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1wents of regional magnetic field during gravity, strain and lev
the San Andreas fault at Cajon, Palmdale and Tejon are stro
1 changes in gravity, arcal strain, and uplift in these regions durin
84, This correlation principally depends on data taken during 197
shen episodes of the *Palmdale Uplift” oceurred in this general re
iferred relationships between these parameters are in approxi
Eh those obtained from simple deformation models, the pref
ppeals to short-term strain episodes independently detected in cach
unctions from magnetic Lo strain, gravity, and uplift perturbat
ast-square linear fits to the data, are —0.98 nT{ppm. ~0.03 nTy
respectivelv. Tectonomagnetic model caleulations underestimat
hees and those reported previously for dam loading and vole
ervations. A less likely alternative explanation of the observed
ymmon source of meteorologically gencrated erustal or instrum
ain, gravity, magnetic, and uplift data.
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yrtunities to intercompare various geophysical data during
scale crustal activity have occurred in western U.S. A, and
tight years as increased monitoring efforts have provid
oc. SAVAGE ef al., (1981a), and SAVAGE and Gu, (1985)
¢ strain episodes near the San Andreas fault adjacent to Palr

. JOHNSTON et al., (1979) identificd offsets in local magnet
o Palmdale region during changes in uplift in this region
n Japan, HONKURA and TAIRA (1983), and OHISHIMAN e/ @

reported relationships between crustal uplift in the 1zu Peninsula, Japan,
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ACHENS ef al., (1983). These data, when sampled at the tin
Fveys, show significant correlation to each of these other da

obtain an important ficld calibration of the various mea:
ype of deformation and increased confidence that the meas
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study, JACHENS ef al., (1983) observed correlated changes iy
clevation in the Cajon, Palmdale, and Tejon regions of the fault.

here measurements of continuous magnetic field in thy

of these parameters arises from actual changes in the rate
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¢ of strain in the earths’ crust. On the other hand, if th
from some common source of noise, meteorological dep

are continuous, a more through analysis of these possibil
1 with other measurement types.
of uncertainty regarding crustal monitoring techniques, th

‘relations between different technigues is of great i

hng theoretical basis (STACEY and JOHNSTON, [972) and su
ervations (OHNAKA and KINOSHITA, 1968), tectonomagn
stic events to fault failure parameters are poorly constrain
ar history of moderate seismicity and limited coverage in
Its relating magnetic changes to tectonic and seismic activit
NSTON ef al., 1975 SMITH and JOHNSTON, 19706; IDAVIS ¢
HNSTON, 1983).

tions

reported by JACHENS er al., (1983) were obt ained {rom the ld
nd gravity nets at Tejon, Palmdale. and Cajon shown in
sts are subsets of the larger nets reported by SAVAGE er al., (
run from Glendale to Tejon and to Palmdale, and fron
n. All gravity measurements were referenced 0 Rivyg
uncertainties for these three data types are 0.3 ppm,
1 6 1eGals, respectively.
d Jachens’study by including the magnetic field measuremer
sred magnetometer sites shown in Fig. . Each of these i
0.25 nT sensitivity. Data arc sampled cvery ten minug
digital form to Menlo Park, California. Details of the
VIUELLER er al., (1981).
urposes of this study, the magnetometers were grouped i
ughly to the geodetic nets with AB and CH at Tejon, BU
LR and SS at Cajon. All data were referenced to GID, an
nough to the north to be outside the uplift area. The datd
craged together to obtain a regional mean albeit with only

changes out to a distance of about 5 kindepending on the a
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he permanent magnetometer sites are near the San Andreas
b reference GID to either Riverside or Glendale (the referend
d leveling data). Also, the high level of culturally generatd
urban areas precludes using these points as reference site
her than GID were also tested and gave results similar to the
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fata arcestimated to be not more than 0,12 n' T (JOHNSTON ¢
n of cach time series (Fig. 2) reveals detailed structure at the (
an annual cyele, but otherwise, not much apparent corr
me series. The annual cycele is seen best in the Palmdale da
particular set of three-day means (dots) that correspond g
he values of the magnetic field data in cach region as a fune
ach corresponding survey data is listed in Table [. A mea
bd from cach data set.

correlation between the magnetic data and each parallel datd
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hen all the data is plotted in this way (i.e. no allowance
vior in different regions), the correlation coeflicient is
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AF=-0.03A¢8

—=— Ag (tgals )

o magnetic ficld against gravity [luctuations from the three study regions,
wres linear {it to the data as discussed in the text

he 194 level. If the data from each reglon are considered sep
efficients are significant at the 1% level for the Cajon and Pa
level for the Tejon data. This degraded Tejon correlation i
points for this data set clearly evident in Fig. 3(a). The trans
henetic and gravity perturbations was obtained using least-s
ucs. The function obtained has the form

AF = 0.03Ag

n nanoTeslas and Ag is in microGals.
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where AF 1s i
compression is
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he feast-squares linear fit to the data as discussed in the text.

shows a similar plot of magnetic field fluctuations from allt
ultancously observed trilateration data. In this case, the ¢
I data grouped together is 0.89 and is significant at the 54,1

region are considered separately, the correlation coeffi
¢ 16 level for the Cajon data and at the 5% level for the |
The transter function obtained by least-squares between the
Juta has the form

A7 0.98Astrain

nanoTeslas and Astrain is in ppm with the sign conve

negative.
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the largest magnetic signals are expected from regions
15 largest {(STACEY and JOHNSTON, 1972), the largest strai
he Cajon region where the magnetization of the rocks, asin
eys in these regions (HANNA er al., 1972), is at least several
Fejon, If transfer functions are generated lor each dat
1rger strain sensitivity is indeed found for the Cajon data.
there are fewer elevation data, similar determinations of
d tests for significance indicate significance at the 1097 leve
> 1s marginal, particularly since only four uplift values we
riod. Within these uncertainties, the transfer function ob
r between the elevation data and the magnetic data has th
AF = 9 1AL

sain in nanoeslas and A/ is in meters,
ry plot showing the superimposed time histories for cachy
1 and illustrates the general coherent behavior between the v
1¢ ol cach data set to the magnetic data is obtained using |
consequence, the relations between Ag, Ah, and Asrrain «
L. (1983) can be casily derived. Wild points are noted in the
§ in mid-1984 and the Palmdale data at the end of 1982,
t Palmdale in early 1978,
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bservers who did not compare their measurements unti
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and comparing this to the amplitude obtained from similaz
ng the same time interval. The amplitude of the diurnal cor
ce ficld data obtained this way 1s typically about 0.5 nT
the total field data over the same period of time indicates
f33.7 n't". On this basis an annual term with an amplitu
reted in difference lield data at the 0.16 n'T level.
are lincar fits of annual and various other harmonics to t
i data in Fig. 2 indicate significant fits, as expected, only [or
> amplitudes and phases for the Cajon, Tejon and Palind:
©), 0.2 nT (-39°), and 0.25 nT (—89%), respectively. ]
o the beginning of the records. These amplitudes are ¢
crror of the magnetic data and are at about the level expe
nnual term. It is most likely therefore that incomplete can
generated fields, due primarily to induction differences by
YHNSTON, 1983), 18 the source of most of the apparent annu
Fig. 2.
whether it is this annual term and perhaps aliased annual 1
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ion between these data sets and the annual term in the ma:
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btained with a simple fault model such as proposed by SA
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