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Modeling Transport in Transient Ground-Water Flow:
An Unacknowledged Approximation

by Daniel J. Goode®

Abstract. During unsteady or transient ground-water flow, the fluid mass per unit volume of aquifer changes as the
potentiometric head changes, and solute transport is affected by this change in fluid storage. Three widely applied numerical
models of two-dimensional transport partially account for the effects of transient flow by removing terms corresponding to
the fluid continuity equation from the transport equation, resulting in a simpler governing equation. However, fluid-storage
terms remaining in the transport equation that change during transient flow are, in certain cases, held constant in time in these
models. For the case of increasing heads, this approximation, which is unacknowledged in these models’ documentation,
leads to transport velocities that are too high, and increased concentration at fluid and solute sources. If heads are dropping
in time, computed transport velocities are too low. Using parameters that somewhat exaggerate the effects of this
approximation, an example numerical simulation indicates solute travel time error of about 14 percent but only minor errors
due to incorrect dilution volume. For horizontal flow and transport models that assume fluid density is constant, the product
of porosity and aquifer thickness changes in time: initial porosity times initial thickness plus the change in head times the
storage coefficient. This formula reduces to the saturated thickness in unconfined aquifers if porosity is assumed to be
constant and equal to specific yield. The computational cost of this more accurate representation is insignificant and is easily

incorporated in numerical models of solute transport.

Introduction

The ground-water flow and solute transport model of
Konikow and Bredehoeft (1978) has been applied to a wide
range of hydrogeologic conditions over the past 20 years.
Recently, I examined the model results for a simulation in
which a large volume of contaminated water was injected
into a thin aquifer. Despite repeated adjustment of various
simulation parameters such as grid spacing and time steps
for the flow and transport solutions, the transport solution
exhibited unacceptably high mass balance errors, on the
order of 30 percent. The fluid injection resulted in large
increases in the potentiometric head, and there were numer-
ous concerns about whether the physical scenario was con-
sistent with the assumptions of the two-dimensional hori-
zontal model. However, even if these assumptions were not
appropriate from a physical basis, the model itself should
still conserve solute mass, mathematically and numerically.

Detailed examination of these simulations and the
model algorithms showed that the lack of solute mass con-
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servation resulted from an unnecessary and unacknowl-
edged approximation in the transport solution for the case
of unsteady or transient flow. The solute-transport model
did not fully account for changes in fluid storage (the
volume of water per unit area of aquifer) that occurred
during transient flow. As a result, the ground-water veloci-
ties, dispersion coefficients, and dilution volumes (fluid
volume per model cell) used in the transport solution were
incorrect. Subsequent examination of other models indi-
cated that the models of Prickett and others (1981) and of
Voss (1984) contain analogous unacknowledged approxi-
mations that can cause mass balance errors and incorrect
solutions of the solute transport equation for some cases of
transient flow. These three computer programs are probably
the most widely used simulators in the world for solute
transport in two dimensions. These errors exist in the codes,
in part, because typical test cases for transport models do
not include transient flow conditions. Other models (e.g.,
Reddell and Sunada, 1970) properly account for the effects
of temporal changes in fluid-storage terms on solute
transport.

More recently, Illangasekare and Doll (1989) present a
new transport model and report 4 percent solute mass bal-
ance error for a transport simulation under transient flow
conditions. It is not clearly stated whether fluid-storage
changes are accounted for in their transport solution when
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transmissivity is constant. However, in comparing their
model to the confined-flow model of Konikow and
Bredehoeft (1978), “the mass balance errors . . . were
found to be approximately the same for both models”
(Illangasekare and Doll, 1989, p. 865), suggesting that tem-
poral fluid-storage changes are not maintained in the trans-
port equation. The ambiguous treatment of fluid-storage
terms appearing in the two-dimensional transport equation
suggests that a reminder is needed.

This note briefly reviews the two-dimensional solute-
transport equation as simulated by the models of Konikow
and Bredehoeft (1978) and Prickett and others (1981). A
numerical example is presented to illustrate errors induced
in the solute-transport solution by ignoring fluid-storage
changes during transient flow. A simple updating procedure
is suggested to correctly account for changing fluid storage
in the numerical algorithm,

Review of Governing Equation

The governing equation for two-dimensional horizon-
tal solute transport in transient incompressible-fluid flow
can be written as (Konikow and Grove, 1977, p. 21; cf. Bear,
1979, p. 258):
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where i, j= 1,2 are indices for Cartesian coordinates (x; = x;
X2 =y); € 1s porosity; b is saturated thickness; C is volumetric
concentration (solute mass per unit volume of fluid); V; is
the linear fluid velocity; Dj is the dispersion coefficient
tensor; W is the fluid sink rate (negative for fluid sources);
and C’ is the concentration in the sink or source fluid. For
sinks (W > 0), it is often (Konikow and Grove, 1977, p. 13),
though not necessarily, assumed that the concentration in
fluid leaving the aquifer is equal to the concentration in the
aquifer at that point, i.e., C'= C. This boundary condition is
adequate for most field-scale modeling studies, but may not
be appropriate for detailed examination of, for example, the
concentration immediately adjacent to a pumping well,
particularly at relatively early times. The assumptions
embodied in this governing equation are described by
numerous authors (e.g., Konikow and Grove, 1977; Bear,
1979).

Expanding the accumulation and advection derivatives
in(1), adding (CW — CW = 0), and rearranging yields (after
Konikow and Grove, 1977, p. 22):
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The last bracketed term in (2) is the sum of the fluid accumu-
lation rate, flux divergence, and sources, and must be zero to
satisfy fluid mass balance or continuity, leaving (cf. Bear,
1979, p. 242):
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or, dividing by e¢b (Konikow and Bredehoeft, 1978; cf.
Prickett et al., 1981, p. 2; cf. Illangasekare and Doll, 1989,
p. 860),
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This simpler form of the solute-transport equation may
reduce errors in numerical models because some of the
numerical errors in the flow equation solution are not prop-
agated into the solute-transport equation, as in (1) (Voss,
1984). Using finite-difference or finite-element techniques
for the flow equation, the numerical errors in the spatial
gradient of velocity and the temporal gradient of head,
needed in (1), are larger than the numerical errors in the
point value of velocity and head needed in (4). Based on the
mathematical mechanics of its derivation, equation (4) can
be thought of as a “flow-equation-removed” form; Voss
(1984, p. 60) designates an analogous form for the case
of compressible-fluid flow as “fluid-mass-conservative.”
Equation (4) may also be somewhat advantageous for
Lagrangian-type models of solute transport because the
advective term has only C within the derivative, and not V or
other terms, although that is not a general requirement for
Lagrangian models. In addition, fluid sinks are naturally
handled: if it occurs or is assumed that C’'= C at sinks (W >
0), the last term drops out. Regardless of the possible moti-
vations for using (3) or (4), for the purposes of this note, it is
sufficient to state that these forms are used in at least three
numerical models that purport to simulate solute transport
in transient flow. Equations (3) and (4) are only appropriate
for transient flow cases if the temporal variability in the
product eb is maintained.

Contrary to the assumptions embodied in the com-
puter program of Konikow and Bredehoeft (1978), the
product b in (3) and (4) is not constant in time during
transient flow. The first term in the bracket in equation (2) is
the time rate of change of fluid volume per unit area of
aquifer, and is commonly related to potentiometric head (h)
by:

d(eb)  dh
dat at

where the storage coefficient, S, accounts for changes in
fluid volume per unit area due to changes in head. Here we
follow Fried (1975, p. 283) and Bear (1979) and consider that
equation (5) is an operational definition of S, “without
analyzing [its] internal relationship to the compressibilities
of water and solid matrix”(Bear, 1979, p. 86), or whether the
aquifer is unconfined or not.

The conceptualization of fluid-storage changes
depends on whether the aquifer is confined or not. For
unconfined or water-table aquifers, the storage change due
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to fluid and aquifer matrix compressibility is small com-
pared to the storage change due to vertical movement of the
top of the saturated zone (the water table). In this case, a
common assumption is S = e = specific yield, and (5)
equates changes in saturated thickness with potentiometric
head changes. It has been observed that specific yield can be
significantly less than porosity. However, this difference is
ignored here to be consistent with the models of Konikow
and Bredehoeft (1978) and Prickett and others (1981). On
the other hand, thickness (b) is often assumed to be constant
in confined aquifers (e.g. de Marsily, 1986, p. 131), in which
case (5) tracks the change in porosity due to head change.
Here, no assumptions are made about how either porosity
or thickness changes individually, only that their product is
represented by (5). If both porosity and thickness are
assumed to be constant, then S =0 and aquifer heads are in
steady-state equilibrium with imposed boundary con-
ditions.

Prickett and others (1981) account for transient
changes in saturated thickness in unconfined aquifers, but
incorrectly use constant porosity and saturated thickness for
confined systems, in which transmissivity is constant, even if
S # 0. Voss (1984) holds porosity, thickness, and fluid
density constant in an analogous solute-transport equation
in transient compressible-fluid flow (see Goode, 1990). The
removal of the flow-continuity equation from (1) removes
the time derivative of the product eb, but does not imply that
the product is constant in time, even for confined aquifers.

Changes in fluid storage in the aquifer (if S # 0)
correspond to changes in porosity and thickness, and the
product ¢b is a function of head [from (5)]:

t  oh
eb=(eb)o+ [ S — dt (6)
0 at

or, for constant S,
eb = (eb)o + S[h — ho] (7

where subscript 0 indicates the initial condition. Thus, for
constant S, the product of porosity and thickness is a simple
linear function of head. If porosity is assumed to be constant
in time and equal to the storage coefficient, equation (7)
equates changes in saturated thickness with head changes, a
common model of fluid storage in water-table aquifers
(Prickett et al., 1981).

Models that do not account for changes in fluid storage
during transient flow will yield inaccurate solutions to the
transport equation. In addition to using the incorrect
volume for dilution, velocities and dispersion coefficients
will be incorrect. Using Darcy’s law, velocity is given by the
flux per unit width of aquifer divided by the product of
porosity and saturated thickness:

v — 1 T dh ®

l eb  9x
where ¢b is given by (7). Equation (8) applies for confined or
unconfined flow, regardless of whether transmissivity is a
function of head or not. Likewise, the term 1/eb modifying
the dispersion term also changes in time during transient
flow. In an aquifer in which heads are increasing in time and

S #0, the use of the initial value (eb)o will result in exagger-
ated velocities. This occurs because the ground-water flux or
specific discharge, which is independent of changes in €b
associated with fluid storage and depends only on the head
gradient and transmissivity, is divided by a constant (eb)o
that is smaller than the actual transient value (7). Goode
(1990) quantifies these errors for two simple transient flow
cases having analytical solutions. Analogous errors occur in
models of transport in transient compressible-fluid flow
(e.g. Voss, 1984) that hold fluid density constant in the
flow-equation-removed transport equation (Goode, 1990).
In the next section, the impact of ignoring fluid-storage
changes during solute transport in transient flow are illus-
trated by a numerical example.

lllustration of Approximation Errors

The combined effects of dilution volume, velocity, and
dispersion errors can be illustrated by numerical simulation
of transient flow and transport using the model of Konikow
and Bredehoeft (1978). This model solves the transient linear
flow equation using finite-difference techniques, and solves
the flow-equation-removed solute-transport equation (4)
using finite differences and the method of characteristics.
The method of characteristics introduces minimal numeri-
cal dispersion when the dispersion coefficients are small
relative to velocity, as assumed here. The computer program
was recently updated (D. J. Goode and L. F. Konikow,
written communication, 1988) to account for temporal
changes in the product of porosity and thickness in the
transport equation during transient flow. These modifica-
tions do not affect the flow-equation solution.

The previous model version, which ignored temporal
changes in eb, and the updated version are applied to a 185
m long aquifer discretized by 37 finite-difference blocks (5 m
each) in x and 15 blocks (1 m each) in y (Figure 1). Potenti-
ometric head at the nodes at one end of the aquifer (x = 180
m) is held constant at h = 100 m, which is also the initial
condition throughout the aquifer. Water is injected at a
constant rate of W =—129.6 m*/day per meter of boundary
at the other end of the aquifer (blocks centered at x =2.5 m).
The model y boundaries are zero flux for both water and
solute. Initial concentrations are zero everywhere and in the
injected fluid except for the block centered at x = 2.5 m,
y = 0.5 m, where the concentration in the injected fluid is
C’ = 5000 (arbitrary units). Aquifer hydraulic conductivity
is K = 8.64 m/day, initial saturated thickness is bo = 100 m,
and initial porosity is €0 = 0.1. The storage coefficient is also
S = 0.1. This storage coefficient corresponds to either an
unconfined aquifer, or to a confined aquifer with a porous
matrix compressibility of about 10”7 m?/N, the upper limit
for sand reported by Freeze and Cherry (1979, p. 55). The
“rough” range of storage coefficients for confined aquifers is
considered to be 0.05 to 10~ by de Marsily (1986, p. 111). Use
here of this large value (S = 0.1) for a confined aquifer
results in larger errors than would be expected for most
confined aquifers given similar head changes. This example
is for illustrative purposes only.

For comparison, the model is also applied under the
assumption of steady-state confined flow, using constant
porosity and thickness equivalent to the initial condition of
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Fig. 1. Concentration contours at six days using different
numerical model formulations: transient confined flow
using ¢b updated in time (solid curves); transient confined
fiow using constant ¢cb = (cb), (dashed curves). Simulation
boundary conditions and the resuiting flow direction are
also indicated.

the transient simulations. Furthermore, a modified version
of the flow and transport model, in which transmissivity is a
linear function of head (T = Kh), is applied to show the
effect of ignoring transmissivity changes in an unconfined
aquifer for this transient flow problem.

Figure 1 shows the spatial distribution of solute mass at
six days assuming constant transmissivity and either con-
stant (eb)o (dashed curves) or changing eb due to changing
heads (solid curves). The plume front advances too rapidly if
the increase in b is ignored, whereas behind and ahead of
the front the differences between the solutions are minor.
For this transient flow problem, the product of porosity and
thickness increases because heads increase and the storage
coefficient is nonzero.

Potentiometric heads in the aquifer, which are uniform
in y because of the one-dimensional boundary conditions,
are essentially at steady-state after about seven days (Figure
2; these results are for the confined case, T = constant in
time). At steady-state, heads vary linearly from one end of
the aquifer to the other for constant T. Because the storage
coefficient is not zero, and heads increase in time, the
volume of water stored in the aquifer also increases in time
following (7). The maximum increase in storage occurs in
the injection block (in this model, fluid and solute sources
are assumed to be distributed uniformly over the finite-
difference grid block) where the relative increase in storage
(change in storage divided by initial storage) is 27 percent:

S(h—ho) _ 0.1(127 — 100)
(b)e  0.1(100)

The error in velocity is clearly illustrated by concentra-
tion breakthroughs at several distances from the injection
block on the plume centerline (Figure 3) using either con-
stant eb = (eb)o (dashed curves) or updating ¢b in time
following (7) to account for fluid-storage changes (solid
curves). Figure 3 also shows the breakthrough at 75 m for
steady-state confined flow simulation using eb = (eb)o

=0.27 )
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(dots), and for transient unconfined flow conditions (trian-
gles) in which transmissivity is a linear function of head. The
minor fluctuations in the concentrations are due to the
discrete nature of the method of characteristics (Konikow
and Bredehoeft, 1978). The differences between the solid
and dashed curves at the injection block (x = 0 m) indicate
that the dilution volume using constant eb (dashed curve) is
too low, resulting in slightly elevated concentrations (Figure
4).

The error in the advection term is most significant for
this problem—constant eb (dashed curves in Figure 3) yields
a travel time about 14 percent too short at 75 m. This error
would be larger if the boundary flux was larger or if the
initial thickness was smaller. Breakthrough under transient-
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Fig. 2. Hydrographs of potentiometric head at several dis-
tances from injection blocks for transient confined (con-
stant T) flow.
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Fig. 3. Centerline concentration breakthrough at several
distances from the injection block using different numerical
model formulations: transient confined flow using ¢b
updated in time (solid curves); transient confined flow using
constant b = (eb), (dashed curves); steady-state confined
flow using ¢b = (eb), (dots); and transient unconfined flow
(triangles).
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Fig. 4. Detall of Figure 3 showing concentrations in the
Injection block using different numerical model formula-
tions: transient confined flow using ¢b updated in time
(solid curves); transient confined flow using constant
¢b = (¢b). (dashed curves).

flow conditions using constant (eb)o is very similar to break-
through under steady-flow conditions using the same (eb)o
(dots). For this problem, the primary impact of the transient
flow conditions is the resulting change in fluid storage in
time, and not the temporal variability in velocity caused by
changing gradients.

Because this flow problem is one-dimensional, and a
flux boundary condition is used, accounting for changes in
transmissivity due to water-table movement only slightly
changes the solute-transport solution (Figure 3, triangles).
The ultimate steady-state heads for unconfined conditions
are somewhat lower due to the increase in transmissivity.
However, the solute-transport solution for this case is very
similar to that for the case of constant transmissivity (Figure
3). The major effect of increasing saturated thickness on
transport for this case is the change in fluid storage, not
transmissivity, and the effect of changing fluid storage is
accounted for simply by updating eb in time in the transport
model.

As mentioned in the introduction, this problem first
came to light because of mass balance errors. For this case of
confined (constant T) transient flow, using constant (eb)o
yielded mass balance errors on the order of 5 percent, while
updating eb in time yielded mass balance errors on the order
of 1 percent. The simulation mentioned in the introduction
exhibited larger mass balance errors because the relative
change in fluid storage [equation (9)] was over 100 percent.

Summary and Conclusions

Removing the time derivative of fluid storage and flow
divergence terms from the solute-transport equation does
not imply that fluid-storage terms—porosity, saturated
thickness, and fluid density—remaining in the transport
equation are constant in time during transient flow. Never-
theless, this has been assumed in three widely applied
numerical models. For the numerical simulation presented

using the model of Konikow and Bredehoeft (1978), ignor-
ing temporal changes in fluid storage, the product of poros-
ity and saturated thickness, results in about 14 percent error
in solute travel time. From a practical perspective, of course,
this error is small relative to the uncertainty and variability
inherent in model parameters for field-scale simulation.
However, eliminating the dilution, velocity, and dispersion
errors associated with fluid-storage transients is straight-
forward and computationally inexpensive. Any transport
model that purports to simulate the effects of transient
(S # 0) flow should maintain temporal changes in fluid-
storage terms appearing in the transport equation.
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