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Abstract. A new method is proposed to simulate groundwater age directly, by use of an 
advection-dispersion transport equation with a distributed zero-order source of unit (1) 
strength, corresponding to the rate of aging. The dependent variable in the governing 
equation is the mean age, a mass-weighted average age. The governing equation is derived 
from residence-time-distribution concepts for the case of steady flow. For the more 
general case of transient flow, a transient governing equation for age is derived from 
mass-conservation principles applied to conceptual "age mass." The age mass is the 
product of the water mass and its age, and age mass is assumed to be conserved during 
mixing. Boundary conditions include zero age mass flux across all noflow and inflow 
boundaries and no age mass dispersive flux across outflow boundaries. For transient-flow 
conditions, the initial distribution of age must be known. The solution of the governing 
transport equation yields the spatial distribution of the mean groundwater age and 
includes diffusion, dispersion, mixing, and exchange processes that typically are considered 
only through tracer-specific solute transport simulation. Traditional methods have relied 
on advective transport to predict point values of groundwater travel time and age. The 
proposed method retains the simplicity and tracer-independence of advection-only models, 
but incorporates the effects of dispersion and mixing on volume-averaged age. Example 
simulations of age in two idealized regional aquifer systems, one homogeneous and the 
other layered, demonstrate the agreement between the proposed method and traditional 
particle-tracking approaches and illustrate use of the proposed method to determine the 
effects of diffusion, dispersion, and mixing on groundwater age. 

Introduction 

The age of water in a groundwater system is useful for 
quantitative analysis. Various environmental tracers can be 
used to estimate the time since recharge for groundwater sam- 
ples collected from various locations. These age data can be 
used in turn to constrain the parameters of models of flow and 
transport. Isotopic information is typically interpreted by using 
a travel time approach, simulating groundwater movement as 
"piston" flow. Reilly et al. [1994] show that an advective model 
of gi'oundwater age, simulated by numerical particle tracking, 
is consistent with the distribution of chlorofiuorocarbons and 

tritium observed in a shallow sand and gravel aquifer. In the 
advective model the age is determined by the travel time of 
water, computed from Darcy's law. However, isotope transport 
in groundwater is often not by advection alone. 

Several studies have indicated that estimates of groundwater 
travel time can be in error if the effects of dispersion and 
mixing on isotope concentrations are ignored. Plummer et al. 
[1993, p. 287] give an overview of current methods for age- 
dating groundwater, and point out, as have many others, that 
"because environmental tracers are dissolved solutes which are 

transported along with the ground water, it is usually necessary 
to consider effects of hydrodynamic dispersion on the modeled 
age." Walker and Cook [1991, p. 41] "show how neglecting 
diffusion can lead to serious underestimates of groundwater 
ages in unconfined aquifers where recharge rates are similarly 
low" when using the isotope carbon 14. Maloszewski and Zuber 
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[1991] demonstrate the effects of matrix diffusion and exchange 
reactions on carbon 14 movement in fractured rocks and on 

groundwater age. Geyh and Backhaus [1978] examine the ef- 
fects of diffusion and mixing during pumping on carbon 14 
distribution and age. The diffusion of carbon 14 from a con- 
fined aquifer into adjacent aquitards and the resulting effect on 
interpreted ages is quantified by Sudicky and Frind [1981]. In 
their review, Mazor and Nativ [1992, p. 211] identify "problem 
areas" in the interpretation of groundwater age, including 
"lack of single recharge and discharge areas;... entrapment of 
ground water in 'dead' volumes...; [and] mixing of ground 
water of various ages." 

Incorporating the effects of transport processes other than 
advection allows additional information to be extracted from 

tracer distributions. For example, Torgersen et al. [1978] esti- 
mate vertical diffusivity from observed tritium/helium-3 distri- 
butions in lakes. Weeks et al. [1982] used fluorocarbon distri- 
bution in the unsaturated zone to estimate soil diffusion 

coefficients. A model of age that incorporates dispersion can 
be helpful in identifying the dispersive properties of the 
groundwater system [Robinson and Tester, 1984], in addition to 
the mean flow properties. Egboka et al. [1983] estimate longi- 
tudinal dispersivity from the observed tritium distribution by 
fitting a one-dimensional model of tritium transport. Musgrove 
and Banner [1993] use isotopic information to help quantify 
mixing of distinct saline waters in a regional scale flow system. 

The effects of diffusion, dispersion, and mixing can be incor- 
porated in a transport simulation of the tracer or tracers of 
interest, for example, tritium [Nir, 1964; Simpkins and Brad- 
bury, 1992; Solomon et al., 1993]. Tritium is an isotope of 
hydrogen that is incorporated in water molecules. Simulation 
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of tritium transport by using a model that accounts for disper- 
sion and diffusion reflects the underlying dispersion and diffu- 
sion of water molecules, and these water molecules have dif- 
ferent ages. Thus the age of the water itself is affected by 
diffusion, dispersion, and other hydrodynamic processes. 

In the same way that particle tracking is used to generate 
groundwater age for the case of advection alone, simulation of 
groundwater age as affected by dispersion and mixing without 
resorting to separate models for separate tracers can be useful. 
Such an analysis complements, but does not replace, simula- 
tion of transport of the tracer of interest, which can be affected 
by processes, such as sorption and chemical exchange [Fritz et 
al., 1979], that do not affect the water. 

The concept of a residence-time distribution has been used 
for many years to describe the statistics of the lifetimes of 
components in a flowing reactor [MacMullin and Weber, 1935; 
Danckwerts, 1953]. This approach is chosen because molecules 
do not behave identically; rather, mixing, diffusion, and vari- 
ability in flow conditions result in different paths and residence 
times for different molecules. Residence-time distributions 

have been widely applied to the analysis of chemical reaction 
systems [Levenspiel, 1972]. Eriksson [1958], Bolin and Rodhe 
[1973], and Nit and Lewis [1975] discuss the application of 
residence-time-distribution theory to steady and transient geo- 
physical systems. Robinson and Tester [1984] use residence- 
time distributions determined from tracer tests to analyze dis- 
persion in a fractured geothermal reservoir. Campana and 
Simpson [1984] apply some of these concepts to isotopic age 
dating of groundwater with a discrete-state (as opposed to 
continuous-state) compartment model in which separate areas 
of the groundwater system are treated as mixed reservoirs. 

The underlying connection between the residence-time dis- 
tribution and transport of an ideal tracer can be exploited to 
develop residence-time distributions corresponding to solu- 
tions of the advection-dispersion transport equation [Danck- 
wefts, 1953; Wen and Fan, 1975; Nauman, 1981; Zuber, 1986]. 
Danckwerts [1953] describes how the residence-time distribu- 
tion can be determined experimentally from the outflow con- 
centration of a nonreactive tracer. In this context the mean age 
at a point, determined from temporal integrals of the concen- 
tration (described below), is affected by all of the processes 
accounted for in the solute-transport equation, including dis- 
persion and mixing. The connection between resident concen- 
tration and probabilistic travel time approaches to simulating 
groundwater transport is described by Shapiro and Cvetkovic 
[1988] and by Dagan and Nguyen [1989], who discuss advan- 
tages of the travel time approach for some analyses. Recently, 
Harvey and Gorelick [1995] present a general framework for 
application of temporal moment-generating equations to reac- 
tive transport. 

In this paper I show that the distribution of groundwater age 
obeys a special form of the solute-transport equation. The 
mean age can be simulated directly in an analytical or numer- 
ical transport model, and the result of the simulation, that is, 
the predicted "concentration," is the mean age. This spatial 
age distribution is obtained directly, without further manipu- 
lation external to the transport simulation. For steady state 
flow conditions the age transport equation is derived from 
previous results on the residence-time distribution in systems 
governed by the advection-dispersion equation. This form has 
been presented previously for analysis of mean or "local" age 
of air in a room during ventilation [Sandberg, 1981]. A more 
general derivation here for transient flow conditions is based 

on the assumption of conservation of imaginary "age mass." 
The method is illustrated by a numerical simulation of two 
regional aquifer systems, one homogeneous and the other lay- 
ered. 

Derivation of Mean Age Transport Equation 

Residence-Time Distribution 

Danckwerts [1953] defined a function C(t) to characterize 
the residence-time distribution for molecules in a chemical 

reactor. This function corresponds to the concentration at the 
reactor exit of a solute that is injected as an impulse (unit mass 
in an infinitely small time period) at the reactor entrance at 
time zero. For one-dimensional piston flow (advection only) 
conditions, the function C(t) is zero except at the time equal 
to the advective travel time of the system, at which time the 
function is a Dirac delta. In the case of complete mixing, C (t) 
is an exponentially decaying function; the outflow concentra- 
tion is equal to the uniform concentration within the reservoir, 
which decreases because of the addition of tracer-free fluid at 

the inflow. For transport in porous media the function C is 
analogous to the outflow mass flux (mass per unit time) of a 
column, that is, c, the concentration measured in flux [Kreft 
and Zuber, 1978]. In multidimensional systems, the mass in- 
jected on all inflow boundaries is proportional to the fluid flux 
across the boundary. Levenspiel [1972] and Wen and Fan [1975] 
present several models for transport in flowing reactors and 
their respective C functions. 

The mean residence time in a steady-flow domain can be 
determined from the concentration of a tracer injected as an 
impulse at time zero as 

o • tc dt E 
A:•: M (1) 

•o cdt 
where A is the mean residence time, or the mean age of 
molecules, in the reactor [Spalding, 1958]. The numerator of 
(1) is a concentration weighted average time, which I will 
denote as E. This form is similar to the expectation of a 
random variable t with probability density function c. The 
denominator normalizes the numerator such that c divided by 
the time integral of c has the properties of a probability density 
function. This integral, which is constant and uniform for 
steady flow [Spalding, 1958], will be denoted as M. This term is 
uniform for multidimensional systems, provided the mass in- 
jected on inflow boundaries is proportional to fluid flux across 
the boundary [see Harvey and Gorelick, 1995]. 

For transport by advection and dispersion in a constant- 
density fluid, the concentration satisfies 

- V.0D.Vc- V.qc (2) Ot 

where 0 is the moisture content (porosity for saturated flow); D 
is the dispersion tensor; and q is the specific-discharge vector. 
A standard model of dispersion in groundwater is assumed 
such that the product of moisture content and the dispersion 
tensor, D, is given by 
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qiq• 
ODij = (ODin + otrq)Sij + (otœ - otr) (3) 

q 

where D m is the diffusion coefficient; the Kronecker delta is 
8 o = 1 ifi = j and 8o = 0 ifi :/: j; a L and a T are the 
longitudinal and transverse dispersivities, respectively; q• is a 
component of the specific-discharge vector; and q is the mag- 
nitude of specific discharge. Multiplying (2) by time and inte- 
grating through all time gives [Spalding, 1958]: 

-0 = V. 0D. VE - V. qE. (4) 

The left side of (4) is obtained through integration by parts of 
the time derivative term. Dividing by M, which is uniform and 
can be brought inside the spatial derivatives, and assuming 
porosity is also uniform, gives 

1 

V.D-VA-•V.qA + 1=0 (5) 

where the defined mean age A = E/M has been substituted 
(see Sandberg [1981] for comparison). Thus the mean age at a 
point satisfies a steady state advection-dispersion transport 
equation with an internal source of unit (1) strength. A more 
general form of (5) is derived in the next section by assuming 
that age is conserved under mixing. This derivation also leads 
to natural choices for boundary conditions for (5) to complete 
the mathematical framework. 

Computing age by particle tracking corresponds to solution 
of (5) without the dispersion term. In this case, particle paths 
are defined by the characteristics of the governing equation, 
and the increasing travel time corresponds to the unit source in 
(5). Equation (1) can be used to calculate mean age within a 
small volume from a particle-tracking analysis to include, for 
example, the mixing induced by sampling. The methods pre- 
sented here for age simulation also may be useful in accounting 
for the effects of dispersion and mixing on other analyses 
involving groundwater and travel time, such as contamination 
from landfills [Lee and Kitanidis, 1993] and time-dependent 
capture zones [Bait et al., 1990]. 

under mixing in constant-density water. This analog can be 
exploited to derive a governing transport equation for mean age. 

A governing equation for age mass transport can be derived 
from a simple box balance similar to the derivation of the 
mass-transport equation by Konikow and Grove [1977]; see also 
Bear [1979]. Consider conservation of age mass in a control 
volume (dimensions Ax by Ay by Az) of aquifer material. The 
age mass within the control volume is the product of the age 
(A) and the mass of water, OpAxAyAz. The age mass flux (per 
unit area) across the boundaries of the control volume is des- 
ignated J, with components Jx, Jy, and Jz, and includes advec- 
tion with the water as well as dispersive flux. Over a time step 
of length At the age mass of the water initially in the control 
volume increases by the product of At and the mass of water. 
Additionally, an internal net source of age mass of rate F is 
included to account, for example, for net exchange of age mass 
with separate phases. Physical processes included in F are 
described below. Assuming that the age mass is conserved, a 
difference form of a conservation equation is 

A(t + At)OpAxAyAz = A(t)OpAxAyAz + AtOpAxAyAz 

+ At{AYAZ[Jx(-Ax/2) - Jx(+Ax/2)] 

+ AxAZ[Jv(-Ay/2 ) - Jv(+Ay/2)] 

+ AxAy[Jz(-Az/2) - Jz(+Az/2)]} 

+ FAtAxAyAz. (7) 

Dividing by the volume and the time-step length, and allowing 
the size of the control volume and the time step length to go to 
zero in the limit, gives the governing partial differential equa- 
tion for mean age transport: 

OA 0t9 OJx OJy OJz 
--=Op +F 

Ot Ox Oy Oz 

OA 0t9 
Ot 

-0p-V.J+F. 

(8) 

Conservation of Age Mass 

In this section a more general form of the age transport 
equation is derived from mass-conservation principles. Assum- 
ing that the mean age of mixed waters is a mass-weighted 
average, then the mean age is analogous to a conservative 
solute concentration. Although age is not a directly measurable 
physical property, and thus this assumption cannot be verified 
experimentally, it seems suitable for our conceptual model that 
when two water masses are mixed, the mean age of the mixture 
is the mass-weighted average age of the mixed components. It 
may be possible to experimentally verify this assumption using 
a tracer that has an input function that varies linearly with 
time. A given mass of water with a mean age A can be assumed 
to be characterized by its "age mass," the product of the mean 
age and the water mass, A p V, where p is water density and V 
is water volume. Assuming that the density of the water is 
constant, the mean age of a two-component mixture is a vol- 
ume-weighted average: 

A•V• + A2V2 

A-- Vl + V2 (6) 
where the subscripts distinguish the components. This is com- 
pletely analogous to the concentration of a conservative solute 

This form of the mean age transport equation is more gen- 
eral than (5), in that the water density is allowed to vary, the 
model of dispersive flux is not specified, and the equation is 
transient. The mean age spatial distribution can be determined 
from (8) even for aquifer systems with unsteady flow, provided 
the flow history is known. The ability to simulate the transient 
evolution of groundwater age may be useful, for example, in 
assessing the impact of climate change on large aquifer sys- 
tems. 

To complete the governing equation, a description of dis- 
persive age mass flux in terms of age, or its gradient, is needed. 
Here I adopt the standard model of mass flux such that J is 
composed of advection, diffusion, and dispersion modeled as 
Fickian diffusion. That is, J in (8) is replaced by 

J • Apq - OpD . VA (9) 

where D is the dispersion tensor and includes a diffusion term. 
By substitution, the governing equation becomes 

OA 0t9 
Ot 

--= Op- V.Apq + V'OpD.VA + F. (lO) 

If the porosity and density are constant in time and uniform in 
space, (10) becomes 
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OA q F 

o-7-= - v + v. D. v.q + op' ( ) 
Under steady flow conditions the time derivative in (11) (or 
(10)) can be set to zero to derive a governing equation for 
steady state mean age spatial distribution. A steady state age 
distribution does not exist if both q and D are zero. The steady 
state equation derived from (11) is the same as (5), derived 
above from residence-time distribution theory, with an addi- 
tional source term F, which is discussed below. Initial and 
boundary conditions for the mean age transport equation can 
be specified from the control-volume balance. 

Boundary and Initial Conditions 

The age of groundwater is relative to the time at which the 
water entered the system. That is, recharge to the system is 
assumed to have age zero. From the definition of age mass the 
age mass flux, the product of age and water mass flux, is also 
zero at all inflow boundaries. Furthermore, the age mass flux 
across all noflow boundaries is also zero. These conditions can 

be written as 

JIr,' n = 0 (12) 

where F 1 is a noflow or inflow boundary and n is its unit 
outward normal. Note that (12) uses the previous notation for 
total age mass flux, J, which includes dispersion as well as 
advection. Thus no dispersion is assumed to occur upstream 
across the boundary against the direction of the incoming flow. 

The boundary condition on outflow boundaries depends on 
the physical situation. A common assumption, which I will 
adopt here, is that mass flux across an outflow boundary occurs 
only by advection. This condition of no dispersion across the 
boundary can be written 

DVAlr_•. n = 0 (13) 

where ['2 is the outflow boundary. This condition probably is 
most appropriate for discharge to surface water bodies. Alter- 
nate boundary conditions for other physical situations, such as 
advection and dispersion into a separate aquifer outside of the 
simulation domain, also can be formulated, but they are not 
pursued here. 

The general form of the governing equation for mean age 
transport is transient. If the flow field is steady, then the steady 
distribution of mean age is determined by solution of the 
steady state form of the governing equation, similar to (5). In 
this case an initial condition is not required. If the flow field is 
not steady, then the transient form of the governing equation 
for age transport must be used and an initial condition is 
required. That is, the initial mean age at every point within the 
aquifer system must be specified. For simulation times that are 
very long, relative to the rate of advection through the aquifer 
system, the groundwater age is insensitive to the initial age 
distribution, although the initial age is required mathematically 
to yield a solution. 

Internal Source of Age Mass 

The internal net source of age mass, F, can account for 
several processes. Many aquifer systems are modeled in only 
the horizontal dimensions because vertical head gradients and 
flow rates are assumed to be small. A governing equation for 
this case can be obtained from (5) or (11) by vertical integra- 
tion across the saturated thickness. In the resulting two- 

dimensional model, F could include the age mass flux due to 
inflow from an underlying hydrogeologic unit. For example, for 
the case of leakage through an aquitard, F would be the prod- 
uct of the leakage water mass flux rate and the age of the 
leakage, and would be positive for the case of inflow to the 
aquifer of interest. Similarly, evapotranspiration from a two- 
dimensional horizontal model would be treated as a net sink of 

age mass, and F would be negative. 
For the general three-dimensional model, F could represent 

sources and sinks of age mass due to phase or multicontinua 
exchange. For example, flow in fractured rock can be modeled 
as a two-domain system, with separate transport equations for 
high-permeability fractures and for the rock matrix. Exchange 
of water between the fractures and the rock matrix would 

include an exchange of age mass. For the fracture domain, F 
would be the product of the rate of water mass inflow from the 
matrix and the age of that water. The F term for the rock matrix 
equation would be of equal magnitude but opposite in sign. 

A final example of internal age mass exchange is for unsat- 
urated flow through partially frozen soil. In this case, some of 
the flowing water may freeze, acting as a sink for age mass, or 
stationary ice of a different age may melt, acting as a source of 
age mass for the flow system. Of course, as with the other 
examples, for the case of age mass sources such as melting ice, 
the age of the source water must be specified or determined 
from a separate, possibly coupled, mathematical model. 

Low-flow or stagnant zones are not necessarily included in 
this internal source term but can be handled directly in the 
governing equation. In such zones the advective flux is small 
and the groundwater age is determined primarily by diffusion, 
which is included in the dispersion tensor D. In the absence of 
diffusion, the age of water at a stagnation point in a steady flow 
field is by definition infinite. However, this infinite age applies 
only to a point which has infinitesimally small fluid volume. 

Example Simulation 
The mathematical theory for simulation of groundwater age 

developed in the previous section is applied to a regional 
model of groundwater flow and transport in cross section. This 
application demonstrates the practical simulation of ground- 
water age distribution using the age transport equation, both 
with and without dispersion. Two hypothetical aquifer systems 
are considered, a uniform aquifer and an aquifer system in 
which a high-permeability layer exists at depth. These config- 
urations are similar to those analyzed by Freeze and Wither- 
spoon [1967] in a landmark series of papers in which they used 
numerical flow models to study the characteristics of regional 
groundwater flow. The flow equation is solved using a block- 
centered finite-difference flow model, MODFLOW [Mc- 
Donald and Harbaugh, 1988]. A three-dimensional method-of- 
characteristics solute transport model, MOC3D [Goode and 
Konikow, 1991], is modified to solve the age transport equa- 
tion, including the zero-order source term for age in (10). In 
contrast to finite difference or finite element numerical solu- 

tions of the transport equation, MOC3D is well suited to the 
case of advection alone, D = 0. 

The domain geometry and boundary conditions are identical 
for the two hypothetical regional aquifers considered. The 
domain is 1 km long and 100 m thick and is discretized by 10 
rows in the vertical direction, each 10 m thick, and 50 columns 
in the horizontal direction, each 20 m long. Noflow boundary 
conditions are specified on the left, right, and bottom bound- 
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Figure 1. Flow boundary conditions on top of cross-sectional model of regional aquifer system showing 
specified-flux values for recharge nodes and specified-head values for discharge nodes. 

aries. The top boundary represents the water table and is 
modeled here with a combination of specified-flux and speci- 
fied-head conditions. The change in the position of the domain 
boundary due to movement of the water table is considered to 
be a minor effect and is ignored here. 

The regional flow systems modeled here are similar to two 
considered by Freeze and Witherspoon [1967], but a different 
water table boundary condition is used. Freeze and Witherspoon 
[1967] used numerical flow models to study the effects of non- 
uniform hydraulic conductivity on regional groundwater flow. 

As previously noted by Freeze and Cherry [1979, p. 204], the 
results obtained by Freeze and Witherspoon [1967] were af- 
fected by the choice of specified-head boundary conditions 
along the entire water table, the top boundary of the flow 
domain. With this approach, variations in subsurface perme- 
ability lead to significant changes in recharge magnitude and 
distribution, without affecting water table altitudes. For the 
simulations here I choose boundary conditions at the opposite 
extreme, where the recharge is modeled as a specified-flux 
boundary condition (Figure 1). In reality, both water table 
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Figure 2. Results of direct simulation of groundwater age in a homogeneous regional aquifer system in 
which the hydraulic conductivity is 10 -6 m/s. (a) Cross-sectional domain with hydraulic-head contours (0.4-m 
interval) and velocity vectors. Vertical exaggeration is 2X, and 10-row by 50-column finite difference grid used 
for the numerical flow and transport solutions is indicated by the small ticks on each axis. (b) Streamlines from 
recharge to discharge locations. (c) Contours of simulated groundwater age for advection only (D m = a/• = 
a t = 0). Contour interval is 10 years. (d) Contours of simulated groundwater age for advection and 
dispersion using D m = 1.16 x 10 -s m2/s, crt• = 6 m, and at = 0.6 m. Contour interval is 10 years. 
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Figure 3. Results of direct simulation of groundwater age in a cross section through a layered regional 
aquifer system in which the bottom layer is 30 m thick with hydraulic conductivity 10 -s m/s, and the overlying 
layer is 70 m thick with hydraulic conductivity 10 -6 m/s. (a) Cross-sectional domain with hydraulic-head 
contours (0.2-m interval) and velocity vectors. Vertical exaggeration is 2X, and the 10-row by 50-column finite 
difference grid used for the numerical flow and transport solutions is indicated by the small ticks on each axis. 
(b) Streamlines from recharge to discharge locations. (c) Contours of simulated groundwater age for advec- 
tion only (D m = ozt, = oz T -- 0). Contour interval-is 10 years. (d) Contours of simulated groundwater age 
for advection and dispersion using D m = 1.16 X 10-8 m2/s, c•œ = 6 m, and ar = 0.6 m. Contour interval 
is 10 years. 

altitudes and net groundwater recharge are sensitive to sub- 
surface permeability. Specified-head conditions similar to 
those of Freeze and Witherspoon [1967] are used at discharge 
locations. Thus water table altitudes are free to change in 
response to various hydraulic conductivity configurations, but 
the recharge distribution is identical in both cases. These sim- 
ulations yield greater changes in hydraulic heads but smaller 
changes in flow rates compared to the simulations of Freeze 
and Witherspoon [1967]. 

Two different aquifer systems are simulated, a uniform aqui- 
fer and a layered aquifer system. The isotropic hydraulic con- 
ductivity of the homogeneous aquifer is 10 -6 m/s and its po- 

rosity is 0.2. The hydraulic conductivity of the layered aquifer 
system is the same in the upper 70 m of the system, but is ten 
times greater, 10 -s m/s, in the lower 30 m. The porosity is the 
same for both layers, 0.2. 

Figures 2a and 3a show the head distribution and ground- 
water flow velocities for steady state conditions, and Figures 2b 
and 3b show corresponding streamlines. The imposed bound- 
ary conditions and uniform properties lead to a smooth distri- 
bution of head and gradual variations in velocity for the uni- 
form aquifer (Figure 2a). In the layered aquifer system, most 
flow occurs through the deep layer, where the hydraulic con- 
ductivity is greater (Figure 3a). Because the hydraulic conduc- 
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Figure 4. Percent difference in simulated age distribution between advection only and advection-dispersion 
(D m = 1.16 X 10 -8 m2/s, a L = 6 m, a r = 0.6 m) cases in a layered regional aquifer system. The percent 
difference in simulated age ranges from -37 to +64%. 
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Figure 5. Contours of simulated groundwater age in a layered regional aquifer system for advection and 
diffusion obtained by using proposed transport equation method (solid lines), and by using a particle-tracking 
and random walk method (dashed lines). The diffusion coefficient is 1.16 x 10 -8 m2/s, and the contour interval 
is 10 years. 

tivity is greater, water table altitudes are lower in the layered 
aquifer system than in the uniform aquifer. Velocity changes 
abruptly at the interface, yielding refracting streamlines (Fig- 
ure 3b) that contrast with the smooth streamlines throughout 
the uniform aquifer (Figure 2b). 

The groundwater age throughout the aquifer is readily sim- 
ulated by solving the advection-transport equation with the 
zero-order source term that accounts for aging (Figures 2c and 
3c). For the homogeneous aquifer, velocities are lowest along 
the noflow boundaries on the left, bottom, and right. Along the 
right boundary, ages are the greatest at the bottom and de- 
crease toward the discharge boundary at the top. Ages might 
be expected to increase continually toward the top of the right 
boundary, and this in fact occurs on individual streamlines. But 
the ages portrayed in Figures 2c and 3c are volume averages 
over 10- x 20-m cells. These cell-averaged values do not in- 
crease, because converging streamlines near the discharge 
boundary bring younger water into the cells along the right 
boundary. That is, the maximum age at a point is at the top 
right corner of the domain, but the average age for the cell 
containing this point is less because of the convergence of 
streamlines in the cell. 

The age distribution in the layered aquifer system is nonuni- 
form, and ages are greatest in the central part of the system, 
away from the boundaries (Figure 3c). Because the permeabil- 
ity of the lower layer is higher, the lowest velocities do not 
occur along the bottom of the system, but along the bottom of 
the upper layer. As with the homogeneous case, volume- 
averaged ages decrease toward the discharge boundary be- 
cause the streamlines converge. The maximum water age in the 
layered aquifer system is about 90 years, whereas the maximum 
age in the homogeneous aquifer is about 180 years. As dis- 
cussed above, the total discharge through the aquifers is iden- 
tical as a result of the specified-flux boundary conditions for 
recharge to the water table. 

This result of greater maximum ages in the homogeneous 
system is highly dependent on aquifer structure and boundary 
condition configuration. Simulation of a layered aquifer system 
identical to that shown here, but with the hydraulic conductiv- 
ity of the lower layer decreased to 10 -7 m/s, yields very differ- 
ent results. In this case the upper portion of the system is more 
conductive than the lower, and ages in the upper layer are 
similar to those in the homogeneous case. In the lower layer, 
however, flux and velocity are significantly reduced because of 
the low permeability, and very old water is present, especially 
toward the right side of the domain. Maximum volume-average 
ages for this case, with advection alone, are more than 1,000 years. 

The effect of dispersion on the groundwater age distribution 
is easily obtained by resolving the transport equation and in- 

cluding dispersivities of aL = 6 m and a:r = 0.6 m for the 
longitudinal and transverse components, respectively. In addi- 
tion, a diffusion coefficient of D m = 1.16 x 10 -8 m2/s is added 
to the dispersion tensor. This diffusion coefficient is about 10 
times higher than realistically expected values and is used to 
illustrate the maximum likely effect of diffusion in these hypo- 
thetical aquifer systems. The effect of this diffusion alone is 
examined below. 

Dispersive and diffusive mixing of water of different ages 
tends to limit the maximum ages (Figures 2d and 3d). Solute 
dispersive flux occurs, according to the generally accepted 
Fick's law model, in the direction of decreasing concentration. 
In complete analogy the dispersive flux of age mass occurs in 
the direction of decreasing age, away from areas of maximum 
age. Where advective flux is relatively small, that is, where 
velocity is small, the effect of this dispersive flux on age distri- 
bution is greatest. The effect of longitudinal dispersion is mit- 
igated in the case of age transport because along a streamline, 
age increases smoothly in the direction of flow due to aging. 
Thus the steep longitudinal gradients typically associated with 
an advancing solute front are not present. However, steep 
gradients in age are present transverse to the flow direction, 
particularly in the layered aquifer system (Figures 3c and 3d). 
In these areas of steep gradients, dispersion can have the 
greatest effect on groundwater age. Figure 4 is a contour map 
of the percent change in groundwater age, ranging from -37 to 
+64%, owing to diffusion and dispersion for the layered case. 

To examine further the relative contribution of diffusion and 

dispersion to the previous results and to compare the theory 
developed here with residence-time-distribution (particle 
tracking) methods, a simulation of the layered aquifer system 
is conducted with advection and diffusion but without disper- 
sion. Figure 5 shows the results obtained by the theory pro- 
posed here, which are similar to those for advection alone, but 
exhibit a slight reduction in maximum ages. In the bottom 
layer, where velocities are high, diffusion has no observable 
effect on age distribution. Figure 5 also shows results of a 
particle-tracking model applied to the same problem. Particle 
paths and travel times are computed by linear velocity inter- 
polation [Goode, 1990] and a random walk [Kinzelbach, 1988] 
to simulate diffusion. The groundwater age distribution is com- 
puted by numerical integration of (1). The close agreement 
between results obtained by using these alternative methods 
further supports the theoretical arguments presented here. 

Summary 
A new method is proposed to simulate groundwater age. 

The spatial distribution of groundwater age is governed by a 
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transport equation that has an internal source of unit (1) 
strength, corresponding to the rate of aging. This governing 
equation is derived both from residence-time-distribution con- 
cepts and from mass-conservation principles applied to con- 
ceptual age mass. This method of groundwater age simulation 
falls between existing approaches of, on one hand, simulation 
of groundwater age as governed by advection alone, by using a 
particle-tracking model and, on the other hand, simulation of 
isotopes or chemical markers of interest in a solute transport 
model. Use of the theory presented here allows general simu- 
lation of groundwater age, without solute-specific modeling, by 
incorporating the physical effects of diffusion, dispersion, mix- 
ing, and exchange processes on age. These methods can be 
incorporated easily in existing models of transport in aquifers. 
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