155

Figure 2. Vertical-component seismograms and associated spectrograms from seven TA receivers (inset) which recorded the 31 January 2007 event of
magnitude 6.5 in the southwest Pacific (event #3 in Pollitz 2008). For a given spectrogram, symbols ∗ indicate the group velocity U ( f ) at which spectral
amplitude at frequency f is maximum, and the superimposed grey curves are a cubic-spline fit to U ( f ) with a break point at fixed frequency 0.034 Hz.

is the Fourier transform and R(ω) denotes instrument response.
The choice of taper is based on consideration of resolution in

frequency f versus resolution in time or, equivalently, group velocity
U . Sufficient resolution in both are needed to isolate the fundamental
mode and determine group arrival times accurately. For symmetric
tapers centered on the group arrival time, Wielandt & Schenk (1983)
show that the bias in measured spectral amplitude and phase is
related to the several quantities: the slope of the group delay versus
f curve, the slope and curvature of the amplitude versus f curve,
the position of the center of the time window, and the width of the
taper, which controls the amount of spectral leakage. We find that
spectral leakage is a potentially serious at f >∼ 0.04 Hz, where the
slope of the U versus f curve is generally steep, and resolution in
time is important at f < 0.015 Hz to avoid contamination with
higher mode energy. A single taper constructed from a collection of
Slepian eigentapers may be used for this purpose (Park et al. 1987;
Pollitz 1999, 2008). However, it is not straightforward to control the

resolution in time of such a taper, for example the example taper
shown in Fig. 3 of Pollitz (2008), which has considerable temporal
sidelobes. Here we employ a symmetric taper centered at the group
arrival time, choosing the Hann taper for this purpose. The taper is
tailored for the frequency being measured and is of the form

w(t)| f =
{

cos
[

1
2

(t−tgroup)
T ′

π

2

]
(|t − tgroup| < 2T ′

= 0 (|t − tgroup| ≥ 2T ′
(3)

where

T ′ =

⎧⎪⎨
⎪⎩

(
�

�0

)1/2
1
f ( f < f0)(

�

�0

)1/2
1
f

[
f
f0

]γ

( f ≥ f0)
(4)

Here �0 and f0 are a reference epicentral distance and reference
frequency, respectively. The factor

√
(�/�0) follows from eq. (13)

of Wielandt & Schenk (1983), which dictates that the window width

GJI, 180, 1153–1169

Journal compilation C© 2010 RAS
No claim to original US government works



1156 F. F. Pollitz and J. A. Snoke

Figure 2. (Continued.)

should be proportional to the square root of the group delay time,
which is proportional to �. Because group delay time equals �/U ,
Wielandt and Schenk’s eq. (13) further indicates that T ′ should vary
with frequency as

√|dU ( f )/d f | when this quantity is large. The
factor ( f/ f0)γ with constant γ is meant to mimick this frequency
dependence, that is to capture the broadness of group arrivals at
relatively high f where U ( f ) generally decreases rapidly with f .

We find that �0 = 90◦, f0 = 0.025 Hz, and γ = 2 are practi-
cal choices that yield reasonable resolution in both frequency and
group velocity. At the reference distance � = �0, the half-width
of the taper is two periods at period ≥40 s, and the half-width is
80( f/ f0)γ−1s at all periods <40 s. This taper accommodates the
desired resolution in time (or group velocity) at relatively long pe-
riod and resolution in frequency at relatively short period. The ratio
of taper width to period increases as f γ for f > f0, which may
be helpful for capturing a wider range of scattered group arrivals
expected at higher frequency.

The spectrograms calculated according to the earlier prescription
have been checked against those calculated with the FTAN algo-
rithm (e.g. Dziewonski et al. 1969; Levshin et al. 1989; Nyman
& Landisman 1977), which employs narrow-band Gaussian filters.

For both synthetic and actual data, the two algorithms agree with
one another very closely.

Figs 4 and 5 show examples of application of this procedure to
synthetic seismograms from two events at epicentral distances of
85.5◦ and 52.5◦, respectively. It establishes that the Rayleigh wave
dispersion is reasonably accurately estimated—and the frequency-
dependent amplitude and phase are estimated with little bias-using
γ = 2. Phase bias of up to 0.3 radians amounts to several parts
in 104 error in average wavenumber along the teleseismic propaga-
tion path. If such errors without correlation existed at two closely
spaced stations, the resultant error in estimated wavenumber be-
tween the stations would be much larger. However, it is expected
that the systematic bias should be similar at closely located sites
where the factors contributing to the bias are similar (e.g. those
summarized in eq. 11 of Wielandt & Schenk 1983). Small jumps
in the phase response are due to imperfect centering of the win-
dow, arising from an estimated group velocity that differs from the
theoretical group velocity. A phase error arises from any imperfect
centering (eq. 14 of Wielandt & Schenk 1983), and the jumps arise
because group velocity is quantized in units of 0.007 km s−1 in these
examples.
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Surface wave tomography in the western US 1157

Figure 3. Spectrograms at MONP and HOPS from their recordings of the 2007 January 31 event. Different spectrograms result from use of a single taper
prescribed by either the Hann taper (A and B) (this method) or constructed with a linear combination of eigentapers (C and D) (Pollitz 2008). The superimposed
grey curves are as in Fig. 2.

Figure 4. (Left) Synthetic vertical-component seismogram and associated spectrogram at MONP on the PREM model (Dziewonski & Anderson 1981) for
a M6.5 event on 2007 January 31 (the event discussed in Fig. 2). The epicentral distance to MONP is 85.5◦. Symbols * indicate the group velocity U ( f ) at
which spectral amplitude at frequency f is maximum, and the superimposed grey curve is the theoretical group velocity. γ = 2 has been used when employing
eq. (4). (Right) Frequency-dependent spectral amplitude of u(ω) (eq. 1) estimated on the synthetic seismogram, and the difference between the phase of u(ω)
using γ = 2 and the theoretical phase. Amplitude curves are shown for various values of γ , and the grey curve indicates the theoretical amplitude.

Using trial values of U from 2.9 to 4.3 km s−1, u(ω) of the fun-
damental mode is taken at that group velocity U = Û ( f ) for which
|u(ω)| is maximized (“*” symbols in the figures). A smooth polyno-
mial fit to the dispersion curve Ū ( f ) is fit to the set of Û ( f ) (curves

in Fig. 2). Variations expected for first-arriving fundamental modes
are well captured with a piecewise cubic spline fit (Lawson &
Hanson 1974) of the observed dispersion with a break point at
0.034Hz. For a given event, a ‘summary’ group velocity curve is
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1158 F. F. Pollitz and J. A. Snoke

Figure 5. (Left) Synthetic vertical-component seismogram and associated spectrogram at MONP on the PREM model for a M6.4 event on 2007 February 24.
The epicentral distance to MONP is 52.5◦. See Fig. 4 for additional explanation.

defined as the average of the Ū ( f ) curves obtained for individual
recordings of that event.

The use of the Hann taper generally yields simpler spectrograms
than those produced by the eigentaper method of Pollitz (2008).
The single taper used in the latter method is a linear combination
of Slepian eigentapers and, at a target group arrival time, invari-
ably has temporal sidelobes with secondary local maxima typically
hundreds of seconds removed from the target group arrival time.
Comparison of spectrograms produced by the two methods (Fig. 3)
reveals artefacts in spectral amplitude using the eigentaper method.
These appear as sidelobes around the main dispersion curve and
result from the sampling of the dominant group energy by temporal
sidelobes of the taper. Although the single taper constructed from
the eigentapers carries the advantage of less spectral leakage than
the employed Hann taper, we prefer to use the Hann taper in our
analysis because of its better resolution in time and hence group
velocity.

The measurements of displacement spectra furnish estimates of
the Rayleigh wave potential �̃, which is proportional to u(ω). Fol-
lowing Pollitz (1999), quality criteria are applied to edit the set
{�̃(ω; ri )} for a collection of receivers {ri }. For a given seismo-
gram and target frequency, these are based on the consistency of
the record’s Ū ( f ) with the event’s summary group velocity curve,
as well as the variance of the record’s Û ( f ) − Ū ( f ) within a range
of f about the target frequency. These criteria are designed to check
that the same seismic phase is consistently identified from record
to record and that the fundamental mode Rayleigh wave is of suffi-
ciently high amplitude (e.g. above the noise level) and isolated from
higher modes. At a given frequency, sources for which less than
60 percent of available measurements are retained are eliminated.
As a result of applying the quality criteria, the set of acceptable
sources varies according to frequency (Fig. 6), and the set of seis-

mic stations that yield acceptable observations varies according to
the source and frequency.

3 D E T E R M I NAT I O N O F
P H A S E - V E L O C I T Y D I S T R I B U T I O N

On a laterally homogenous structure, the surface wavefield of an
isolated mode branch satisfies a spherical Helmholtz equation with
a constant phase velocity (e.g. Tromp & Dahlen 1993). In a r −θ−φ

spherical coordinate system, using r to represent colatitude θ and
longitude φ, at fixed angular frequency ω this equation is

c2∇2� + ω2� = 0 (5)

where ∇ is the surface gradient operator, c(ω) is a laterally homo-
geneous phase velocity and �(ω; r) is the Rayleigh wave potential.
For a single mode branch (assumed here to be the fundamental
mode branch), � equals the spectrum of the vertical velocity mul-
tiplied by the vertical eigenfunction. For a single mode branch,
eq. (5) is also valid for a laterally heterogeneous phase-velocity dis-
tribution c(ω, r) provided that it is characterized by smooth lateral
perturbations (Tromp & Dahlen 1993; Friederich et al. 2000). For
rougher lateral perturbations, eq. (5) with laterally heterogeneous
c is also valid for surface wave propagation through an acoustic
medium (Wielandt 1993), which involves only isotropic scatter-
ing interactions. The isotropic scattering approximation is valid if
the azimuthal distribution of sources about the study area is suffi-
ciently diverse to average out non-isotropic scattering interactions
(e.g. Alsina et al. 1996; Friederich 1998).

Numerical experiments by Friederich et al. (2000) suggest that
the spherical Helmholtz equation with laterally heterogeneous phase
velocity is valid under the more liberal condition that the receiver
network be dense enough to account for non-plane-wave effects
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Surface wave tomography in the western US 1159

Figure 6. Distribution of teleseismic sources used in the inversion for phase-
velocity structure, as a function of period. The distributions vary from period
to period because of selection criteria applied to the frequency-dependent
measurements of complex spectral amplitudes (Pollitz 1999). Superimposed
are the minor arc paths to the TA.

(i.e. interference among several plane waves propagating with the
same phase velocity Wielandt 1993). In this situation, the network
samples the surface wavefield sufficiently to resolve lateral am-
plitude variations and hence their contribution to ‘dynamic’ phase
velocity, thereby permitting the retrieval of structural phase velocity.

The validity of the spherical Helmholtz equation can be justi-
fied from scattering theory if applied to a relatively small area of
dimension of roughly one wavelength or less. Within this area, scat-
tering effects from local structure are implicity accounted for by
solving eq. (5) with laterally homogeneous c representative of the
area, and scattering from structure external to this area generally
produces complicated incident wavefields (composed of numerous
interfering plane waves) which nonetheless propagate in the target
area according to eq. (5). To make these statements more precise,
we assume that a target point r0 is surrounded by a small area A that
contains a number of receivers, and let the reference Earth structure
and actual Earth structure be denoted by m0 and m, respectively.
For a target mode branch α, surface wave scattering theory relates
the Rayleigh wave potential to a spherical Earth structure via an
integral equation of the form (Snieder 1986; Romanowicz 1987;
Pollitz 1999; Friederich 1999; Zhou et al. 2004)

�α(r) = �α
0 (r, r′) +

∫ ∑
α′

K αα′
(r, r′)�α′

(r′) G(r, r′; k0) d2r′ (6)

where �α
0 is the potential on m0, k0 is the wavenumber of mode

branch α on m0, the K αα′
are differential operators which prescribe

how an incident wavefield �α′
interacts with a spherical structure

m − m0 to produce a scattered wavefield on mode branch α, and G
satisfies

∇2G + k2
0 G = δ(r, r′) (7)

where δ(r, r′) is the Dirac δ-function on a spherical membrane. The
integral in eq. (6) may be split into two parts:

�α(r) = �α
0 (r, r′) +

[∫
r′∈A

+
∫

r′ /∈A

]

×
∑
α′

K αα′
(r, r′)�α′

(r′)G(r, r′; k0) d2r′.
(8)

If A is sufficiently small and m0 is the laterally averaged structure
over A, then the first integral is relatively small. For r ∈ A, the
second integral (including all converted higher modes in the α′-
summation) satisfies eq. (5) with constant c = ω/k0, as does the
leading term �α

0 . Thus eq. (5) forms the basis for estimating the con-
stant phase velocity c(ω) in the vicinity of a target point r0, which
may be interpreted as the local phase velocity (e.g. Romanowicz
1987) and related to radial integrals of the local 3-D seismic struc-
ture. The contributions of the first integral in eq. (8) as well as
arriving higher mode energy are considered sources of noise that
diminish in importance with an increasing number of observations.
This approach, here termed ‘local non-plane surface-wave tomog-
raphy’, essentially takes advantage of the aperture and density of
the TA to constrain local phase velocity.

In detail, this method is applied to observations of Rayleigh wave
potential �̃(n)(ω, ri ) for a collection of seismic sources with index n
and a set of receivers with index i. For a target point r0 we construct
a solution to eq. (5) using the squared misfit of �(n) to �̃(n) weighted
by a Gaussian exponential which effectively restricts consideration
to observations at only those receivers ri within a limited distance
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1160 F. F. Pollitz and J. A. Snoke

from r0. We minimize a function of the form

χ 2(r0; c(ω)) =
N∑

n=1

∑
i∈Event#n

∣∣�̃(n)(ω, ri ) − �(n)(ω, ri ; c(ω))
∣∣2

× exp

(
−1

2

|r0 − ri |2
d2

)
(9)

where the argument c(ω) is added to the model function �(n) to
emphasize that it satisfies eq. (5) with that phase velocity; d is a
Gaussian smoothing distance.

Admissible forms of � are any superposition of plane waves
propagating with constant wavenumber k = ω/c(ω), for example
the waves Wl given in eq. (9) of Pollitz (2008) and shown in sup-
plementary fig. S3 of (Pollitz 2008). A practical form of � is the
truncated expansion

�(n)(ω, r; c(ω)) ≡ a(n)
−1W−1(ω, r; c(ω)) +

lmax∑
l=0

a(n)
l Wl (ω, r; c(ω))

W−1 = Q(1)
(k−1/2)0(cos θ )

Wl =
∫ {

hl (μL) exp

[
− (μL)2

2

]}
[

Q(1)
(k−1/2)μ(cos θ ) exp(iμφ)

]
(−k)−μ exp

(
iμ

π

2

)
dμ (10)

where the Q(1)
(k−1/2)μ(cos θ ) exp(iμφ) are travelling-wave Legendre

functions (Appendix B of Dahlen & Tromp (1998)) with θ and φ

denoting the source–receiver distance and azimuth, hl is a Hermite
polynomial of degree l (Abramowitz & Stegun 1972), L is a scale
factor and the al are complex constants. This is eq. (9) of Pollitz
(2008) with the additions of the source index n and c(ω) in the
arguments of the wavefields. The W−1 term represents (the spherical
equivalent of) a single plane wave arriving directly from the source
backazimuth. Each higher Wl term represents a superposition of
plane waves arriving from a continuum of source backazimuths
(with backazimuth equal to sin−1(μ/K0)), with a weighting function
that is a smoothly varying function of backazimuth.

With this parameterization of �(n), c(ω) at the target point r0 is
determined in two steps. First, χ 2(r0; c(ω)) is minimized by solving
N systems of simultaneous equations, one system for each source
consisting of either L = 1 or L = lmax + 2 equations, depending
on whether the second summation of eq. (10) is included in the
expansion of �(n):

∂χ 2

∂a(n)
l

= 0 (l = −1, 0, . . . , L − 2). (11)

Second, a grid search in c(ω) is performed to identify that c for
which χ 2 achieves a global minimum. This procedure is repeated
at a dense set of target points r0 within the TA network.

The choice of Gaussian smoothing distance d to be used in eq. (9)
depends chiefly on two considerations—the interstation distance
and the wavelength at a given period. A typical interstation distance
is 70km, and wavelength λ increases as a function of period from
about 63 km at 18 s to 500km at 125 s period. A value d = 50km for
period ≤ 50s and gradually increasing d at longer period yields rea-
sonable results. For a given epicentral distance, the horizontal scale
of the Fresnel zones and associated sensitivity kernels varies with
wavelength as ∼ √

λ (Wang & Dahlen 1995; Nolet & Dahlen 2000).
With sufficient sampling of the wavefield around the target point,
observations of the surface wavefield will sample roughly the same
average structure as a function of period provided that the Gaussian
smoothing parameter varies as

√
λ. From these considerations, we

choose

d =
{

50 km T ≤ 50 sec

50
√

λ

λ0
km T > 50 sec

(12)

where λ0 is the wavelength at T = 50 s.
We find that lmax = 1 in eq. (10), consisting of one plane wave

term (the W−1 term) and two non-plane-wave terms (the W0 and W1

terms), is sufficient to capture incident wave complexity within the
vicinity of a typical target point and that there is sufficient sampling
of the wavefield at any target point to estimate the 6 parameters
which define �(n) for a given event. There are usually five to six TA
stations within 120 km of a target point, each of which contributes a
complex spectral amplitude measurement with a significant weight,
hence effectively 10–12 observations.

This approach to estimating phase velocity involves fitting a spa-
tial function (i.e. eq. 10) to the frequency-transformed seismic sig-
nal. This differs from the method of Cara (1978), which involves
calculating an array response function using a joint frequency and
spatial transform. The two approaches will closely agree if the lo-
cally incident signal behaves as a plane wave for each frequency
component. The fitting method used in our study permits a natu-
ral extension to the case of locally incident non-plane waves. Both
methods permit the estimation of phase-velocity variations across
the array.

To the extent that general solutions of eq. (5) involve curved
wavefronts, the solutions given by eq. (10) are closely related to the
eikonal tomography (e.g. Lin et al. 2009) method. The solutions
given by eq. (10) contain both phase and amplitude information,
both of which are used in fitting complex amplitude spectra for
optimal local phase velocity. Because the phase front could be ex-
tracted from these solutions and used as the basic observable, this
method embraces the eikonal tomography approach, which exploits
only phase information. (Although Lin et al. (2009) ignore lateral
gradients of surface-wave amplitude, they note that such gradients
could, in principle, be incorporated into the estimation of local
phase-velocity structure via their eq. (2).) A significant advantage
of the eikonal tomography approach is its direct mapping of wave-
fronts into phase-velocity structure and its adaptability to inferring
azimuthally anisotropic structure. We note that our method is also
adaptable to the case of azimuthal anisotropy, where local phase
velocity would further depend upon the azimuth of the wave propa-
gation direction (Smith & Dahlen 1973). This could be incorporated
into the definition of the basis functions used to define the non-plane
wave solutions of eq. (9) of Pollitz (2008), which would yield a de-
pendence of the wavefield potentials of eq. (10) on the local values
of the parameters that describe this azimuth dependence. The pro-
cedure for estimating local c(ω) would then be modified to estimate
the additional local anisotropic parameters.

4 R E S U LT S

The resulting phase-velocity maps are shown in Fig. 7. At the short-
est periods the maps have gaps because phase velocity was judged
indeterminate wherever a global minimum in χ 2 was not achieved
within pre-set bounds for c(ω). This is seen mostly in the eastern
part of the TA which has been operating for a shorter time.

The standard error in estimated phase velocity may be estimated
as follows. For source #n, let the angular distance to and r0 and r j

be � and �
(n)
j , respectively. In the plane wave approximation, the

term a(n)
−1W−1(ω, r j ; c(ω)) in a fit to eq. (10) may be approximated

with A(n) exp[−ik(�(n)
j − �)] for a constant A(n). The constants
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Surface wave tomography in the western US 1161

Figure 7. Phase-velocity maps derived using local wavefield fits with the plane-wave term W−1 and non-plane-wave terms W0 and W1 in eq. (10) [i.e.
lmax = 1].

{A(n)} for all events and wavenumber k are to be determined jointly
as described in Section 3. If standard errors σ j are assigned to the
observed wavefield potentials [more precisely, to both the real and
imaginary parts of �̃(n)(ω, r j )], then a linearized analysis in terms
of unknown variables A(n) and k about their estimated values shows
that the variance in estimated wavenumber is

var(k) =
⎡
⎣ N∑

n=1

∑
j∈Event#n

(
�

(n)
j − �

)2 |A(n)|2
σ 2

j

exp

(
−|r0 − r j |2

d2

)⎤
⎦

−1

.

(13)

The variance in c = ω/k is then

var(c) = c2 var(k)

k2
. (14)

We use the residual variance in the plane wave fits as a guide to the
ratio |A(n)|/σ j . For example, at 50s the residual variance is typically
about 4 percent, and we choose |A(n)|/σ j = 1/

√
(0.02) � 7.1. (The

introduction of this constant ratio is consistent with the solution
for c obtained by minimizing the function in eq. 9.) Fig. 8 shows
the resulting errors in phase-velocity maps at periods 20, 50 and
100 s.

At longer period, the transition to higher seismic velocity in the
eastern part of the study area is consistent with regional studies
(e.g. Goes & van der Lee 2002; Marone et al. 2007). At all common
periods (i.e. ≥25 s) our phase-velocity maps are highly correlated
with those of Yang et al. (2008), which are based on earthquake
tomography. At shorter period there is excellent agreement with
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Figure 7. (Continued.)
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Figure 8. Standard errors in phase-velocity distribution.

the results of ambient noise tomography (Lin et al. 2008; Yang &
Ritzwoller 2008).

5 D I S C U S S I O N

5.1 Significance of non-plane waves

The a−1 term of eq. (10) represents a plane wave and each term in
the l-summation represents a superposition of an infinity of plane
waves arriving from a continuum of backazimuths, constrained to
be close to the source backazimuth; we term those waves in the l-
summation to be ‘non-plane’ waves. Observations indicate that non-
plane waves are generally a considerable part of observed surface
wavefields (e.g. Friederich et al. 1993, 1994; Pollitz 2008). Whether
or not to include the non-plane waves in the parameterization of �

is tantamount to judging whether or not the non-plane contributions
to the phase-velocity estimation tend to zero statistically as the
number of observations increases. This is suggested by eq. 7 of
Wielandt (1993), which shows that plane waves contribute to local
wavenumber (‘structural wavenumber’ in Wielandt’s terminology)
to the spatial gradient in wavefield phase, whereas the non-plane
waves contribute to local wavenumber through spatial gradients
in wavefield amplitude. The latter are expected to average out for a
large number of wavefields arriving with diverse amplitude patterns,
and the former are expected to add coherently with each wavefield.

In Fig. 9, we compare the phase-velocity maps at 20, 50 and 100s
resulting from the different limits lmax = −1, 0, or 1 in eq. (10).
(The case lmax = −1 is a single plane wave with only the a−1 term
of eq. 10.) The inclusion of non-plane waves in the cases lmax = 0 or
1 produces minor differences in results at 20 and 50 s relative to the
case lmax = −1, but it produces marked differences at 100s. This is at
first glance surprising because non-plane-wave effects are relatively
large at shorter period when judged by the variations in wavefield
amplitude across a network (Friederich et al. 1993, 1994). However,
the amplitude variations are counterbalanced to a large extent by
the larger wavenumber at shorter period, which tends to reduce
the error in relative phase-velocity distribution according to eqs
(13) and (14). Thus at relatively short period, the stabilizing effect
of larger wavenumber in the present scheme of estimating lateral
wavenumber variations, using a network of fixed aperture, evidently
outweighs the destabilizing effect of larger amplitude variations.

A natural question is whether or not the inclusion of non-plane-
wave terms in eq. (10) is statistically significant. We address this by
modifying our procedure slightly. We choose to perform local fits
with only the nearest six seismic stations to the given target point,
simultaneously removing the dependence of the misfit function on
smoothing distance d (in practice, we assign a very large value
to d in this experiment). For a given target point r0, let χ 2(lmax)
denote the global minimum misfit (eq. 10) obtained by fitting a
phase velocity value to observations from N sources. (The value
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Figure 9. Phase-velocity maps at various periods derived using different values of lmax in eq. (10). The case lmax = −1 is the plane wave approximation (only
the a−1 term used in eq. 10).

of N generally depends on r0 because different regions have been
occupied by TA stations at different times, and we stipulate that for
a given source, at least one operating TA station be within 50 km
of the target point.) There are 12N data and P = 2N (lmax + 2) + 1
parameters involved with fitting these data with N sets of waves of
the form eq. (10) plus the phase velocity. Hence the function

F =
[
χ 2(lmax) − χ 2(lmax + 1)

]
/(2N )

χ 2(lmax)/(12N − P)
(15)

is distributed with 2N and 12N − P degrees of freedom (e.g.
Bevington 1969). An F−test yields the significance of the addi-
tion of one non-plane wave at every target point. After compiling
significance values at all target points, Fig. 10 shows histograms
of the significance of successively adding non-plane-wave terms
W0, W1 and W2 to the local fits of the wavefields using eq. (10).
The first two non-plane terms are highly significant (nearly all sig-
nificance values greater than 99 percent), but the significance is

less pronounced for the W2 term; the results presented in Fig. 7 are
derived from wavefield fits up to the W1 term.

5.2 Tectonic implications

A 3-D shear velocity model based in the present phase-velocity
maps is presented in the Appendix, and it is summarized with depth
slices and vertical slices in Fig. 11 and Fig. S1 (parts 1–19, see
Supporting Information section), respectively. The 3-D model is
available in text form in the Supporting Information.

Many velocity anomalies present in the phase-velocity maps and
3-D model are witnessed in independent results from body wave to-
mography (e.g. Dueker et al. 2001; Burdick et al. 2008; Roth et al.
2008) and surface wave tomography (e.g. Yang & Ritzwoller 2008;
Yang et al. 2008; Warren et al. 2008). This includes: low velocity
anomalies along the Yellowstone–Snake–River Plain (YSRP), High
Lava Plains (HLP), Eastern California Shear Zone, the Intermoun-
tain Seismic Belt and the Rio Grande Rift (RGR); high velocity
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Figure 10. Histograms of the significance of the addition of non-plane-wave
terms W0, W1 and W2 when fitting wavefields with eq. (10).

anomalies within the Columbia Plateau, southern Great Valley, the
Wyoming craton, Wallowa Mountains and Idaho batholith (both at
�50 s and hence at greater depth), and the narrow region (100–
200km wide around longitude 110◦W and south of 40◦N) dividing
the southern Rocky Mountains and Rio Grande Rift from the north-
ern and southern Basin and Range domains.

The 3-D velocity pattern supports previous interpretations based
on local tomography in various localities. For example, the patterns
of low-velocity uppermost mantle to high-velocity mantle at �100
km depth around the Wallowa Mountains (Grande Ronde uplift) and
�50 km depth around the southern Sierra Nevada agree with the
P-wave tomographic images of Hales et al. (2005) and Saleeby &

Figure 11. Perturbation in shear velocity with respect to a reference model
(Fig. 17 of Pollitz 2008) in map views. Centers of Holocene and Pleistocene
volcanism (Siebert & Simkin 2002) are indicated in the 50 km depth slice.

Foster (2004). This results support their respective interpretations
of mantle delamination based on the seismic velocity patterns and
associated uplift. We image low velocity mantle persisting to about
150–200 km depth below the YSRP and the HLP, in agreement
with local studies (e.g. Christiansen et al. 2002; Yuan & Dueker
2005; Waite et al. 2006; Warren et al. 2008). Our results confirm
the findings of Warren et al. (2008) that the low-velocity anomaly
of the HLP is slightly weaker than that of the YSRP and that it
is concentrated at about 50 km depth in southeast Oregon, where
it is correlated with extensive volcanism over the past 25 Myr.
In New Mexico, the RGR is expressed as a distinct low-velocity
feature in the mantle down to about 110 km depth, in agreement
with the surface wave results of Wilson et al. (2005). However, the
low-velocity mantle follows more closely the trend of the Jemez
lineament (Karlstrom 1999) rather than the surface expression of
the RGR, suggesting that the location of the RGR may be controlled,
at least in paper, by a pre-existing zone of weakness in the shallow
mantle; the existence of such a weak zone was also suggested by
Wilson et al. (2005) based on the difficulty of matching a mechanical
model of rifting with the width and amplitude of the observed mantle
seismic velocity anomaly. The lineament appears to correspond to a
Proterozoic boundary between the Yavapai and Mazatzal provinces
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Figure 12. Shear velocity structure along two profiles through the Great Basin (locations in Fig. 11).

(Karlstrom & Humphreys 1998). At depth �110 km, low-velocity
mantle is concentrated south and west of the RGR in a broad area
of the southern Great Basin that has undergone relatively large
amounts of Cenozoic extension.

The phase-velocity maps from ∼33 to 100 s, as well as corre-
sponding depth slices at depth ∼50–150 km (Fig. 11), are highly
correlated with both effective elastic plate thickness (Lowry et al.
2000) and heat flow (e.g. Fig. 4 of Dixon et al. 2004). This ap-
plies to low velocities of the HLP, the Great Basin (excluding cen-
tral Nevada), the RGR and Colorado Plateau, which correlate with
low elastic plate thickness and high heat flow, and to high veloc-
ities of the 110◦W lineament, the Juan de Fuca slab, and central
Nevada, which correlate with high elastic plate thickness and low
heat flow. Notwithstanding exceptional regions where these corre-
lations are weaker (e.g. southern Sierra Nevada, Snake River Plain),
this suggests that temperature plays the dominant role in shaping
mantle seismic velocities at least from ∼50 to 150 km depth. It
is also noteworthy that low-velocity regions in the 50-km depth
slice correlate with the distribution of Holocene and Pleistocene
volcanoes (Fig. 11), and that these anomalies also correlate with
crustal seismicity, for example in the HLP, Walter Lane and East-
ern California Shear Zone and Intermountain Seismic Belt. This
suggests that hot mantle around ∼50 km depth in these regions
provides the heat source for associated magmatism as well as thin-
ning of the thermal lithosphere, leading to relatively high stress
concentration.

At depth �100 km, there emerges a SW–NE trending relatively
high-velocity lineament from the southern Great Valley anomaly
(SGVA; 36◦N, 119◦W) through central Nevada and northern Utah
(Fig. 12). The portion of the anomaly in south-central Nevada—
within the middle of this corridor—coincides with a high velocity
anomaly imaged by West et al. (2009) to great depth (∼800 km).
West et al. (2009) propose that the shallower expression of the
anomaly represents a mantle delamination but also suggest that it
merges with fossil slab at depth greater than about 500 km. Given the
depth of the anomaly �100 km (Fig. 11), we suggest that this feature
may be a relic of subduction, perhaps in the manner proposed by

Humphreys (1995), or, alternatively, a deep remnant of the Mojave
Province (Karlstrom & Humphreys 1998).

Adjacent to the imaged SGVA to northern Utah and 110◦W high-
velocity lineaments are three bordering low-velocity (presumably
high temperature) domains pointed out by Karlstrom (1999), one
along the Jemez lineament through New Mexico and Arizona, one
running along the St. Georges lineament through central Utah and
the third along the Snake River Plain. In this context, the im-
aged high-velocity lineaments define the boundaries of the high-
temperature domains more precisely.

High velocity anomalies associated with the subducting Juan de
Fuca slab are clearly present at period ≥25 s and locate progressively
eastward with increasing period. The phase-velocity maps at longer
period suggest that the slab signal is weak in southern Oregon, where
continuity with the slab signal to its north and south is tenuous.

6 C O N C LU S I O N S

Using two and three-quarter years of data from the Transportable Ar-
ray, we use local tomography based on the spherical Helmholtz equa-
tion to image fundamental-mode Rayleigh-wave phase-velocity
structure from 18 to 125 s period. We use the Transportable Array
as essentially a large number of smaller arrays. By treating every
local wavefield as non-plane wavefield, the methodology accounts
for surface wave scattering over the surrounding region without
needing to invoke the solution of an integral equation or solve for
incident wavefields over a large domain. Although applied here to
a large network, the method is also naturally applicable to a smaller
regional network as long as the station spacing is of the same order
as the scale length used to localize the phase-velocity fits (eq. 12).

The non-plane components of the wavefield are statistically
significant, supporting the interpretation—based on the spheri-
cal Helmholz equation—that local observations are systematically
shaped by remotely generated scattering interactions. A trade-off
remains between inferred phase-velocity structure and the form
of the non-plane wavefields used to estimate the local wavefields,
that is the cut-off lmax in eq. (10). This trade-off is significant at
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progressively longer period because the aperture of each subset of
the TA used in the local fits of eq. (9) tends to a smaller number of
wavelengths with increasing period.

The phase-velocity maps of Fig. 7 update the maps presented
by Pollitz (2008), which are based on about one-third the data
and cover roughly the western half of this study area. These maps
are similar but reveal more detail than the Pollitz (2008) maps,
particularly at longer period. We attribute this to not only the greater
amount of data but also the robustness of this method. The former
method involves fitting each observed wavefield with an incident
non-plane wavefield jointly with solving an integral equation for
phase-velocity structure; a large number of unknowns are involved
in both steps, and multiple scattering is required to synthesize the
wavefield accurately at successively greater propagation distance
from the source. This approach involves only local fits of non-plane
wavefields with relatively few parameters and is therefore more
robust. Moreover, it is consistent with the scattering theory (eq. 6)
that forms the basis of the former method.

The phase-velocity maps are suitable for constraining depth-
dependent seismic velocity within the upper ∼200 km (Appendix
A). In a follow-up study, we anticipate combining the phase-velocity
maps with body wave traveltimes in a joint surface wave/body wave
tomography study.
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A P P E N D I X A : T H R E E - D I M E N S I O NA L
S H E A R V E L O C I T Y S T RU C T U R E

This appendix describes how 3-D shear velocity structure in the up-
per 200 km of the western United States is derived from the surface
wave phase-velocity maps (Fig. 7). The 3-D model is presented as
both depth slices and vertical cross-sections.

At each of approximately 6000 target points (number depend-
ing on period) spanning the Transportable Array (Fig. 1), we have
available values of frequency-dependent phase velocity c(r, f ) at
13 periods T = 1/ fi ranging from 18 to 125 s. We use the following
steps to derive 3-D structure.

(1) Correct c(r, f ) for the effect of lateral variations in crustal
thickness. For this purpose we use a smoothed map of these varia-
tions derived from a North American database (Fig. A1). For each
r and f , we take a reference laterally homogeneous model (Fig. 17
of Pollitz (2008), which is the PREM model with a 35 km thick
continental crust and a reduced velocity of 3 percent from 35 to
220 km) and adjust the crustal thickness from the reference value
of h0 = 35 km to the crustal thickness at r. Denoting the phase ve-
locity on the laterally heterogeneous model with crustal thickness
h(r) as c0(h(r), f ), the corrected phase velocities are

ccorr(r, f ) = c(r, f ) − c0(h(r), f ) + c0(h0, f ). (A1)

Figure A1. Smoothed crustal thickness over the western United States de-
rived from the North American database of Chulick & Mooney (2002).
Locations of crustal thickness estimates in that database are indicated with
triangles.
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Figure A2. Frechét kernels for phase velocity at various periods. The ref-
erence model is the WUS reference model of Fig. 17 of Pollitz (2008) with
a 35 km crustal thickness.

(2) Derive local Frechét kernels K (r, f ) which yield the sen-
sitivity of local isotropic phase velocity to a perturbation in shear
velocity at radius r. From eqs (83) and (I.6) of Romanowicz (1987),
phase velocity is related to perturbations in structural parameters as

δc(r, f )

c0(h0, f )
= c0

ωU

∫ R

0

[
δμ(r, r)M (0)

1K (r ) + δκ(r, r)M (0)
2K (r )

+ δρ(r, r)M (0)
3K (r )

]
r 2 dr (A2)

where ω = 2π f ; U is group velocity; δμ, δκ and δρ are perturba-
tions in shear modulus, bulk modulus and density, respectively; the
M (0)

j K are defined in Table 1 of Romanowicz (1987). The integration
is taken over radius up to Earth’s radius R. Using scaling relations
among seismic velocities and density assuming a thermal origin
(Humphreys & Dueker 1994; Goes et al. 2000):

δ ln ρ

δ ln vp
= 0.4,

δ ln vs

δ ln vp
= 1.7, (A3)

we may write eq. (A2) in the form

δc(r, f )

c0(h0, f )
=

∫ R

0

δvs(r, r)

vs(r, r)
K (r, f ) dr (A4)

where vs is shear velocity. Again using the reference laterally ho-
mogeneous model shown in Fig. 17 of Pollitz (2008), examples of
K (r, f ) at various periods are shown in Fig. A2.

(3) At every target point r, perform a separate inversion for
shear velocity by minimizing

χ 2(r) =
13∑

i=1

[
δc(r, fi )

c0(h0, fi )
−

∫ R

0

δvs(r, r)

vs(r, r)
K (r, fi ) dr

]2
1

σ 2
i (r)

(A5)

where σi (r) is the standard error in the phase-velocity distribution
at frequency fi and

δc(r, fi ) = ccorr(r, fi ) − c0(h0, fi ). (A6)

For each r, δvs is parameterized using 23 Hermite polynomials as
a function of depth, and χ 2(r) is minimized subject to a smooth-
ness constraint on δvs , yielding the weighting coefficients of the
Hermite polynomials. This procedure is repeated at all target points
independently.

The resulting shear velocity in the western United States is shown
in Fig. 11 in depth slices and Fig. S1 (parts 1–19, see Supporting
Information) in a series of vertical cross-sections.

S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this article:

Fig. S1. Smoothed crustal thickness over the western US derived
from the North American database of Chulick & Mooney (2002).
Locations of crustal thickness estimates in that database are indi-
cated with triangles.

Fig. S2. Frechet kernels for phase velocity at various periods. The
reference model is the WUS reference model of fig. 17 of Pollitz
(2008) with a 35-km crustal thickness.

Fig. S3. Perturbation in shear velocity with respect to the WUS
reference model (fig. 17 of Pollitz 2008) invertical cross-sections.
Notable tectonic features and/or interpretations are annotated.

Please note: Wiley-Blackwell are not responsible for the content or
functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the
corresponding author for the article.
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