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Forest structure estimation and pattern
exploration from discrete-return lidar in subalpine
forests of the central Rockies

K.R. Sherrill, M.A. Lefsky, J.B. Bradford, and M.G. Ryan

Abstract: This study evaluates the relative ability of simple light detection and ranging (lidar) indices (i.e., mean and
maximum heights) and statistically derived canonical correlation analysis (CCA) variables attained from discrete-return li-
dar to estimate forest structure and forest biomass variables for three temperate subalpine forest sites. Both lidar and CCA
explanatory variables performed well with lidar models having slightly higher explained variance and lower root mean
square error. Adjusted R? values were 0.93 and 0.93 for mean height, 0.74 and 0.73 for leaf area index, and 0.93 and 0.85
for all carbon in live biomass for the lidar and CCA explanatory regression models, respectively. The CCA results indicate
that the primary source of variability in canopy structure is related to forest height, biomass, and total leaf area, and the
second most important source of variability is related to the amount of midstory foliage and tree density. When stand age
is graphed as a function of individual plot scores for canonicals one and two, there is a clear relationship with stand age
and the development of stand structure. Lidar-derived biomass and related estimates developed in this work will be used
to parameterize decision-support tools for analysis of carbon cycle impacts as part of the North American Carbon Pro-
gram.

Résumé : Cette étude évalue la capacité relative d’indices simples obtenus avec le lidar («light detection and ranging »)
(c.-a-d. hauteurs moyenne et maximum) et de variables dérivées statistiquement de 1’analyse de corrélation canonique
(ACC) provenant d’impulsions discretes du lidar d’estimer des variables de structure et de biomasse de la forét pour trois
stations de forét subalpine tempérée. Tant les variables explicatives provenant du lidar que celles provenant de 1’ACC ont
produit de bons résultats mais les modeles basés sur le lidar expliquaient une portion 1égérement plus grande de la var-
iance et avaient une erreur quadratique moyenne plus faible. Les valeurs de R* ajustées pour la hauteur moyenne, I’indice
de surface foliaire et tout le carbone dans la biomasse vivante étaient respectivement de 0,93 et 0,93, 0,74 et 0,73 et 0,93
et 0,85 pour les modeles basés sur le lidar et les modeles de régression explicative basés sur I’ACC. Les résultats de

I’ ACC indiquent que la principale source de variation dans la structure de la canopée est reliée a la hauteur, a la biomasse
et a la surface foliaire totale de la forét tandis que la deuxieme plus importante source de variation est reliée a la quantité
de feuillage dans la strate intermédiaire et a la densité des arbres. Lorsque I’dge du peuplement est mis en graphique en
fonction des scores de chaque placette échantillon pour les ensembles canoniques un et deux, il y a une relation nette entre
I’dge du peuplement et le développement de la structure du peuplement. La biomasse dérivée du lidar et les estimations
qui y sont associées, que nos travaux ont permis de développer, seront utilisées comme parametres dans les outils d’aide a

la décision pour analyser les impacts du cycle du carbone dans le cadre du « North American Carbon Program ».

[Traduit par la Rédaction]

Introduction

North American forests have been estimated to have an
annual carbon sink between 0.14 and 0.30 Pg C-year! (Pa-
cala et al. 2001). Uncertainty of this magnitude is inconsis-
tent with continental- to global-scale monitoring of carbon
stocks and fluxes. Knowledge of aboveground carbon stocks
from forest inventory and remote sensing provides a snap-
shot view of effects from land-use history and forest man-
agement and, through relationships with ecosystem function,
a constraint on carbon flux (Cohen et al. 1996; Running et
al. 1999). To address uncertainties in the effects of human

alterations to forested systems, forest carbon managers are
interested in combining spatially extensive but coarse-
grained carbon estimates from remote sensing and forest
inventory data with spatially intensive and finely resolved
estimates from AmeriFlux flux tower carbon sites (Birdsey
et al. 2004). By connecting these extensive- and intensive-
scaled data sources, more accurate carbon budgets across
management strategies and disturbance scenarios will be
possible.

Although remotely sensed estimates of biomass in low- to

moderate-cover forests (leaf area index (LAI) < 3) have
been successful, biomass estimates in moderate- to high-
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Table 1. Lidar and field variables.
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Variable Description Units
Lidar canopy surface height indices

Maxh Maximum stand height m

Meanh Mean stand height m

QH Quadratic stand height m

Lidar canopy profile indices

HPio Height at which 10% of points are below m

HPoo Height at which 90% of points are below m

CFo4 Percentage of points in 2—4 m bin %

CFs2-54 Percentage of points in 52-54 m bin %

Stand structure

Agemean Mean tree or sapling age years
Agemax Maximum tree or sapling age years
Height Mean tree or sapling height m

Allpla Leaf area of trees, saplings and seedlings m?m~
Treesha Tree density Trees-ha™!
Sapsha Sapling density Saplings-ha™!
Seedsha Seedling density Seedlings-ha™!
Batotal Basal area of all trees and saplings m?-m™2
Batree Basal area of all trees m?m~2
BaLP Basal area of lodgepole pine trees m?m™
BaES Basal area of Engleman spruce trees m?m
BaSF Basal area of subalpine fir trees m?m
BaTA Basal area of trembling aspen trees m?m
Balm Basal area of limber pine trees m?-m2
BaSap Basal area of all saplings m?m~2
Carbon pools

Allcarbon Total ecosystem carbon Mg C-ha!
Alllive All carbon in live biomass Mg C-ha™!
Abovelive Carbon in aboveground live biomass Mg C-ha!
Treeaglive Carbon in aboveground components of live trees Mg C-ha™!
Saplive Carbon in live saplings Mg C-ha™!
Seedlive Carbon in live seedlings Mg C-ha™!
Veg Carbon in understory vegetation Mg C-ha™!
Alldead All carbon in detrital biomass Mg C-ha!
Abovedead Carbon in aboveground detrital biomass Mg C-ha™!
Deadwoody Carbon in detrital woody biomass Mg C-ha™!
Treeagdead Carbon in aboveground dead tree biomass (standing) Mg C-ha™!
Stumps Carbon in stumps (above and belowground) Mg C-ha™!
CWD Carbon in down woody material Mg C-ha!
Deadfines All carbon in forest floor and mineral soil Mg C-ha!
Ff Carbon in forest floor material Mg C-ha™!
SoilC Carbon in mineral soil Mg C-ha™!
Allabove All aboveground carbon Mg C-ha™!

cover forests (LAI > 3) and in forests at more advanced
succession stages (intermediate to mature) have been less
successful (Waring et al. 1995; Lefsky et al. 2001). Light
detection and ranging (lidar) is a remote-sensing technology
that has demonstrated the capability to estimate biomass in
high-cover forests. Using indices of stand height and details
of the canopy’s vertical structure, discrete-return lidar has
been used in regression analysis to estimate forest biomass
levels across a range of forest types including temperate
mixed deciduous coniferous forests (Popescu et al. 2003;
Lim and Treitz 2004), temperate deciduous (Patenaude et
al. 2004), temperate coniferous forests (Hall et al. 2005;
Hyde et al. 2007), and boreal mixedwood forests (Thomas

et al. 2006). Although the ability to estimate biomass has
been demonstrated for structurally similar forests, these
techniques have not been applied to the type of temperate
subalpine ecosystems addressed in this study.

The primary goal of this study is to use discrete-return
lidar to develop equations for estimating components of
forest structure and biomass in three small landscapes of
subalpine coniferous forest. Specifically, we have the fol-
lowing objectives: (i) compare the performance of variables
derived from canonical correlation analysis (CCA) to simple
lidar variables in multiple regression analysis of forest struc-
ture and biomass; (if) evaluate environmental and study site
effects to assess the need for site specific equations; and
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Table 2. Variables identified
as significant in PCA and the
corresponding eigenvalue for
the field and lidar variables

used in the subsequent CCA.

Variable Eigenvalue

Field
Abovelive 14.94
Treesha 4.02
Seedaglive 2.86
Batree 2.34
BalLm 1.92
SoilC 1.38
BaTA 1.16
Stumps 0.98
Height
Agemean

Lidar
QH 14.50
CFs-10 6.73
CF30-32 3.58
CF46 1.62
CF34_36 1.04
HPyg 0.87

Note: Variables are listed in
component order.

(iii) characterize the development of canopy and stand struc-
ture during stand development.

Methods

Study area

Coincident field and lidar data were collected at three
study sites. The Niwot Ridge Long Term Ecological Re-
search site is located approximately 35 km west of Boulder,
Colorado, on the drier eastern side of the Continental Divide
with plot locations occurring between 3035 and 3115 m.
The Fraser Experimental Forest (FEF) is part of the USDA
Forest Services Rocky Mountain Research Station located
approximately 80 km west of Denver, Colorado, and 30 km
southwest of the Niwot site on the wetter western side of the
Continental Divide, with plots between 3030 and 3230 m.
The Glacier Lakes Ecosystem Experiments Site (Glees) is
located 60 km west of Laramie, Wyoming, in the Medicine
Bow Mountains (approximately 160 km north-northwest of
the Niwot and Fraser sites) with plots between 3175 and
3220 m. All three study sites are dominated by subalpine
forest types, which include Englemann spruce (Picea engle-
mannii Parry ex Engelm.), subalpine fir (Abies lasiocarpa
(Hook.) Nutt.), lodgepole pine (Pinus contorta Dougl. ex
Loud.), limber pine (Pinus flexilis James), and trembling
aspen (Populus tremuloides Michx.) tree species.

Data

First- and last-return discrete lidar data was collected by
Airborne 1 (El Segundo, Calif.) using an Optech ALTM
2025/2050. Data was collected from a fixed-wing aircraft at
the FEF and Niwot sites on 8 October 2005 and at the Glees
site on 23 July 2006. The accuracy of the lidar data was as-
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sessed using checkpoints collected over level unvegetated
areas; vertical and horizontal accuracies at the Glees site
were 0.08 and 0.16 m, whereas the FEF and Niwot sites
had vertical and horizontal accuracies of 0.09 and 0.18 m.
Mean point densities were 2.36, 1.57, and 2.36 returns-m2,
with standard deviations of 1.02, 0.72, and 0.77 returns-m2
at FEF, Niwot, and Glees, respectively. A “bare earth” digi-
tal elevation model (2 m horizontal spatial resolution) was
developed using the Toolbox for Lidar Data Filtering and
Forest Studies (TIFFS) program (Chen 2007) using both
first- and last-return lidar data at each study site. TIFFS
uses progressively larger window sizes for morphological
operations (similar to Zhang et al. 2003) but without the as-
sumption of a constant slope. Any lidar points above the
bare earth surface are considered to have been returned
from the vegetation canopy (Nasset 1997).

Thirty-six study plots (12 per site) were established using
Forest Inventory Analysis style plot layouts (USDA 2005) to
collect forest stand structure data. The plot layout consisted
of four annular subplots of radius 8 m, with smaller nested
subplots and line transects; three of the subplots are spaced
35 m away from a center subplot at 0°, 120°, and 240°; for
the 36 study plots. this results in a total of 144 subplots.
Subplot, species, location (distance and azimuth from sub-
plot center), and diameter at breast height (DBH) were re-
corded for each tree located within the plot. Tree ages were
estimated for the largest three to five trees per plot from in-
crement cores. Tree heights were recorded for 10 trees per
subplot and then regressed against DBH to generate predic-
tive height equations, which were used in estimation of
height for the remaining trees (Bradford et al. 2008). DBH
and height were used with published species specific allo-
metric equations to estimate aboveground biomass in foli-
age, branches, and stems as well as LAI (Bradford et al.
2008). Coarse woody debris (CWD) volume was quantified
by establishing 8—15 m long transects at each subplot. Along
each transect, fine CWD was quantified by recording the
count of CWD with diameter <2.5 cm for the first 2 m, a
count of CWD with diameter between 2.5 and 7.5 cm for
the first 4 m, and the diameter and decay class (Arthur and
Fahey 1990; Busse 1994) of all logs greater than 7.5 cm for
the length of the transect (Brown 1971). Forest floor bio-
mass was quantified by harvesting all organic material
(other than standing biomass) above mineral soil within
three 30 cm x 30 cm quadrats located 7 m from subplot
center at 60°, 180°, and 300°. Litterfall was estimated by
collecting litter twice a year in five 0.15 m? traps per sub-
plot. Aboveground biomass of understory grasses and forbs
was collected at peak biomass (late summer) from three
0.25 m? quadrats per subplot (Bradford et al. 2008). Plot-
level field data were calculated as the means of the four
subplots per plot. All field-derived forest stand structure
variables are listed in Table 1.

Lidar variables used in regression analysis were calcu-
lated using the data contained within a 43.9 m circular buf-
fer (footprint) around the center subplot’s origin and using
only returns above a specified ground threshold of 0.1 m.
Lidar data within each area were used to derive three can-
opy height indices: maximum height, mean height, and
quadratic mean height (Lefsky et al. 1999), and two sets of
vertical canopy profile indices: the percentage of lidar points
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Table 3. Correlations between field and lidar variables and adjusted R? and root mean square error (RMSE) values for the all variable

Lidar variable

Field

variable Maxh Meanh QH HP10 HP20 HP30 HP40 HP50 HP@O HP70 HPgo HPgo
Agemean 0.64 0.80 0.84 -0.11 0.12 0.41 0.58 0.70 0.78 0.82 0.85 0.86*
Agemax 0.61 0.71 0.76 -0.12 0.11 0.38 0.51 0.61 0.67 0.71 0.74 0.77*
Height 0.68 0.94 0.95 0.12 0.38 0.65 0.75 0.84 0.89 0.93 0.95* 0.94*
Allpla 0.67 0.87* 0.85 0.19 0.46 0.76 0.82 0.83 0.84 0.83 0.82 0.80
Treesha -0.10 0.45 0.33 0.87* 0.81 0.72 0.61 0.51 0.44 0.38 0.32 0.24
Sapsha —0.43 -0.44 —0.48 0.06 —0.05 -0.22 -0.32 -0.41 —0.45 -046  -0.45 -0.46
Seedsha -0.20 —0.42 -0.41 -0.25 -040 044 -0.42 -0.40 -0.38 -0.38 -0.37 -0.38
Batotal 0.50 0.91 0.84 0.49* 0.71 0.91 0.94* 0.92 0.90 0.86 0.82 0.76*
Batree 0.53 0.91 0.86 0.45* 0.68 0.89 0.93* 0.93 0.91 0.87 0.83 0.78%
BalLP -0.56*  -0.18 -0.28 0.38 0.24 0.04 0 -0.04 -0.10 -0.17 -0.23 -0.31
BaES 0.41 0.41 0.46 -0.01 0.03 0.25 0.28 0.29 0.32 0.36 0.43* 0.50*
BaSF 0.69 0.64 0.70 -0.12 0.08 0.34 0.42 0.51 0.58 0.64 0.68 0.72%*
BaTA -0.19 -0.16 —-0.18 -0.02 0.05 —0.05 -0.12 -0.16  -0.17 -0.16 -0.16 -0.17
BalLm -0.31 -0.19 -0.23 -0.09 0.03 -0.05 -0.1 -0.14 -0.17 -0.19 -0.2 -0.22
BaSap -0.40 -0.29 -0.35 0.18 0.11 -0.06 -0.17 -026 -0.3 -0.31 -0.31 -0.32
Allcarbon 0.69 0.89* 0.87 0.16 0.48 0.76 0.85 0.88 0.88 0.87 0.84 0.81
Alllive 0.71* 0.93 0.91 0.23 0.51 0.80 0.88* 0.91 0.91 0.90 0.88 0.85
Abovelive 0.72* 0.93 0.91 0.22 0.50 0.79 0.87* 0.90 0.91 0.90 0.88 0.85
Treeaglive 0.72* 0.92 0.90 0.21 0.50 0.78 0.87* 0.90 0.90 0.89 0.87 0.84
Sapaglive -0.36 -0.22 -0.27 0.34 0.18 0.01 -0.11 -0.20 -0.24 -0.26 -0.25 -0.25
Seedaglive 0.24 0.27 0.31 0.02 -0.04 0.02 0.06 0.14 0.22 0.28 0.34 0.37*
Veg 0.08 —0.42 -0.29*%  -0.55 -0.70  -0.65 -0.61 —0.55 -0.47 -039 031 —0.19*
Alldead 0.60* 0.75 0.73 0.05 0.40 0.65 0.74 0.76* 0.75 0.74 0.71 0.67
Abovedead 0.67 0.60 0.61 -0.21 0.14 0.44 0.57 0.60 0.61 0.60 0.59 0.57
Deadwoody 0.65 0.59 0.60 -0.20 0.15 0.45 0.57 0.60 0.60 0.59 0.58 0.55
Treeagdead 0.63* 0.64* 0.63 -0.13 0.23 0.52 0.64 0.66 0.66 0.64 0.61 0.57
Stumps -0.17 -0.27 -0.30 0 -0.02  -0.12 -0.16 -0.21 -0.25 -0.28 -0.29 -0.31
CWD 0.43* 0.10 0.18 -0.38 -0.30 -0.14 -0.05 0.01 0.06 0.11 0.17 0.23
Deadfines 0.38 0.72 0.67 0.31 0.55 0.69 0.72 0.72* 0.71 0.69 0.66 0.62
FF 0.45 0.76* 0.71 0.42* 0.58 0.71 0.74 0.75 0.74 0.72 0.70 0.66
Soilc -0.10 0.01 0 -0.19 0.01 0.05 0.03 0.03 0.02 0.02 0.01 -0.01
Allabove 0.75* 0.87 0.86 0.07 0.40 0.71 0.82% 0.85 0.86 0.85 0.83 0.80

Note: Variables with asterisks are significant (p < 0.05) in regression results for all of the variable models; na, not applicable.

in 2 m high bins (CF_, through CF34_35) and 10 height per-
centiles (HP;y — HPygy; the height below which the stated
fraction of lidar points fall) (Table 1).

Statistical approach

Three issues influenced the analysis of this data set: the
potential for multicollinearity when a large number of inde-
pendent variables are involved; the choice of variables for,
and the comprehensibility of, regression equations; and the
need to identify the degree of covariance between the esti-
mates of the dependant variables. Identification of that cova-
riance indicates whether dependent variables represent
unique sources of explanatory power for subsequent analy-
ses or whether they are redundant.

To address multicollinearity, principle components analy-
sis (PCA) was used to select a reduced set of explanatory
variables for both dependant (field) and independent (lidar)
data sets. Using the criteria of Isebrands and Crow (1975),
all principle components with eigenvalues greater than 1.0
and the first component with an eigenvalue less than 1.0
were considered significant and retained. The field or lidar
variables with the highest correlation with each significant

component were identified and composed the reduced set of
variables. Although they didn’t meet the criteria, mean tree
height and mean tree age were included as part of the re-
duced field data set because they are the most commonly
used indicators of stand structure development. PCA reduc-
tion of the data set was also necessary to meet the criteria
for a CCA, where having more variables in the combined
data sets (field and lidar) than total number of samples
should be avoided (McGarigal et al. 2000).

Remaining issues include variable choice, comprehensi-
bility of the regression equations, and the covariance of the
estimates of the dependant variables. To address these
issues, CCA was used to further reduce data redundancy.
The output from CCA is two (or more) sets of canonical
variables with one set calculated from each of the multivari-
ate data sets, in this case the lidar and field data sets. CCA
maximizes correlations between each set of canonical varia-
bles, which is used to reveal the common structure between
two (or more) multivariate data sets (McGarigal et al. 2000).
Each set of canonical variables identifies general trends in a
suite of variables rather than selecting specific independent
variables, which often have correlations with more than one
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model.
CFo>» CFo4  CFus CFes  CFgo CFio-12 CFi2-14 CFi4-16 CF16-18 Adjusted R*> RMSE
-0.50 -0.58 -0.11 -0.01 0.12 0.36 0.72 0.79* 0.74 0.77 36.38
-0.38 -0.63 -0.18 -0.07 0.11 0.37 0.69* 0.72 0.66 0.62 77.15
-0.75 -0.60 0.04 0.26* 0.39 0.54 0.69 0.70 0.71 0.93 1.02
-0.58 -0.58 -0.20 0.05 0.29 0.51 0.72 0.71 0.71 0.74 1.80
-0.76* -0.21 0.44 0.71 0.81 0.71 0.36 0.09 -0.07 0.87 277.34
0.11 0.58* 0.28 0.21 -0.03 -0.27 -0.49 -0.52 -0.47 0.32 885.96
0.46* 0.31 -0.24 -0.33 -0.34 -0.33 -0.30 -0.25 -0.22 0.19 1138.6
-0.83 -0.56 0.07 0.38 0.60 0.72 0.73 0.62 0.54 0.93 6.16
-0.79 -0.60 0.01 0.32 0.56 0.72 0.76 0.65 0.58 0.91 7.01
-0.27* 0.42 0.50 0.41 0.30 0.13 -0.19 -0.31 -0.41 0.43 0.25
-0.25 -0.43 -0.08 0.06 0.25 0.34* 0.33 0.26 0.26 0.43 0.13
-0.25*  -0.57 -0.30 -0.17 0 0.23 0.55 0.63 0.68 0.55 0.22
-0.11 0.40* 0.25 0.29 0.04 -0.16 -0.24 -0.24 -0.21 0.13 0.13
-0.09 0.30 0.56* 0.30*  -0.07 -0.23 -0.27 -0.24 -0.24 0.36 0.06
-0.12 0.52* 0.43 0.38* 0.14 -0.12 -0.38 -0.46 -0.44 0.39 2.22
-0.60 -0.60 -0.15 0.07 0.28 0.48 0.65 0.68 0.74 0.79 52.09
-0.67 -0.63 -0.10 0.14 0.36 0.56 0.71 0.70 0.72 0.93 15.96
-0.66 -0.63 -0.12 0.13 0.34 0.54 0.71 0.71 0.73 0.93 13.61
-0.65 -0.63 -0.12 0.12 0.34 0.54 0.71 0.71 0.73 0.92 14.44
-0.14%* 0.42 0.37 0.32 0.23 0.02 -0.30 —0.43* -0.41 0.24 1.52
-0.20 -0.17 0.07 0.08 0.08 0.09 0.09 0.15 0.25 0.11 1.15
0.71* 0.03 -0.41 -0.59 -0.58 -0.49 -0.27 -0.13 -0.03 0.67 0.35
-0.46 -0.50 -0.19 -0.02 0.17 0.36 0.52 0.59 0.69 0.62 34.9
-0.19 -0.38 -0.37 -0.29 -0.15 0.08 0.40 0.59 0.73* 0.52 19.36
-0.19 -0.37 -0.37 -0.28 -0.15 0.08 0.40 0.58 0.72%* 0.51 23.62
-0.28 -0.41 -0.29 -0.20*  -0.07* 0.14 0.44 0.60 0.73 0.73 13.10
0.29 0.29 -0.20 -0.25 -0.21 -0.21 -0.26 -0.23 -0.17 na na
0.24 -0.04 -0.45 -0.47* -0.38 -0.22 0.02 0.20 0.33 0.29 5.42
-0.61 -0.51 0.05 0.27 0.46 0.56 0.52 0.45 0.46 0.51 21.89
-0.66 -0.51 0.04 0.30 0.53 0.63 0.54 0.45 0.45 0.61 18.41
0.03 -0.05 0.04 -0.03 -0.11 -0.08 0.02 0.05 0.09 na na
-0.53 -0.58 -0.22 -0.02 0.18* 0.41 0.64 0.71 0.78 0.90 22.99
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general trend in forest stand structure. Previous results
(Lefsky et al. 2005a, 2005b) have indicated that using CCA
components as independent variables results in more inter-
pretable and parsimonious regression models.

In addressing the first objective, two sets of stepwise mul-
tiple linear regression models were developed for estimating
the forest structure and biomass variables. One set of models
was developed using the full set of lidar explanatory varia-
bles, and they are referred to as “all variable” regressions.
The all variable models used the full set of explanatory
variables; thus, they represent the model set having the
upper limit of possible explained variance. A second set of
models, “CCA,” used canonical components, derived from
the PCA -reduced set of lidar indices, as explanatory varia-
bles in regression modeling.

To test for the existence of environmental and study site
effects (the second objective), three climatic and two terrain
variables were added to the variables used in the CCA mod-
els to yield a third set of models, which will be referred to
as “CCA with environment.” The terrain variables were
mean slope and transformed aspect (Beers et al. 1966), and
were derived from the lidar bare-earth digital elevation

model. The climate variables (yearly precipitation, snow
water equivalent, and mean temperature) were retrieved
from the 1 km resolution PRISM data set (PRISM Group:
www.ocs.oregonstate.edu/prism/index.phtml). ANOVA anal-
yses on regression residuals for the CCA and CCA with en-
vironment models were then performed testing whether site
effects were statistically significant both before and after en-
vironmental variables were added.

Following Lefsky et al. (20050), plots of correlations be-
tween field-derived forest stand structure variables and the
first two lidar canonical components (LCC; and LCC,)
were developed (the third study objective). The resulting
ordination diagrams identify clusters of field data variables
that have similar relationships to the respective lidar canon-
ical. Graphs of forest age against LCC; and LCC, values
were developed to evaluate forest structure pattern relation-
ships with forest age. To increase understanding of the lidar
canonicals, a qualitative visual assessment of the raw lidar
point clouds was also performed using ArcScene’s (ESRI,
Redlands, Calif.) three-dimensional visualization for five
plots located along the LCC; and LCC, axes for each data
set. Selected plots are located at the extremes of the first
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Table 4. Lidar variable correlations with lidar canonicals.

Canonical

Variable LCC, LCC, LCC; LCC4 LCCs LCCs

Maxh 0.70 -0.51 -0.02 0.00 0.11 0.10
Meanh 0.98 0.02 -0.12 0.09 0.03 -0.01
QH 0.98 -0.14 -0.07 0.05 0.06 0.02
HPo 0.19 0.80 -0.35 -0.14 0.05 0.08
HP» 0.45 0.78 -0.36 0.21 0.10 0.05
HP3 0.72 0.52 -0.32 0.20 0.05 -0.03
HPy4 0.82 0.31 -0.30 0.20 -0.01 —-0.08
HPsg 0.90 0.14 -0.23 0.15 -0.04 -0.09
HPgo 0.95 0.02 -0.16 0.12 -0.05 —-0.08
HP7o 0.98 —0.06 -0.09 0.08 -0.03 -0.05
HPg 0.98 -0.13 -0.01 0.05 0.02 -0.01
HPy 0.96 -0.22 0.05 0.00 0.11 0.05
CFo-2 -0.76 -0.57 -0.15 -0.01 -0.04 -0.01
CFr4 -0.67 0.15 0.30 0.24 0.11 0.06
CF46 -0.01 0.67 0.73 0.07 0.07 0.04
CFe-3 0.25 0.84 0.38 -0.21 0.03 0.04
CFs-10 0.43 0.76 -0.18 -0.45 -0.03 0.03
CFio-12 0.60 0.48 -0.43 -0.40 -0.10 -0.01
CFi2-14 0.74 -0.09 -0.35 -0.04 -0.13 -0.10
CFi4-16 0.74 -0.39 -0.21 0.23 -0.13 -0.15
CFi6-18 0.75 -0.49 -0.10 0.37 -0.07 -0.11
CFi8-20 0.70 -0.46 -0.05 0.38 0.05 —-0.08
CF20-22 0.67 —0.44 -0.03 0.37 0.16 0.04
CFa224 0.62 —0.44 0.00 0.27 0.29 0.12
CFa4-26 0.53 -0.42 0.08 0.12 0.38 0.23
CFa6-28 0.44 -0.38 0.14 0.03 0.47 0.47
CFa3-30 0.31 -0.30 0.17 -0.06 0.62 0.58
CF30-32 0.24 -0.26 0.19 -0.11 0.69 0.59
CF32-34 0.19 -0.19 0.13 0.02 0.08 0.91
CF34-36 0.15 -0.14 0.09 0.06 -0.18 0.95

two canonical variable axes and at the neutral loading (zero,
zero) location.

Results and interpretations

Principal components analysis

To eliminate redundant variables, separate PCAs were
performed for the field and lidar data sets. For the field
data and lidar data sets, the first eight and six components
were significant, explaining 92% and 93% of variance,
respectively. Table 2 shows the field and lidar variables that
were identified as having the highest correlation with each
retained component. Pearson correlations between lidar and
field variables are given in Table 3.

Canonical correlation analysis

The two sets of variables identified using PCA were then
used in a CCA. Six canonical variables were retained for use
in regression modeling in the CCA models, with canonical
correlation coefficients ranging from 0.99 to 0.38. Using an
F statistic based on Rao approximation and Wilks’ Lambda
tests, only canonicals one through three were statistically
significant. Although the remaining canonicals were not stat-
istically significant, they were retained for use in regression
modeling as they have explanatory power in estimating the
dependent variables. In all subsequent analyses, only the set

of lidar-derived CCA components were considered. These
components were calculated directly from the lidar data,
with no mathematical contribution from the field plot data
set.

Correlations between lidar and field data with lidar
canonicals

Lidar canonical component 1 (LCC;) correlates with
mean stand height (r = 0.98), quadratic stand height (r =
0.98), and HP5;—HPy (all » >0.90) (Table 4), indicating that
it represents an index of mean stand height. In the field data
set, LCC; is correlated with mean tree height (r = 0.97), all
carbon in live biomass (r = 0.90), total basal area (r = 0.88),
and total leaf area (r = 0.83) (Table 5). This high degree of
correspondence with these variables is typical of lidar re-
mote sensing (Lefsky et al. 20055b).

Lidar canonical 2 (LCC,) correlates with the height
percentiles HP;y, HP,y, and HP5, (r = 0.80, 0.78, and 0.52,
respectively) and percentage of lidar observations CF, g,
CF4g, and CFg_jy (r = 0.67, 0.84, and 0.76, respectively);
observations from just above the lower canopy. Tree density
(r = 0.76) is the field variable most highly correlated with
LCC,, followed by basal area of lodegepole pine (r = 0.53)
and the total carbon and basal area of saplings (r = 0.40 and
0.39, respectively). Carbon in understory vegetation, carbon
in downed woody material, and seedling density have high
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Table 5. Correlations of field variables with lidar canonicals and adjusted R? and root mean square error
(RMSE) values for CCA models..

Lidar canonical

Field variable = LCC; LCC, LCCs LCCy LCCs LCCs R? RMSE
Agemean 0.83* —0.28* 0.11 0 0 -0.01 0.74 38.57
Agemax 0.74* -0.26* 0.01 0 —-0.04 -0.05 0.59 80.17
Height 0.97* -0.02 0.09 -0.02 0.03 -0.04 0.93 0.99
Allpla 0.83* -0.04 —0.24* 0.17 0.05 0.02 0.73 1.85
Treesha 0.43* 0.76* -0.09 —0.08 0.04 0.05 0.75 380.9
Sapsha —0.45% 0.25 0.14 0.01 0.02 0.14 0.18 971.6
Seedsha —0.45% -0.27 —-0.08 —-0.08 -0.05 0.10 0.18 1147
Batotal 0.88* 0.30* -0.18* 0.08 0.02 0.02 0.88 7.92
Batree 0.88* 0.25% -0.20% 0.08 0.01 0 0.87 8.56
BaLP -0.19 0.53%* 0.20 —0.04 —-0.08 —0.04 0.26 0.29
BaES 0.46* -0.13 0.03 -0.35* 0.06 0.14 0.30 0.14
BaSF 0.65* —0.34* -0.10 0.08 0.04 —0.04 0.52 0.23
BaTA -0.15 0.20 0.15 0.06 -0.01 -0.01 0 na
BaLm -0.17 0.29 0.48* 0.27 -0.02 —-0.05 0.21 0.07
Basap -0.29 0.39* 0.21 0 0.05 0.15 0.13 2.65
Allcarbon 0.85* -0.02 -0.20* 0.22%* 0.02 —0.06 0.79 51.35
Alllive 0.90* 0.02 -0.17* 0.14* 0.05 0 0.85 24.06
Abovelive 0.90* 0 -0.17* 0.15% 0.05 0 0.84 20.58
Treeaglive 0.89* 0 -0.18* 0.15% 0.05 -0.01 0.83 21.48
Sapaglive -0.22 0.40* 0.12 -0.07 0.09 0.23 0.14 1.62
Seedaglive 0.32 -0.12 0.21 -0.14 0.01 0.25 0 na

Veg —0.38* —0.63* 0.02 -0.15 0.05 0.03 0.52 0.42
Alldead 0.71* —0.06 -0.22 0.28%* -0.02 -0.12 0.55 37.95
Abovedead 0.54%* —0.33* -0.23 0.37%* 0 -0.14 0.50 19.88
Deadwoody 0.53* -0.31* -0.24* 0.39* 0 -0.14 0.53 23.05
Treeagdead 0.58* -0.22 -0.21 0.40* -0.05 -0.18 0.47 21.01
Stumps —0.35% -0.03 -0.29 0.18 0.22 0.02 0.10 18.57
CWD 0.08 —0.54* -0.15 0.05 0.18 0.12 0.27 1.67
Deadfines 0.70* 0.23 -0.13 0.09 —-0.04 —0.06 0.48 22.54
Ff 0.74* 0.24* -0.17 -0.02 0.04 0.05 0.58 19.25
SoilC 0.01 0.01 0.05 0.23 -0.19 -0.22 ns na
Allabove 0.82* -0.12 -0.20* 0.24* 0.03 —-0.05 0.76 36.5

Note: Variables with asterisks are significant (p < 0.05) in regression results for the CCA models. na, not applicable; ns,

not significant.

negative correlations with LCC, (r = -0.63, —0.54, and
—0.27, resectively). Positive values of LCC, appear to
represent forest layers within the midcanopy and the asso-
ciated suppression of vegetation below this height (plots
with mean height <3.5 m have negative LCC, values).
Increases in stem density appear to be associated with de-
layed recruitment in these stands.

Relative to the first two canonical components, LCCjy is
not clearly correlated to fundamental forest attributes, such
as forest height and forest density. LCCj is most highly cor-
related with CF4 ¢ and CFqg (0.73 and 0.38), suggesting
that, as with LCC,, LCC; is picking up understory and low
canopy characteristics in the height range associated with
sapling sized trees. Basal area of limber pine (0.48) is the
field variable with the highest correlation to LCCj. Correla-
tions with lidar canonicals LCC,4 through LCCg show a pro-
gression of increasing correlation with increasing forest
canopy height bin variables, which may be an artifact of the
analysis method (Lefsky 1997). LCCy4 is correlated with
CF4_16 through CF, 5, (r = 0.23-0.38) and negatively asso-
ciated with lower canopy height bins CFg_( and CFg_j, (r =

—0.45 and -0.40, respectively). LCCs is correlated with the
higher range of CF,4 ¢ through CF33, (r = 0.38-0.69),
and LCCq is highly correlated with the range of CF,q g
through CF34 3. LCCy, LCCs, and LCCg are most highly
correlated with the field variables carbon in aboveground
dead biomass (r = 0.40), carbon in stumps (r = 0.22) and
carbon in live seedlings (r = 0.25), respectively.

Comparison of canonical and lidar variable regressions

Stepwise regression with all lidar variables

All variable regression results (which used all lidar varia-
bles as explanatory variables) are shown in Table 3. Ad-
justed R? values range from a high of 0.93 for mean tree
height (RMSE < 1 m), basal area of all trees and saplings,
all carbon in live biomass, and carbon in aboveground live
biomass to nonsignificant for carbon in mineral soil and car-
bon in stumps. Carbon in aboveground components of live
trees, basal area of all trees, and all aboveground carbon
variables are the next three highest R? models (R? = 0.92,
0.91, and 0.90, respectively). Several other dependent varia-
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Fig. 1. Regression graphs, equations, adjusted R?, and root mean square error (RMSE) values for mean height (Height); sum of leaf area for
trees, saplings, and seedlings (Allpla); all carbon in live biomass (Alllive); tree density (Treesha); mean tree or sapling age (Agemean); and
carbon in understory vegetation (Veg) field variables using lidar canonical variables (LCCs) as explanatory variables.
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ALLPLA Predicted P<0.0001

bles are predicted well enough to be useful including tree
density (R? = 0.87), mean age (R? = 0.77), and total leaf area
(R? = 0.74). A third set of variables are estimated more
poorly but represents variables that are not commonly acces-
sible through remote sensing, including dead tree above-
ground carbon (R? = 0.73), understory herbaceous vegetation
(R? = 0.67), carbon in forest floor and mineral soil (R? =
0.61), and carbon in forest floor material (R? = 0.51).

Stepwise regression with lidar canonicals

Modeling results with the lidar canonicals as explanatory
variables, (CCA models) are shown in Table 5. Adjusted R?
values range from 0.93 for mean tree height to nonsignifi-
cant for basal area of trembling aspen and carbon in live
seedlings. Basal area of all trees and saplings, basal area of
all trees, and all carbon in live biomass are the next-highest
R? models (R? = 0.88, 0.87, and 0.85, respectively). Regres-
sion graphs and the corresponding regression equations are
given for mean height; sum of leaf area for trees, saplings,
and seedlings; all carbon in live biomass; tree density;
mean tree or sapling age; and carbon in understory vegeta-
tion in Fig. 1. The set of dependant variables that can be es-
timated from the CCA models is the same as for the all
variable analysis, although the percentage of variance ex-
plained is slightly less in nearly every case (Table 6). The
developed regression equations were used to develop spatial
maps (30 m resolution) of the stand structure and carbon

TREESHA Predicted P<0.0001

VEG Predicted P<0.0001

pool variables at each study site. The spatial maps devel-
oped with the canonical regression equation for all carbon
in live biomass (Table 5, Alllive) are shown in Fig. 2.

Summary of regressions

The all variable models have the best overall model fit as
measured by explained variance (adjusted R?) and the ratio
of mean predicted value (RMPV), (RMSE divided by the
mean predicted value). Differences between the CCA and
all Variable model R? values are shown in Table 6. The all
variable models have R? values that are, on average, 0.08
higher than the CCA models. The all variable models have
lower (reduced relative model error) RMPV ratios relative
to the CCA models. The mean RMPV value for the CCA
models with R? values greater than 0.80 is 0.21, whereas
the mean RMPV value for the corresponding all variable
models is slightly lower (improved) at 0.15.

Evaluation of environment and study site effects

Stepwise regression with environmental variables and
ANOVAs

The CCA with environment regressions models were de-
veloped to evaluate environmental influences across the
three study sites. In the CCA with environment models, in-
creases in adjusted R? relative to the CCA models range
from zero (no significant environmental variable) to as high
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Table 6. Model comparisons using adjusted R? values for all variables, CCA, and CCA with environment regression models.
Adjusted R? ANOVA on residuals
All CCAwith RMPV x RMPV x CCA with

Variable variable CCA environment All variable — CCA all variable CCA CCA environment
Agemean 0.77 0.74 0.77 0.03 0.26 0.28 ns ns
Agemax 0.62 0.59 0.59 0.03 0.34 0.36 ns ns
Height 0.93 0.93 ne 0.00 0.09 0.09 ns ns

Allpla 0.74 0.73 0.82 0.01 0.56 0.39 0.005 ns
Treesha 0.87 0.75 ne 0.12 0.25 0.35 ns ns
Sapsha 0.32 0.18 0.33 0.14 0.66 0.72 0.01 ns
Seedsha 0.19 0.18 ne 0.01 0.95 0.96 ns ns
Batotal 0.93 0.88 ne 0.05 0.14 0.18 ns ns

Batree 0.91 0.87 0.88 0.04 0.17 0.21 ns ns

BalLP 0.43 0.26 0.54 0.17 0.78 0.91 0.001 ns

BaES 0.43 0.30 ne 0.13 0.81 0.88 ns ns

BaSF 0.55 0.52 0.77 0.04 0.61 0.64 0.01 ns

BaTA 0.13 ns 0.09 0.13 3.94 na na ns

BalLm 0.36 0.21 0.41 0.15 2.86 3.33 0.02 ns

Basap 0.39 0.13 0.19 0.26 0.64 0.76 ns ns
Allcarbon 0.79 0.79 0.83 0.00 0.21 0.21 ns ns
Alllive 0.93 0.85 0.88 0.08 0.16 0.25 ns ns
Abovelive 0.93 0.84 0.88 0.09 0.17 0.26 ns ns
Treeaglive 0.92 0.83 0.87 0.09 0.19 0.28 0.04 ns
Sapaglive 0.24 0.14 0.23 0.10 0.59 0.63 0.003 ns
Seedaglive 0.11 ns 0.18 0.11 0.83 na na ns

Veg 0.67 0.52 ne 0.15 0.54 0.65 ns ns
Alldead 0.62 0.55 ne 0.07 0.23 0.26 ns ns
Abovedead  0.52 0.50 0.55 0.03 0.86 0.89 ns ns
Deadwoody  0.51 0.53 0.58 -0.02 0.86 0.84 ns ns
Treeagdead  0.73 0.47 ne 0.27 0.94 1.51 0.03 ns
Stumps ns 0.10 ne -0.10 na 10.32 ns ns

CWD 0.29 0.27 ne 0.02 0.64 0.20 ns ns
Deadfines 0.51 0.48 ne 0.03 0.18 0.19 ns ns

Ff 0.61 0.58 0.64 0.04 0.30 0.32 ns ns

SoilC ns ns 0.17 na na na na ns
Allabove 0.90 0.76 0.82 0.14 0.22 0.35 ns ns

Note: RMPV, ratio of mean square error to the mean predicted value for all variable and CCA models. Regression model residual tests for analysis of
variance (ANOVA, F), ;) by site and significance level, for the CCA and CCA with environment” models. na, not applicable; ne, no significant envir-

onmental variables; ns, not significant.
*RMPV is RMSE/MPV. MPV is mean predicted value.

as 0.28 for basal area of lodgepole pine (Table 6). The CCA
with environment models having greater than 0.05 increases
in adjusted R? values all occur in models having relatively
low explained variance (R? < 0.76) in the CCA models.

ANOVAs by study site were performed on the CCA and
CCA with environment model residuals to determine if sig-
nificant site differences still existed after environmental dif-
ferences were accounted for in the CCA with environment”
models. ANOVA by study site for the CCA and CCA with
environment models were significant for eight and no mod-
els, respectively (Table 6). Significant site differences exist
for the total leaf area, basal area of lodgepole pine, basal
area of limber pine, basal area of subalpine fir, carbon in
live saplings, sapling density, carbon in aboveground com-
ponents of live trees, and carbon in aboveground dead tree
biomass variables in the CCA models. Site differences for
species-specific basal areas are expected because species
distribution is not uniform across sites, for example, limber
pine is absent from Glees and Fraser. ANOVA results on the

CCA with environment model residuals were nonsignificant
for all variables. This implies that the environmental site dif-
ferences observed in the significant CCA model ANOVAs,
are incorporated in the CCA with environment models. By
the inclusion of the two terrain and three climatic variables,
a single equation can be used to capture study site variability.

Examination of canopy and stand structure development

Field data correlation graphs with lidar canonicals 1 and 2

The degree of correlation between each field data variable
and the first two canonical components were graphed
(Fig. 3), and four distinct clusters were observed. In this
space, the distance between variables indicates the degree
of statistical independence between them (larger distances
indicating lower correlation). The first cluster variables are
the most reliable estimates with high degrees of correlation
with LCC; and moderately positive to moderately negative
correlations with LCC,. This cluster is related to numerous
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Fig. 2. Spatial map of all carbon in live biomass (Alllive) for the Fraser, Glees, and Niwot study sites using CCA explanatory variable

regression equation (see Table 5).

Fraser

Niwot

variables related to forest height including forest age, bio-
mass, and basal area. Cluster two consists of the tree density
variable, which is moderately correlated with LCC; and
highly correlated with LCC,.

Cluster three consists of sapling variables and the basal
area of lodgepole pine, limber pine, and trembling aspen.
This cluster has moderate negative correlations with LCC
and moderate positive correlations with LCC,, indicating
these variables are highest at shorter stand heights and
higher levels of midstory development. It is necessary to
stress that the species relationships observed in canonical
space are picking up forest structure characteristics associ-
ated with the sampled study plots; thus, observed patterns
are not intrinsically tied to species type. For example, lodge-
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pole pine can be associated with mature forest having high
stand heights and minimal sapling presence.

Lastly, cluster four consists of numerous understory re-
lated variables including seedling variables and carbon in
stumps, downed woody debris, mineral soil, and understory
vegetation. Cluster four has a large correlation range, with
LCC, correlations from neutral to moderately negative and
LCC, correlations from neutral to highly negative.

Mean age graphs by lidar canonical variables 1 and 2
Canonicals LCC, and LCC, are strongly related to struc-
tural correlates of forest succession within our three study
areas. Graphs of forest age by LCC; and LCC, values show
the relationship between mean forest age and forest structure
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Fig. 3. Field data variable correlations with lidar canonicals 1
(LCCy) and 2 (LCC2).
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Correlation between LCC, and Field Variables

(Fig. 4); three age-related clusters are apparent. Plots with
negative LCC, and LCC, values are generally young in age
(mean age <50 years), intermediate-aged plots (mean age
between 50 and 175 years) have neutral LCC; and positive
LCC, values, and lastly, the mature cluster (>175 mean
age) have positive LCC; and neutral to negative LCC, val-
ues. LCC; explains the majority of the variance in stand age
(69%); the inclusion of LCC, explains an additional 5% of
variance, which is related to midstory development. Two
Niwot sites with mean tree ages of 48 years are outliers
from the young cluster having positive LCC, values of 1.76
and 0.91. Relative to the other young sites these two plots
have high sapling densities.

Discussion

Much of the research investigating forest canopy and
stand structure complexity has been performed in high-
productivity forest types such as tropical rain forests (e.g.,
MacArthur et al. 1966; and Drake et al. 2002) and old-
growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)
forests of the Pacific Northwest (Weiss 2000 and Parker et
al. 2004). Older forests of these types have high canopy
cover and stand height. Using multivariate analysis methods,
this study investigated forest structure patterns and com-
pared similar patterns in subalpine forest, which are shorter
and have lower canopy cover and biomass. The mean
aboveground live biomass of forests in this study is
80 Mg C-ha’!; the mean aboveground live biomass of con-
iferous stands in the Pacific Northwest (Lefsky et al. 2002)
is 300 Mg C-ha-!. Important to this study was the analysis
of the large forest structure data set consisting of 32 de-
pendent variables, of which 15 and 17 were related to
stand structure and carbon pool measures. Analysis of this
robust data set allowed for the simultaneous evaluation of
covariance between numerous forest variables that are in-
fluenced by forest structure complexity.

2091

Fig. 4. Mean tree age plotted against LCC; and LCC; values.
Points are plots within the three sites. Point I (F17: LCC; = -1.77,
LCC; = -0.43), point II (F9: LCC; = -0.14, LCC; = -0.31), point
III (G12: LCCy = 1.11, LCCz = 0.01), point IV (N2: LCC; = -0.24,
LCC;, = 1.76), and point V (G9: LCC; = 0.12, LCC, = —1.00). The
arrow tracks the development of forests from young to mature for-
ests.
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Comparison of canonical and lidar variable regressions

Regression analysis results

The forest height related variables: forest height, biomass,
basal area, and forest age are known to have a relationship
with lidar-derived indices. Numerous studies have shown a
strong relationship between discrete-return forest canopy
height measurements and field-based canopy height meas-
urements (Nasset 1997; and Popescu et al. 2002). A strong
height and biomass relationship was also observed in this
study with modeling results for height and biomass variables
having R? values >0.90. A strong relationship between leaf
area measurements and lidar has been shown using height
percentiles and height indices (Magnussen and Boudewyn
1998; Riafio et al. 2004), first and last lidar return ratio
(Morsdorf et al. 2006; Solberg et al. 2006) and using wave-
form data (Lefsky et al. 1999). This LAI relationship was
also observed in this study with modeled LAI R? values of
0.74, 0.73, for the all variable, and CCA models.

The all variable regression models on average have
slightly higher explained variance and lower RMPV values
relative to the CCA regression models. The slightly better
model fit in the all variable models was expected and may
be a product of overfitting the models. The strength of
CCA is its use in multivariate analysis to evaluate forest
structure patterns that are not apparent when evaluating
variables at a singular level. This said, a fundamental weak-
ness and strength of using CCA is the loading of multiple
variables per canonical. This loading of multiple variables
allows for the assessment of covariance but also makes
interpretation and verification of the derived canonical
values more difficult (Kikkawa 1982). For example, the
LCC, canonical is highly correlated with both tree density
and basal area of lodgepole pine, making interpretation of
the canonical more difficult.
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Table 7. Correlation values of mean tree age and tree density (with total ecosystem
carbon, all carbon in live biomass, and all carbon in aboveground live biomass.

Total ecosystem

Carbon in live

Carbon in aboveground

carbon biomass live biomass

Mean tree age

Field 0.67 0.71 0.70

All variable 0.93 0.87 0.87

CCA 0.90 0.92 0.92
Tree density

Field 0.30 0.42 0.40

All variable 0.45 0.44 0.45

CCA 0.47 0.48 0.48

Note: Correlations are presented for each combination of variables: the correlation between
the original field estimates and the correlation of estimates from the all variable and CCA

methods.

When two variables have a close proximity in the LCC,
and LCC, ordination space, their estimates will be more
highly correlated with each other than the original two vari-
ables. This is true for both the all variable and CCA esti-
mates, but the correlation of the estimates will be higher
using the CCA estimates. The increased correlation of the
estimated variables is due to similarity of each variable’s
relationship to the canonical components that are used to
estimate them. This tendency is demonstrated by Table 7,
which reports the level of correlation between three of the
cluster I variables (total ecosystem carbon, all carbon in
live biomass, and carbon in aboveground live biomass) with
two variables: mean tree age (another cluster I variable) and
a cluster II variable (tree density). As expected, field esti-
mates of mean tree age have a relatively high correlation
with the other cluster I variables with R? values ranging
from 0.67 to 0.71, but correlations of the all variable and
CCA estimates of mean tree age are substantially higher,
with R? values of 0.87-0.93 and 0.90-0.92, respectively. In
contrast, the correlation between the tree density estimates
(from either the all variable or CCA analyses) were only
slightly higher than the correlation between the field esti-
mates of these variables.

Examination of canopy and stand structure development

Canonical correlation analysis

Four distinct clusters were identified in the LCC{-LCC,
ordination graph (Fig. 3). As determined from the mean age
graph and correlations between the field and lidar variables,
LCC, is highly correlated with forest height, biomass, and
forest age. Plots having high LCC; values are intermediate
to mature in age (>175 years) with high forest height and
biomass. Conversely, plots having low LCC; values are
young in age (<50 years) with low forest height and biomass
values. LCC, tracks the successional development of forests
from young to mature (Fig. 4). In low LCC, plots, LCC,
tracks the transition from young plots with seedlings (low
LCGC,) to intermediate-aged plots (high LCC,) with saplings
and low-stature lodgepole pine, limber pine, and aspen,
which in these plots are primarily young, and relatively
dense short stands. For high LCC; plots (mature and old),
variation in LCC, is more subtle but differentiates between
newly mature stands with high stem density (high LCC, val-
ues) to older stands (low LCC, values) having high dead

woody material from increased mortality and high basal
area of spruce and fir (which are the oldest trees in our
study plots). The loading of multiple forest structure compo-
nents (e.g., sapling density, tree density, dead wood mate-
rial, and basal area of spruce) on LCC, is an example of
the major advantage of using canonicals to study forest
structure relative to singular lidar indices.

The sapling and basal area variables associated with clus-
ter IIT (Fig. 3) all have explained variances <0.50. Sapling
and seedling variables (predominately <2 m) contribute few
lidar returns in dense multistoried canopy forests, and any
ability to estimate their abundance is due to their correlation
with overstory canopy structure. We expect that these corre-
lations would be modified by numerous site factors such as
forest age, forest life form (deciduous versus coniferous),
forest composition, and terrain slope.

In these subalpine forests, a substantial fraction of total
ecosystem carbon is stored in forest floor material (Bradford
et al. 2008), so estimating forest floor carbon with lidar
would be a valuable carbon assessment tool. The forest floor
variables associated with cluster IV (Fig. 3) are poorly ex-
plained by the lidar variables in regression models. Carbon
in understory vegetation is the only variable with R? val-
ues >0.50 (0.67 for all variable and 0.52 for CCA). This
suggests that, although there may be an underlying level of
forest structure influencing these variables (as observed by
the formation of the cluster), the lidar canonicals and indices
used in this analysis poorly explain the cluster IV forest
floor variables.

Conversely, the forest floor variables in cluster I (carbon
in forest floor and mineral soil and carbon in forest floor
material) have moderate explained variance values (R? =
0.51 and R? = 0.48 and R? = 0.61 and R? = 0.58) in the re-
spective all variable and CCA models. Soil carbon is poorly
estimated so that there is no difference between the correla-
tion of LCC; and LCC, and the two variables. It is only the
forest floor carbon component that is being tracked by these
two variables, and this apparently monotonically increases
with stand age.

Estimation of forest understory variables with discrete-
return lidar represents an area for potential research in the
future, especially in light of technology advancements,
which are resulting in increased lidar sensor capacity (e.g.,
greater return density and full waveform returns). Current
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Fig. 5. Lidar point clouds for the five selected field plots in Fig. 4 representing the range of observed LCC; and LCC> values.
IV.N2, LCC,: -0.24, LCC,: 1.76
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Fig. 6. Vertical return distributions for the five selected field plots in Fig. 4 representing the range of observed LCC; and LCC; values.
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research at the Fraser, Niwot, and Glees sites is studying
the relationship between lidar-derived height-variability
measures and understory variables such as carbon in
CWD, and carbon in stumps (Barry et al.2).

Lidar canonical variables 1 and 2 visual assessments

Five study plots were selected from the graph of the
LCC; and LCC, values by plot location (Fig. 4). For each
selected plot the coincident lidar point cloud and vertical re-
turn distributions are examined (Figs. 5 and 6). Vertical re-
turn distributions (apparent foliage profiles) have been used
to evaluate differences in vertical and horizontal canopy
structure across structurally diverse forest plots (Coops et
al. 2007). Visualization was performed to assess the ability
of the lidar height data to qualitatively assess the LCC; and
LCC, values and to increase understanding of the loadings
on the first two canonicals. Mature plots with high LCC,
loadings and high forest heights should be readily visible in
the lidar returns. Intermediate-aged plots with high tree den-
sity may be more difficult to visually recognize. Of particu-
lar interest is whether the lidar point cloud data can be used
to differentiate high and low tree densities.

Point T (Figs. 5 and 6) has a negative loading for both
LCC, and LCC, with values of —1.77 and —0.43. Visually
the loadings for both LCC; and LCC, are apparent. This
site has recently been logged (1983 clearcut) and is
composed of young regeneration (mean tree age 14 years)
with a majority of lidar returns within 7 m of the ground
surface. This plot is short in height with low tree density

(187 trees-ha™!) and has low total basal area and tree bio-
mass values that contribute to the high negative LCC; value.
Point I has low tree density (reduced LCC,) but high lodge-
pole pine basal area (BaLP = 1) (positive LCC,) offsetting
each other to yield a moderately negative LCC, value.
Point II is a mature plot (mean tree age of 180 years) with
LCC; and LCC, values of —0.14 and —0.31. This plot has
areas of moderate forest height (10-21 m), which is observ-
able in the southeastern quarter of the plot. The remaining
plot areas are dominated by pockets of low to moderate for-
est height (2-12 m), contributing to the near-neutral LCC,
value. For the point II plot visually, it is difficult to deter-
mine the plot’s tree density. Similar to point I, point II has
high basal area of lodgepole pine (BaLP = 0.53), which in-
creases the LCC, value, and conversely the lower relative
tree density (721 trees-ha-!) decreases the LCC, value.
Point III is a mature plot with a mean tree age of
205 years, with LCC; and LCC, values of 1.11 and 0.01.
This site appears to be a relatively tall forest with many
returns >18 m and little apparent undergrowth along the for-
est floor. Visual inspection confirms that this is a mature
stand with dominant trees between 18 and 27 m tall. Com-
parison of points III's and II's vertical return distribution
(Fig. 6) shows that point III has a greater proportion of re-
turns in the middle to upper canopy above 10 m. A site hav-
ing little to no loading on LCC, is expected to have
moderate tree density. From the point cloud, it can be seen
that the plot does have forest gaps with little to no under-
story vegetation (saplings and seedlings) interspersed with

2P.J. Barry and M.A. Lefsky. Forest CWD relationship to Lidar-derived canopy structure. In preparation.
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areas having some lower height (<10 m), likely sapling
sized trees, overall helping to explain the neutral LCC,
value.

Point IV has LCC; and LCC, values of —-0.24 and 1.76
and is a young stand (mean tree age of 48 years). Visual ex-
amination of both the point cloud and vertical return distri-
bution shows an intermediate aged forest with low to
moderate forest heights (~2-17 m), which is in agreement
with the slightly negative LCC, value. This plot has a high
tree density (1679 trees-ha™!) and a high proportion of re-
turns in the lower to middle canopy range (2-10 m) as indi-
cated in the vertical return distribution. The point cloud
indicates that the majority of the plot consists of lower to
middle canopy returns associated with intermediate stand
age development. As previously mentioned, this young-aged
plot (<50 years) with a high LCC, value is an outlier from
the other young aged plots because it has a high tree density
and is closer in forest structure to an intermediate-aged plot.

Point V is intermediate in age (mean tree age 141 years)
with LCC; and LCC, values of 0.12 and —1.00. From the
point cloud visually, it is apparent that this plot has high
horizontal spatial variability, with the western half consist-
ing of a mature forest and the eastern half being predomi-
nately nonforested. Point V’s vertical return distribution in
the midcanopy ranges between 2 and 10 m is noticeably
lower than point IV’s (high positive LCC,) with all bin per-
centages being less than 0.082. The large trees that do occur
at this plot are tall (~17-27 m) and old (maximum tree age
332 years); however, the density is low (211 trees-ha™!).

Examination of these point clouds indicates the impor-
tance of horizontal spatial variability in forest structure.
Within plots, there can be considerable variance in forest
height. For example, point V goes from bare ground in the
eastern half of the plot to relative low-density mature forest
in the western half. It is important to note that this spatial
variability can result in misleading canonical values.
Although not included in this paper, it is worth mentioning
that subplot level analyses were performed and resulted in
findings similar to those of the plot level indicating that,
although visually heterogeneous, the same patterns we ex-
amine here are applicable at the subplot scale as well.

Conclusions

This study applies an existing methodology (Lefsky et al.
2005a) for analysis of forest canopy complexity and subse-
quent regression analysis, to lidar data sets with discrete re-
turn lidar-derived canopy indices. Graphs of the correlation
between the first two canonical variables and field-derived
forest structure variables reveal distinct groupings of forest
structure. Visualization techniques help increase the inter-
pretability of the derived canonicals.

Modeling results support the use of explanatory variables
derived from canonical correlation analysis in the modeling
of field-derived forest structure and forest biomass variables
at three subalpine forest sites, suggesting that CCA can be
used for enhancement of lidar data (Lefsky et al. 2005a)
similar to tasseled cap indices (Crist and Cicone 1984) for
other optical remote sensing data types. Overall, the best
modeling results (slightly higher R? and lower RMPV) are
achieved using the independent lidar indices. Of particular
interest is the successful development of regression equa-
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tions for the forest height (R = 0.93) and biomass-related
variables (R? > 0.92 for all variable, and R? > 0.79 for CCA
models).
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