Composite Recovery Type Curves in Normalized
Time from Theis’ Exact Solution

by Daniel J. Goode®

Abstract

Type curves derived from Theis’ exact nonequilibrium well function solution are proposed for graphical estimation of aquifer
hydraulic properties, transmissivity (T), and storage coefficient (S), from water-level recovery data after cessation of a constant-
rate discharge test. Drawdown (on log scale) is plotted versus the ratio of time since pumping stopped to duration of pumping, a
normalized time. Under Theis conditions, individual type curves depend on only the dimensionless pumping duration, which
depends in turn on S and radial distance from the pumping well. Type curve matching, in contrast to the Theis procedure for
pumping data, is performed by shifting only the drawdown axis; the time axis is fixed because it is a relative or normalized time.
The match-point for the drawdown axis is used to compute T, and S is determined from matching the curve shape, which depends
on early dimensionless-time data. Multiple well data can be plotted and matched simultaneously (a composite plot), with
drawdown at different radial distances matching different curves. The ratio of dimensionless pumping durations for any two
matched curves is equal to one over the squared ratio of radial distances. Application to two recovery datasets from the literature

confirm the utility of these type curves in normalized time for composite estimation of T and S.

Introduction

Theis (1935) presented the exact solution for nonequi-
librium drawdown during constant rate pumping in an infinite,
homogeneous, horizontal flow, confined aquifer, and developed
the type curve procedure for estimation of transmissivity (T) and
storage coefficient (S) from this exact well function solution. He
also presented a large dimensionless-time approximation from
which a simpler slope matching graphical procedure was later
developed (Cooper and Jacob, 1946).

Theis (1935) also presented the exact solution for water-
level recovery after cessation of pumping by superposition of
continuing drawdown due to the original pumping, and negative
drawdown, or recovery, due to injection at the same rate begin-
ning at the cessation of pumping, However, his method for
estimation of T from recovery data was based on the large time
approximation, rather than the exact well function superposi-
tion. Furthermore, this large time approximation is independent
of S, and hence S cannot be estimated using this method. Horner
(1951) presents the same solution in the context of pressure
build-up testing, which has been used extensively in the petro-
leum industry.

One common method to estimate S from recovery datais to
treat “recovery,” R, as drawdown during pumping (U.S.
Department of the Interior, 1985). R is defined as the drawdown
due to pumping extrapolated to an observation time beyond the
end of pumping, minus the observed drawdown. [In many refer-
ences the drawdown after pumping ceases is called “residual”
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drawdown.] Theoretically, this is exactly the negative drawdown
due to an injection starting at the end of pumping; hence this
data can be analyzed as a pump test, and T and S can be
determined. The main drawback with this method is the extrapo-
lation of pumping drawdown (Ballukraya and Sharma, 1991); it
is especially subjective when performed graphically. Nongraphi-
cal extrapolation can be performed using the well function
(Fenske, 1977), or the large time approximation (Ballukraya and
Sharma, 1991), but then T and S are essentially known a priori,
or at least estimated from drawdown during both pumping and
recovery. Because R depends on the extrapolated drawdown
during pumping, estimation of T and S can be significantly in
error when well loss or erratic pumping rates affect the draw-
down during pumping.

Ramey (1980) similarly presents type curves for drawdown
during both the pumping and recovery periods on a single
log-log plot based on Theis® (1935) exact solution. Plotting
drawdown during the recovery period on the time-since-pumping
began scale means, however, that all recovery times are plotted as
large times. This may obscure some of the initial features of
recovery that occur early relative to total recovery but at large
time relative to the time since pumping began. Furthermore, as
noted above, this method is limited to cases where the drawdown
during the pumping period agrees with that predicted by the
Theis equation, which may not be the case, particularly for the
pumped well. Mishra and Chachadi (1985) present recovery type
curves similar to those of Ramey (1980) for drawdown during
and after pumping, accounting for borehole storage in the
pumped well. A more versatile method would be independent of
the results of the pumping period analysis, particularly for cases
where erratic pumping rates or well loss limit the use of pumping
period data.

Case et al. (1974) present a method for analysis of recovery
data that is independent of the pumping period data and allows
direct estimation of S. This method is based on a series approxi-
mation to the well function, but retains more terms than the large
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time approximation. T and S can be computed for any two
observed drawdowns during the recovery period. For a test with
many observations, multiple estimates are generated and can be
averaged or treated statistically. Subba Rao and Gokhale (1986)
apply Case’s method, which they call the two-point method, and
present a computer program for the tedious calculations asso-
ciated with the series approximation. Recently, Banton and
Bangoy (1996) present a similar but simpler graphical method
using the first three, as opposed to Theis’ first two, terms of the
series approximation. Although simpler than Case’s method, the
method of Banton and Bangoy (1996) nonetheless involves three
separate plots and requires at least two obvservation wells at
different radial distances.

The exact solution for recovery is used in automatic
optimization procedures for estimation of T and S by Bardsley et
al. (1985), Almeida (1987), and Kashyap et al. (1988). Their
methods are based on Theis’ (1935) exact well-function solution
for the recovery period. Because the optimization can be defined
toinclude all data simultaneously, a composite estimate of aqui-
fer properties using multiple observation wells, in addition to the
pumped well, is possible (Kashyap et al., 1988). Almeida (1987)
and Kashyap et al. (1988) illustrate their model fits by plotting
drawdown versus time since pumping ceased on log-log scales.

In this paper, a graphical recovery type curve procedure
based on Theis’ (1935) exact well-function solution is proposed;
it corresponds to the Theis log-log type curve in that early
dimensionless-time response is included and graphical matching
of the type curve and observed drawdown yields T and S. The
method is conceptually similar to the optimization method of
Kashyap et al. (1988) and can be thought of as an application of
their approach using graphical instead of numerical fitting. The
normalized time framework proposed here is convenient for
composite analysis of multiple well data and may also offer
advantages in alternative numerical fitting procedures. These
type curves may be used in place of Horner (1951) plots for
analysis of pressure buildup, particularly for analysis of “inter-
ference” or observation well data.

Significant progress has been made in estimation of aquifer
properties from water-level recovery in wells where the Theis
assumptions are not fully satisfied. Recent work includes both
analytical and numerical modeling to account for the effects of
borehole storage and other nonideal features (Zdankus, 1974;
Fenske, 1977; Hargis, 1979; Rushton and Holt, 1981; Mishra and
Chachadi, 1985; Schmitt, 1988; Tripp and Christian, 1989).
These effects are not considered in this paper, but some of them
may be conveniently treated in the proposed normalized time
framework.

The methods proposed here are strictly applicable only if all
Theis assumptions are valid, which is arguably never true. For
example, most actual aquifers are not fully confined and receive
some recharge from over or underlying units. However, as with
the Theis procedure for pumping period data, comparison of
observed drawdown to the theoretical type curves presented here
may be a first step in identifying aquifer properties from recovery
data (for example, Neuman, 1975). As appropriate, more com-
plex analytical and numerical models of recovery can be devel-
oped for site-specific hydrogeologic conditions. Furthermore,
many nonideal features may have little effect on drawdown,
particularly at observation wells, such that estimates derived
from these methods approximately characterize field-scale aqui-
fer properties. This is illustrated by the second example in this

paper, a water-table case, which has been analyzed successfully
before using Theis confined-aquifer methods (Dagan, 1967).

Theory
Theis’ Analytical Solution

Theis (1935) considers constant-rate pumping from an
infinitesimally small well that fully penetrates an infinite, homo-
geneous, fully confined aquifer. The exact solution for draw-
down during pumping is

Q ¢’ Q

swo=, 5 [ Sa=pnwae, (1)
whereas s[L]is drawdown (initial head minus head as a function
of rand t); T[L? T]is isotropic transmissivity; S [dimensionless]
is storage coefficient; Q [L*/T] is the constant pumping rate;
W (u) is Theis’ well function; u [dimensionless] is r*S/4Tt; r [L] s
radial distance from the center of the pumping well; and t [T] is
time. Defining dimensionless drawdown, sp, and dimensionless
time, tp, as

47 Ts Tt 1
Sp = ; tp= = (2
Q

°S  4u’
the solution during pumping (1) can be written sp(tp) =
W(l/4tp).

At large dimensionless time, when tp > 25 (u < 0.01), the

well function can be closely approximated by a simple logarith-
mic expression (Theis, 1935; Cooper and Jacob, 1946):

sp(tp > 25) = 2.3 log10(2.25 tp) . 3)

Large dimensionless time depends on both time and radial dis-
tance, and will occur much sooner at locations close to the
pumped well than at distal points.

Theis (1935) also derived the analytical solution for the
water-level recovery after cessation of pumping:

1 1
sp(tp >t =W{— ) W{ ——— )=
o(to > too) ( 4tp ( 4(tp — typ) )
1/4(tp—tpp) eV
—dy “4)
1/4tp y

where typ is the dimensionless duration of pumping (Ramey,
1980), defined by substituting the pumping duration t,[T] for tin
).
o= Tt 5
pD I‘2S s ( )

and this dimensionless pumping duration depends on the radial
distance of the observation point.

Theis’ (1935) procedure for analyzing the recovery data is
based on the large dimensionless-time approximation to (4),
appropriate when (tp — tpp) > 25,

t
Sp(to > tyo + 25) = 2.3 logo t—”) TS

D — tp

In dimensional variables, this approximate solution can be

written
). o
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Theis’ (1935) method of analysis of recovery data is based on
equation (7), which does not depend on either radius r or storage
coefficient S. Hence S cannot be estimated.

Normalized Time
A normalized time since pumping ceased is defined as the
ratio of time since pumping stopped to the duration or pumping:

t—t tp — t
fp= —2 =22 ®)
tp tpD
and the exact solution can be written
1 1
sp(th, >0 =W{ —mM™— ) — W . (9
o = w( 4(tatop + top) )= w( 4tntpD) @
Theis’ large time approximation becomes
25 ta + 1
SD(tn > ?— ) =23 logm( — (10)
pD n

Figure 1 shows the dimensionless drawdown as a function
of normalized time since pumping ceased (t.), for several values
of dimensionless pumping duration (t,n). The log-log plot for
illustration of drawdown during only the recovery period has
been used by Almeida (1987) and Kashyap et al. (1988), although
the normalized time used here is new. The exact solution (9) in
the normalized time form depends on r and S through t;p, the
dimensionless pumping duration. The limiting upper curve (t,p
— %) in the figure is the large time approximation of Theis

(1935), equation (10). At very large normalized time, the log-log
plot of dimensionless drawdown versus normalized time has a
slope of —1, which can be observed from the limiting form of
(10):

lim _ lim 1y
(o0 S0 T { _voo ln(l + Z ) =

This is the large time “line-source” slug-test solution of Ferris and
Knowles (1963), to which the finite-well Cooper-Bredehoeft-
Papadopulos (1967) slug-test solution converges at very large
time. The recovery solution here is viewed in the slug-test frame-
work by recognizing Qt, as analogous to the slug volume.

t

1
. (11

Type Curve Method for Transmissivity
and Storage Coefficient

The exact dimensionless solution of water-level recovery
can be used in a type curve matching procedure to estimate
transmissivity T and, in some cases, storage coefficient S. Tradi-
tional Theis type curve matching for pumping period data is
conducted by overlaying the dimensionless log drawdown versus
log time plot and a same scale plot of the field data and shifting
both axes until a good match is obtained. In the present case, the
normalized time axis is fixed and does not shift. Hence, this axis
can be plotted in any format; the logarithmic scale is chosen for
the presentation here.

A field data plot can be prepared using the same scales as
Figure 1 and the appropriate logarithmic ranges of drawdown
based on observations. The normalized time axis is the time since
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Fig. 1. Log-log compoasite recovery type curves in normalized time for water-level recovery after cessation of constant-discharge pumping under
Theis conditions. Dimensionless drawdown, sp, = 47 Ts/ Q is plotted versus notz'malized time, the time since pumping stopped divided by pumping
duration, for several values of dimensionless pumping duration, t,p = Tt,/r"S.
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pumping stopped divided by the duration of pumping. The plots
are overlaid with identical normalized time scales, The data plot
is shifted vertically until a suitable match between the observed
and theoretical data and curve shape is achieved. As with the
standard Theis procedure for drawdown during pumping, a
match point is chosen, in this case for drawdown (s’) and dimen-
sionless drawdown (sb) only. The transmissivity is computed
from
sp Q

s’ dr

T= (12)
The storage coefficient is determined from the particular
curve matched, associated with a dimensionless pumping dura-
tion typ. The storage coefficient is then computed from
t, T
S= —. (13)

2
tpp T

where r is the radius of the observation well, and t, is the actual
pumping duration, Because the curves for different values of t,p
are somewhat similar, the estimation of S is likely to be less
certain than T. To facilitate curve selection, additional curves
between those shown in Figure 1 can be plotted for specific
values of t,p using available well function solutions (a computer
program to calculate solutions for any value of t,p is available
from the author).

The dimensionless drawdown and observed data can easily
be plotted together by multiplying dimensionless drawdown by a
scale factor (equivalent to s’/sp [L]). This procedure can be
implemented in a computer plotting or spreadsheet program.
The drawdown and scaled dimensionless drawdown are then
plotted in any useful axis format using real length units. When a
satisfactory match is achieved between drawd own and the scaled
dimensionless drawdown, the optimum scale factor is inserted in
equation (12) to compute T. Furthermore, S is determined from
the dimensionless pumping duration of the best-match curve
using (13).

The existing method of extrapolating drawdown beyond
the end of pumping and analyzing computed “recovery” R using
the Theis equation yields both T and S (U.S. Department of the
Interior, 1985). If both pumping and recovery period drawdown
are governed by the Theis model, the proposed method yields
theoretically identical results to the recovery-as-drawdown
method. However, the proposed method is simpler because it
avoids the extrapolation step; measured drawdown during the
recovery period is used directly.

When recovery data from multiple wells are available, each
well can be analyzed separately and the results treated as multi-
ple estimates. If the assumptions are realistic, including isotropy,
the estimated values should have a small range. In anisotropic
aquifers, available procedures can be used to estimate the trans-
missivity tensor from separate analyses of observation well data
at different orientations (for example, Maslia, 1994).

A composite procedure is proposed for isotropic aquifers.
In this case, data from all wells can be plotted on a single graph
and all data matched simultaneously. A single match point for
the vertical drawdown axis gives a composite estimate of T. Data
from wells at different radial distances fall on different curves
because t,p depends on r. However, the matched curve tjp values
are explicitly related to each other. The relation between the
matched curves tip values for two wells at different radii ra and rp
is

Tt,
ton(ra) riS _ ( I’_B)2 (14)
tio(rs) Tty ra’

2
I‘BS

If this relation is enforced, then a composite estimate of S can be
obtained from any of the curves using (13). A practical scheme
for this procedure is to match data from one well first, compute
dimensionless data for the other wells using dimensionless
pumping durations computed from (14) and test the quality of
the match between all generated type curves and all observations
in a single data plot. Heterogeneity, anisotropy, partial penetra-
tion, and water-table conditions, among other factors, can cause
poor matches in the composite plot.

Examples
Pichaco Dam (U.S. Department of the Interior, 1985)

Recovery in wells at Pichaco Dam (U.S. Department of the
Interior, 1985) is analyzed by the proposed method to illustrate
the procedure for estimation of T and S from measurements at
the pumped well and an observation well. Unfortunately, the
reference gives little information about the hydrogeology at the
site. The well was pumped for 800 minutes at a rate of 0.077 m’/s.
Using Theis’ recovery method applied to both the pumping well
and observation well recovery, T was estimated as 0.0491 and
0.0497 m?/s, respectively (U.S. Department of the Interior,
1985). Recovery at the observation well was analyzed as a pump-
ing test to estimate S = 0.07. As summarized in the Introduction,
the storage coefficient was estimated from the data during the
recovery period, but only after extrapolation of the pumping
period drawdown. The alternative method proposed here does
not require this extrapolation and S is estimated directly from
observed drawdown during the recovery period. Ballukraya and
Sharma (1991) also analyzed these data using a theoretical
extrapolation method and estimated the storage coefficient as
0.06.

Figure 2 is an overlay of the type curve from Figure I and a
log-log plot of drawdown versus normalized time at the pumped
well (r = 0; the radius of the pumped well is not given in the
reference) and from an observation well at r = 30.5 m. A match
point is chosen where s’= 1 m and s = 7.7. The transmissivity is
computed from (12) as T = 0.0472 m’/s, slightly less than
previous estimates. This is a composite estimate of T from
drawdown at both wells.

As predicted, after only a short period of time, drawdown at
the pumped well and nearby observation wells is essentially the
same, and hence the drawdown is independent of r and S.
consistent with Theis” large time approximation. However,
matching the early dimensionless-time data from the observation
well to a particular curve, corresponding to a specific value of
dimensionless pumping duration, allows S to be estimated.
Figure 3 is alog-log plot of the drawdown at the observation well
atr=30.5 m and the dimensionless drawdown corresponding to
tpp = 35. Using (13), the storage coefficient is estimated as 0.07.
Also shown in Figure 3 is the maximum drawdown observed
during the pumping period which agrees well with the type curve
prediction at very small normalized time for typ = 35.

The maximum drawdown in the pumped well after 800
minutes of pumping (3.81 m) shown in Figure 2 is higher than
that predicted (2.65 m) using the Theis equation with the esti-
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Fig. 2. Overlay of recovery type curves and observed drawdown
during recovery at the pumped well and at an observation well at r =
30.5 m at Pichaco Dam (U.S. Department of the Interior, 1985).
Match point of s’ = 1.0 m and sb = 7.7 gives transmissivity of T =
0.0472 m’/s.

mated T and S and an assumed well radius of 0.01 m or 1 cm.
This exaggerated drawd own may reflect well loss, and illustrates
typical difficulties in using pumped well data, particularly at
early time. The actual well radius, which was not reported, is
surely larger than 1 cm, and use of a larger well radius would
yield even smaller predicted drawdown. Furthermore, the
observed drawdown immediately after the pump was stopped
was actually negative (U.S. Department of the Interior, 1985),
probably due to water from the discharge pipe falling back into
the borehole. Despite these typical but nonideal features, draw-
down during the recovery period agrees well with the theoretical
prediction soon after pumping is stopped. Well loss effects dis-
appear rapidly with velocity decreases following cessation of

pumping.
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Fig. 3. Water-level recovery at an observation well 30.5 m from the
pumped well at Pichaco Dam (U.S. Department of the Interior, 1985)
plotted with scaled theoretical drawdown during recovery for dimen-
sionless pumping duration t,» = 35, corresponding to storage coeffi-
cient S = 0.07 and transmissivity T = 0.0472 mz/s. Maximum draw-
down observed when pumping stopped is also shown.
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Grand Island, Nebraska (Wenzel, 1942)

Wenzel (1942) reports an extensive drawdown dataset for a
pumping test in the Platte River Valley near Grand Island,
Nebraska. The pumped well partially penetrates the water-table
aquifer, which is approximately 30 m thick. The 0.61 m diameter
well was pumped at a rate of 0.034 m®/s for 48 hours. Drawdown
was observed in the pumped well only during the recovery
period. Drawdown during both the pumping and recovery
periods was measured at 83 shallow piezometers (diameters of
2.5to 7.5 cm) ranging in radial distance from about | m to over
360 m. Adjusting drawdown during the pumping period to
account for partial penetration effects, Jacob (1963a) estimated
T=0.026 m*/s, significantly higher than Wenzel’s estimate (0.016
m’/s) which did not account for partial penetration. Wenzel
estimated the specific yield as 0.217 from analysis of pumping
drawdown data and as 0.201 from volume-drained calculations.
Dagan (1967) analyzed the drawdown during pumping using a
model accounting for vertical flow and storage from the water
table alone. He estimated T =0.049 m’/s and the ratio of vertical
to horizontal hydraulic conductivity as 0.13. From his model,
Dagan (1967) suggests that the Theis model, which ignores
partial penetration and vertical flow, is a good approximation
for r > 1.2 B (Ky/K,)"?, where B[L] is the saturated thickness,
and K, and K, [L/T] are the horizontal and vertical hydraulic
conductivities, respectively. Using his estimates, the Theis model
should be adequate for r > about 100 m. Dagan used the Theis
method to estimate average T = 0.052 m’/s and average S =
0.202 from drawdown at six piezometers at radial distances
greater than about 180 m.

Wenzel used Theis’ large time procedure for analysis of the
recovery period drawdown at the pumped well and estimated T
=0.017 m%/s. This procedure does not provide an estimate of S.
Subba Rao and Gokhale (1986) estimated S as 0.1287 from
analysis of pumped well recovery. Jacob (1963b) used Theis’
method with a nonconstant storage coefficient to analyze re-
covery in the pumped well and found a difference between
pumping and recovery period S of 22 percent.

Drawdown at the pumped well exhibits some deviation
from the type curves presented here, probably because the pro-
posed method does not account for borehole storage or partial
penetration in this water-table aquifer. Drawdown decreases too
rapidly at late time. The effect of borehole storage may be
accommodated in the proposed normalized time type curve
method using available solutions (Papadopulos and Cooper,
1967, Moench, 1984). Matching drawdown during recovery in
the pumped well to the Theis type curve yields an estimated T of
0.019 m?/s, between Wenzel’s and Jacob’s results.

The proposed composite analysis is used to estimate both T
and S from recovery at four piezometers. Figure 4 shows the
overlay of the type curves of Figure 1 and the recovery period
drawdown at the pumped well and four piezometers, well 48 at
r=_87m, well 19 at r = 129.4 m; well 10 at r = 230 m, and well 70
at r = 371 m. The composite match (Figure 4) is manually
weighted towards the piezometers, ignoring the pumped well
drawdown. This reduces the nonideal effects of partial penetra-
tion and borehole storage in the pumped well. The drawdown at
230 m matches the type curve for dimensionless pumping dura-
tion of about 0.5.

The composite match using specific type curves correspond-
ing to the actual piezometer radial distances is shown in Figure 5.
Specific type curves for the other three observation wells are
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Fig. 4. Overlay of composite recovery type curves and observed
drawdown during recovery at the pumped well and at four observa-
tion wells near Grand Island, Nebraska (Wenzel, 1942). Match point
of ¢’ = 0.1 m and sb = 1.18 gives transmissivity of T = 0.032 m’/s.

generated from the match at r = 230 m using the prescribed
relation between dimensionless pumping duration and radial
distance (14). The fitis good for three of the piezometers, but the
drawdown at r = 87 mis somewhat higher than predicted. Based
on Dagan’s (1967) estimate, the three piezometers with a good fit
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Fig. 5. Composite plot of water-level recovery at the pumped well and
at four observation wells near Grand Island, Nebraska (Wenzel,
1942) and scaled theoretical drawdown during recovery for specific
values of dimensionless pumping duration corresponding to storage
coefficient of S = 0.209 and transmissivity T = 0.032 m’/s. The
dimensionless pumping durations shown satisfy constraint equation
(14): t,0(A)/t0 (B) = (rz /1)’

are sufficiently far from the pumped well for partial penetration
and vertical flow effects to be negligible. All of the drawdown
data seem to indicate more rapid recovery at late time than
predicted by the theory, perhaps due to recharge from the unsat-
urated zone. The transmissivity estimated from the composite
fit, weighted towards the observations at larger r, is T = 0.032
m?/s, about 23 percent higher than Jacob’s (1963a) estimate and
about 62 percent of Dagan’s (1967) estimate. From (13), the
storage coefficient is estimated as 0.209, in agreement with
Wenzel’s and Dagan’s (large radial distance) estimates from
pumping period drawdown.

Summary

A new graphical composite type curve method is proposed
to estimate transmissivity and storage coefficient from water-
level recovery data. The normalized time type curves are advan-
tageous because all type curves converge to the large dimen-
sionless-time approximation, the differences between curves as a
function of storage coefficient are accentuated, and the time axis
is not shifted during curve matching. Two example applications
highlight the estimation of S from early dimensionless-time
recovery data, composite curve matching for multiple wells, and
limitations in using pumped well recovery without accounting
for borehole storage, partial penetration, well loss, and other
nonideal features. Theis’ large time method cannot be used for
the wells matched in the Grand Island example because all
observations are at early dimensionless time at these large radial
distances. Although real settings will not fully satisfy Theis’
assumptions, application of these simple methods can be a useful
first step in characterizing aquifer properties from recovery data.
The Grand Island water-table example here illustrates applica-
tion of these methods to drawdown from wells sufficiently far
from the pumped well that partial penetration and water-table
effects can be ignored. Compared to the very recent method of
Banton and Bangoy (1996), the methods proposed here are
simpler and require only one observation well for estimation of
S. If additional wells are available, the methods proposed here
allow a composite estimation of T and S using drawdown at all
wells together, provided the Theis model is a reasonable
approximation.
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