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INTRODUCTION

In 1981 we conducted a field test of atmospheric refraction
error in historical leveling surveys and found that refraction
was 6 times larger than random error and could be modeled
and removed [Stein et al., 1986]. Craymer and Vaniéek
[1986] performed a multiple linear regression on the 1981
data: in addition to confirming the refraction error, they
reported equally large experimental errors associated with
the number of turning points (or rod supports) and the height
difference between bench marks. In response, we pointed
out [Stein et al., 1986] that their regression was not robust;
by design. the number of turning points was positively
correlated with height difference. When (wo out of the 60
observations are removed from the sample, the two indepen-
dent variables are correlated with each other at the 99.9%
confidence level. In their comment, Cravmer and Vanicek
[this issue| argue that no observations may be removed from
the sample and that in any case the correlation between the
independent variables is too small o invalidate their results.
We now agree that the correlation does not prohibit the
multiple linear regression, but parameters that depend on
{wo points are suspect, prompting us to examine their
regression further. Here we report what we believe to be the
fundamental defect in Craymer and Vanicek’s analysis. that
the dependent variable (divergence) is uncorrelated with
either of the two disputed independent variables (turning
points and height), resulting in meaningless regression cocet-
ficients. When the two influential points are removed to test
the stability of the regression. the height dependence disap-
pears. When the interceptl in the regression is not con-
strained to pass through the origin, the dependence on the
number of turning points also vanishes. leaving only the
refraction.
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ANALYSIS

Regression of Uncorrelated Data

Although Cravmer and Vanicek’s [1986] regression coef-
ficients b appear highly significant, the partial correlation
coefficients for the turning-point and height-difTerence argu-
ments are miniscule (- = —0.06 and —(0.08, respectively; sce
our Table . which shows values listed by Craymer and
Vanicek [1986, p. 9503] in their Table 2. column 3). This
means that neither the number of turning points nor the
height differences are correlated with the divergence. In a
simple regression, the slope b and correlation r are related by

3,
r=b S,

(D

where S, and S, are the standard deviations in v and v,
respectively [Draper and Smith. 1981, p. 45]. Thus b 1s @
version of r scaled by the spread in the data. The correlation
coellicient measures the linear association between x and v,
while the regression cocflicient measures the predicted
change in y for unit change in x. From (1) it can be secn that
the cocfficients r and b should, in gencral. display the same
sign and a similar level of significance. Such a relation,
however, holds only for refraction, which explains why
regression on the number of turning points and height
difference explains 9% of the variance in the data [Craymer
and Vanicek. 1986, Table 2], whereas when refraction is
included 60% of the variance is explained (Table 1). A simple
regression on refraction alone cxplains 56% of the variance,
which means that the other (wo arguments reduce the
variance by only 4% in the regression on refraction, turning
points, and height. This confirms the central error in their
analysis, as regression of variables which have no linear
association is illusory. The only remaining question is. what
went wrong?
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TABLE 1. Multiple Lincar Regression on 1981 Saugus-Palmdale Leveling Data
Craymer and Vanicéek [1986, this issue] This Reply
n = 60; Intercept =0 n = 58; Frec Intercept
Partial Partial
Partial Regression b Correlation r Yartial Regression b Correlation r
Cumulative Signifi- Signifi- Signifi- Signifi-
Magnitude, Coectfi- cance, Coefti- cance, Coeffi- cance, Coelli- cance,
Units mm clent T cient % clent % cient Vi
Argument
Refraction ‘Cm*x10*® +16 44 2 5 99.99 0.74 99.99 43 =5 99.99 0.75 99.99
Turning mmx ) * +21 4+0 —0.06 35 —18 = 19 66 ~0.08 55
points
Height 107" 15 —28 + 12 —0.08 48 =12 £ 41 0.10 66
difference
Variance 393 59.5

explained
by model, %

Bold numbers highlight the principle inconsistency of Craymer and Vanicek's [1986, this issue] analysis: regression coeflicients that
appear highly significant associated with insignificant correlation coefficients. When the intercepl is not constrained (o pass through the
origin and two influential points are removed, the regression and correlation coefficients for turning points and height are seen to have the

same sign and low level of significance, with the refraction cocfficients

unchanged (right columns). The unstable arguments do not increase

the variance explained by the model, further confirmation that refraction is the only robust argument. Values for Craymer and Vanidek differ
slightly from thosc listed in their paper but were calculated using a nearly identical data sel.

Turning Point Argument

[
I — -0.06 Craymer and Vanicek [1986] set the intercept in their
4 5 e regression equal to zero. This forces the regression line to
s pass through the origin and, approximately, the mean of the
= 2F data, rather than letting the regression fit a trend through the
(_“5' + observations. Craymer and Vanicek have thus assumed that
& 0 [+ the number of turning points correlates with divergence,
g rather than testing such a correlation. This constraint would
L = [* have little impact if the data clustered near the origin;
o + however, the mean number of turning points per scction
4r INTERCEPT=0 a (25 1 9) lies three standard deviations from zero. The effect
5 i o LA e , , of constraining the intercept can be seen in the plots of the
E o 10 20 30 40 50 divergence against the number of turning points (Figure 1).
When Craymer and Vanicek’s proffered regression line and
8 its uncertainty arc used (Figure 1), only 7% of the obser-
[ =-0.08 vations lic within the dotted * 1o envelope, an impermissible
- * + + result. Figure 1h shows the regression on the same data
g when the inlercept is not imposed; neither the slope nor the
; intercept differs significantly from zero. That the data clus-
% tering is not an artifact of projection on the divergence—
Ly i s turning point plane can be seen in the perspective plot of
(o} + + B pit B ; : 3 el
(i 2L Ty divergence on lurning point and height (Flsgule 2a). 0
> * Craymer and Vanicek [1986] report an intercept (“*bias™)
2 4 * that is significant at the 94-99.5% level of confidence in their
| FREEINTERCEPT 4 b preliminary “‘discrepancy scries analysis™ [Craymer and
8 i T Vanicek, 1986 Table 1, column 3, p. 9050], but they inexpli-
0 10 20 30 40 50 cably drop it from their multiple lincar regression with this
NUMBER OF TURNING POINTS eemark:
1] ’ . : ' Note that the above B matrix does not provide for bias
Fig. 1. Regression of observed divergence per section (or pair estimation cven though it appears significant from the analyses

ol bench marks), that is, the dilference between the height measured
on the forward run minus that measured on the backward run, on the
number of turning points per section, showing slope b (solid line)
and =l envelope (dotted). («) Cravmer and Vanicek [1986] fit the
data with line constrained to pass through the origin. () When the
intercept is unconstrained, the slope is not significantly difTerent
from zero. Note that, irrespective of the choice of mtercept, the data
are uncorrelated (r).

of individual effects. If this were desired, there would be an
extra column of ones. Because we have (as yet) no physical
explanation for this constant effect, we have somewhat arbi-
trarily omitted it in our analyses.

The intercept is simply the mean divergence per section not
attributable to the tested error sources; it is poorly deter-
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Fig. 2. Perspective diagrams of (a) the observed divergence and (b) [requency, or number of observations on
turning points and height difference. In Figure 2« the points (solid squares) cast shadows (open squares) vertically

downwurd on the turning point=height plane.

mined but large (0.7 = 0.4 mm) relative to the refraction
error and thus not negligible. When the intercept was in-
cluded in their preliminary analysis, Cravimer and Vanicek
[1986] reported an insignificant turning point coefficient (35%
confidence of being nonzero |Craymer and Vanicek, 1986
Table I, p. 9050]. Craymer and Vani¢ek’s claim in their
comment that the matrices for their coefficients are properly
conditioned hinges on their omission of the intercept: when
the intercept is restored, the matrices become ill-
conditioned. Their claim that the intercept should not be
included because they have no explanation for it 1s also
unsound: In fact the intercept does not differ from zero at the
95% level of confidence. What Craymer and Vanicek have
done is to assume that the intercept is determined to be
identically zero. This is why, as they show in Table 1 of their
comment, either the intercept or the turning point argument
can be used (but not both). What is not shown in their Table

1 is that the correlation coefficient for the turning point
argument is insignificant under all circumstances (r < 0.08:
Table 1). Thus the turning point argument explains less than
0.7% of the variance in the data.

Height Difference Argnment

The height difference coefficient and its significance de-
pend on two out of the 60 observations. Contrary to Craynier
and Vanicek's |this issue] assertions, removal of influential
points is standard practice to test whether a statistic is
robust. Beneath the heading, **Detection of influential ob-
servations,” Draper and Smith [1981, p. 170] write

In any data set where the estimation of one or more parameters

depends heavily on a very small number of observations.

problems can arisc. One way to tackle this problem is to check

whether the deletion of one or two critical observations greatly

affects the fit of the model and the subsequent observations. If

it does, the conclusions are shaky and more data are needed.
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Fig. 3. Significance of the two outliers in the regression of
divergence on height. (a) Observed divergence per section against
height between bench marks. Craymer and Vanicel's [1986) regres-
sion line passes through the origin and the outliers (57 and 58). (h)
Same data without a regression line: {¢) Frequency distribution of
the height difference in meters, upper scale, and in quantiles
{standard deviations from the mean), lower scale.

Divergence is shown as a function of height difference in
Figure 3a. That sections 57 and 38 are outliers is perhaps
more easily seen in Figures 3b and 3¢: the points locate 3.4
and 4.5 standard deviations from the mean. When these two
points are left out of the sample, the cocfficient is no longer
significant. That these points are outlicrs in the turning
point-height planc can be seen in Figure 2b. Craymer and
Vanicek [this issue] argue that since cach observation con-
tains many individual setups, no point may be removed. This
argument, too, is flawed becausc the setups in a sectlion arc
summed, not averaged. Thus a blunder in any individual
instrument setup, or a disturbance of an individual turning
point or bench mark, will cause the observation to be in
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crror. The height difference cocfficient is (hus unstable and
without additional data, Craymer and Vanitek’s conclusions
are shaky.

What i, however, all observations are inviolable and none
may be removed to test the stability of the coefficient, as
Craymer and Vanicek [this issue] maintain? Craymer and
Vanicek [1986] pointed out that such a height dependence
could not be ascribed to a lincar scale error of the rods,
because the same rods were used for both runnings of each
scction. Instead they suggested that the central meter of the
3-m-long rods was miscalibrated with respect to the upper
and lower meters of the rods. This requires a (.03-mm
calibration crror in the center part of the rods (30 ppm error
in the I-m rod segment), or a 0.09-mm crror at the ends (30
ppm in 3 m). The two rods were calibrated before the
experiment at each of the 1200 graduations (reach rod has
two scales, graduated every 5 mm) by the National Bureau
of Standards using a laser interferometer. The standard error
of the precision in the graduation measurements is 0.007 mm
(unpublished report of special measurement, rods 270718
and 277920, National Bureau of Standards Level Rod Mea-
surement Facility, 1981). The rod is measured to an accuracy
of [0.015 + 0.0054] mm, where d is the height of the
graduation above the footplate in meters. The relative pre-
cision of graduations within the central meter of the rods is
thus 0,014 mm at the 95% confidence interval, whereas for
the entire rod. it is 0.03 mm. For a miscalibration required by
Craymer and Vanigek, the same error would have to be
repeated for cach of the two scales on the (wo rods. The
probability that a mean calibration error of 0.03 mm was
made on the central meter of four rod scales measured to a
precision of 0.007 mm, or an error of 0.09 mm over the four
rod scales calibrated to a precision of 0.03 mm, is small.

What if such an error did occur? Craymer and Vanicek
[1986, p. 9048] cxplained that a differential calibration error
could affect the divergence:

That is, the long sight runnings would typically observe the
ends of the rods, while the short sight runnings would observe
closer to the middle of the rods. Thus the differential scale error
represents the difference in scale errors at the ends and the
middle of the rods.

What they had overlooked and now recognize, however, is
that the long and short sights are equally mixed in the
forward-backward divergence, and therefore the differences
of rod-center versus rod-end exactly cancel in their analysis.
Such a scale error would appear only by regression of the
long-sight divergence minus short-sight divergence after
correction for refraction, a regression performed by Stein et
al. [1986]. Our results showed that neither the regression nor
the correlation coefficients differ from zero at the >75%
confidence interval for this dependence (b = —15 = 13 ppm,
r = 0.16, for all data: 6 = —12 = 19 ppm, r = 0.09, for 58
observations). We thus regard a rod scale error as implausi-
ble. Craymer and Vanicek [this issue] argue that though they
have no explanation for the source of the height dependence,
it must be maintained. This statement oddly contrasts with
their refusal to include an intercept term because they have
no explanation for its source. In fact, Craymer and
Vanicek’'s height dependence owes its existence exclusively
to the two outliers.
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CONCILUSIONS

Neither the number of turning points nor the height is
correlated with the divergence in the 1981 Saugus-Palmdale
leveling experiment (r < 0.1). Regression on variables that
have no linear association is meaningless, cxplaining little, if
any, variance in the data. When the intercept is uncon-
strained, the turning point coefficient is not significantly
different form zero; when two outliers are also removed to
test the stability of the height difference coefficient, the
height dependence disappears. Furthermore, no height de-
pendence can be attributed to the leveling rods when it is
properly tested using all data, as Craymer and Vanicek now
concede. In contrast, the refraction coefficient is statistically
robust, 8 times larger than its standard error, and contributes
nearly all of the variance reduction in the data.

The 1981 test showed refraction to be a large leveling
error. The cumulative short-sight minus long-sight diver-
gence, which amplifies rather than dampens refraction, is 51
mm. After correction for refraction error, the summed
divergence is 8 = 7 mm [Stein et al., 1986], We agree with
Craymer and Vanicek [this issue] that systematic errors due
to turning point settlement, height dependence, and other
sources incvitably are present, but they are smaller than
refraction and have not been reliably detected above random
errors.
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